Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация влияние давления

    Этилен. Опыты более ранних исследователей [2, 12, 57] показали, что этилен разлагается при температурах 450—500° и атмосферном давлении, при этом образуется лишь небольшое количество жидких продуктов. При температуре же 600° этилен дает лишь несколько капель жидкого продукта, в остаточном газе обнаруживаются продельные углеводороды. Только в результате исследований о влиянии давления было установлено, что этилен [21] может легко нолимеризоваться. При нагревании в автоклаве высокого давления этилен начинает нолимеризоваться в жидкий продукт уже при 325° и давлении 70 ат, а при температуре 380—400" полимеризация идет с большой скоростью. Образовавшийся продукт состоит из 80 % сложной смеси жидких парафинов, олефинов и циклопарафинов, выкипающих в пределах 24—280°, и 20% жидкости, выкипающей выше 280°. [c.187]


    На протекание реакции полимеризации этилена оказывает влияние ряд факторов. Влияние давления состоит в том, что при увеличении его возрастает плотность этилена. Это приводит к увеличению вязкости смеси полиэтилен—этилен и скорости иолимеризации. В качестве инициатора полимеризации этилена при высоком давлении применяют молекулярный кислород и органические перекиси. С повышением температуры увеличивается скорость распада инициатора и скорость полимеризации. Давление этилена и количество используемого инициатора влияют на температуру. [c.158]

    Влияние давления на скорость полимеризации индена и стирола в жидкой фазе изучали Тамман и соавтор (155). Зависимость константы скорости полимеризации от давления выражалась следующими уравнениями  [c.147]

    Так как скорость процесса контролируется в основном диффузией, порядок реакции близок к первому, скорость реакции пропорциональна парциальному давлению олефинов. В табл. 6.3 приведены данные, характеризующие влияние давления на процесс полимеризации смеси пропилена и бутенов. [c.196]

    Большой интерес представляет также проведение исследований стереорегулярности полимеров в зависимости от давления, применяемого при полимеризации. Влияние давления на конформацию полимеров может быть обусловлено как смещением равновесия в сторону наиболее плотных конформаций, так и различным ускорением реакций роста цепей в разных реакционных конформациях. При достаточно высоких давлениях оба эти эффекта, вероятно, могут играть заметную )Оль. [c.214]

    В часть III — Влияние давления на скорость и состав продуктов сложных химических процессов — включена новая глава Влияние давления на структурную и пространственную направленность химических реакций , в которой изложены также преимущественно работы автора и его сотрудников. Существенные дополнения внесены в главу, посвященную полимеризации под высоким давлением (равновесие в реакциях полимеризации, влияние давления на скорость отдельных стадий радикальной полимеризации и на структуру образующихся полимеров, полимеризация в ударной волне и др.). [c.7]

    На рис. 14.17 показаны различные стадии цикла прессования. Усилие на плунжер, перемещающийся с постоянной скоростью и обеспечивающий смыкание пресс-формы, не остается постоянным на протяжении цикла прессования. На первой стадии, когда заготовка материала сжимается и нагревается (i < усилие быстро увеличивается. момент времени tf полимер почти полностью расплавлен и под влиянием давления растекается и заполняет полость пресс-формы. При 4 производят поджатие (подпрессовку) полимерного расплава для компенсации объемной усадки, вызванной реакцией полимеризации. В этот момент заполнение пресс-формы заканчивается. После t происходит химическая реакция в блоке полимера. Ниже мы подробнее остановимся на каждой стадии прессования. [c.550]


    ЧТО позволяет рассматривать методы определения диэлектрических свойств полистирола как инструмент, с помощью которого можно следить за его старением под действием света. На рис. 3.18 приведена зависимость диэлектрических потерь, определенных на пленках толщиной 0,1 мм после их облучения монохроматичным светом с длиной волны 254 мкм при интенсивности потока 1,6-10 Е/(см2-с), от продолжительности облучения. С увеличением интенсивности светового потока возрастает скорость диэлектрической релаксации (рис. 3.19). При облучении полистирола УФ-светом с длиной волны более 300 мкм на графике зависимости диэлектрических потерь от продолжительности облучения появляется индукционный период, причем обнаруживается различие в поведении полистирола, полученного анионной и радикальной полимеризацией. Влияние давления кислорода на индукционный период фотоокисления и последующую скорость релаксации показано в табл. 3.10. [c.100]

    Обратимся теперь к рассмотрению параллельно-последовательных реакций. Для термодинамического анализа важны лишь начальное и конечное состояния системы. Поэтому рассмотрение равновесия последовательных реакций является излишним. Однако для решения ряда практических задач существенное значение приобретает выяснение влияния давления на равновесие параллельно-последовательных реакций. Простейшим типом параллельно-последовательных реакпий являются реакции ступенчатой полимеризации, протекающие через последовательное присоединение молекулы мономера к молекуле димера, тримера и т. д. по следующей схеме  [c.174]

    Неоднократно устанавливалось влияние высоких давлений на скорость реакций в конденсированных системах. Это влияние наблюдалось в случае реакций в жидкой фазе, например полимеризации этилена, стирола и т. д. Для некоторых реакций в жидкостях можно предвидеть влияние давления на константу скорости реакции, основываясь на теории переходного состояния  [c.235]

    Влияние давления. Давлеиие порядка нескольких атмосфер и даже десятков атмосфер практически не влияет на процесс полимеризации. Высокое и сверхвысокое давление — 300—500 МПа (3000—5000 ат) и выше значительно ускоряет полимеризацию. Процесс полимеризации метилметакрилата в присутствии кислорода воздуха при 100 С и атмосферном давлении продолжается около б ч, а под давлением 300 МПа (3000 ат) около 1 ч, т. е. суммарная скорость полимеризации возрастает примерно в б раз. Увеличение скорости полимеризации под влиянием высоких давлений наблюдается также при полимеризации стирола, винилацетата, изопрена и других соединений. [c.79]

    Давление незначительно влияет на скорость процесса. В литературе [1-31 указывается, что увеличение давления с 1 до 2 атм приводит к возрастанию скорости крекинга газойля на 20%. Иногда наблюдается влияние общего давления в степени 0,5. В опытах по крекингу Кумола влияние давления было различным при разных температурах. Влияние высоких давлений газа изучал Гоникберг [4]. Сильное повышение его способствует полимеризации, перераспределению водорода и коксообразованию. [c.244]

    Весьма существенно влияние давления на состав продуктов крекинга. Это объясняется в основном тем, что с увеличением давления возрастает скорость вторичных реакций продуктов распада (полимеризации, алкилирования, гидрирования). [c.41]

    Влияние давления на константу сворости полимеризации [c.143]

    В табл. 17 показано влияние давления на количество и состав газов, образуюш ихся при суспензоид-крекинге. Здесь опять отчетливо обнаруживается ускоряемая давлением термическая полимеризация олефинов, которая сильнее всего заметна в случае очень быстро реагируюш его этилена. [c.24]

    Кроме изучения полимеризации чисто органических соединений было исследовано влияние давления на реакции некоторых элементорганических мономеров. При давлении порядка 600 МПа и температуре 120...130°С были выдержаны вместе с катализаторами (пероксиды) кремнийорганические соединения, в углеводородных группах которых имелись ненасыщенные (двойные) связи. Наблюдалась полимеризация кремнийорганических мономеров, причем в зависимости от числа углеводородных групп с двойными связями в молекуле мономера менялся характер полимерного продукта. Чем больше таких групп, тем выше степень полимеризации. [c.201]

    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Энтропия растет не только с повышением температуры, но при переходе вешества из состояния с меньшей энергией в состояние с большей энергией, например при плавлении (и возгонке) твердого вещества, при кипении жидкости. Ростом энтропии сопровождаются и процессы расширения газа, растворения кристаллов, химическое взаимодействие, протекающее с увеличением объема, например диссоциация соединения, когда вследствие роста числа частиц их неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности системы, такие как охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема, например полимеризация, сопровождаются уменьшением энтропии. Возрастание энтропии вещества при повышении температуры иллюстрирует рис. 2.5. Влияние давления на энтропию можно показать на следующем примере при Т - 500 К и р-101 кПа энтропия аммиака составляет 212 Дж/(моль К), при 7 -500 К и р-30300 кПа эта величина равна 146 Дж/(моль-К), т. е. с увеличением давления энтропия снижается, но незначительно. [c.189]


    При неправильном выборе параметров режима длина реактора может не полностью использоваться или, наоборот, реакция полимеризации будет обрываться при максимальной скорости образования полимера. Поэтому при моделировании определяли влияние давления, температуры теплоносителя, концентрации инициатора в каждой зоне на конеч- [c.97]

    Если это скопление сухого торфа покрывал песок или какая-нибудь другая порода, то в торфе не могли происходить значительные изменения под влиянием давления, так как вся масса, не обладая пластичностью, не была способна к перемещению и расслаиванию. Поскольку в этой массе отсутствовали остатки неразложившегося растительного материала, то не наблюдалось и повышения температуры. При таких условиях в пласте сухого торфа очень медленно протекали весьма незначительные изменения гуминовые кислоты уплотнялись и за счет декарбоксилирования постепенно превращались в гумиты, воски оставались без изменений, а смолы подвергались полимеризации и частичному декарбоксилированию. В результате получились типичные гумусовые бурые угли. [c.31]

    На первый взгляд кажется, что эти заключения находятся в противоречии с известным и теоретически ожидаемым влиянием давления на реакции алкилирования, полимеризации и гидрогенизации, рассмотренные в 1 и 3 главах. Однако следует помнить, что положительный эффект давления на все эти реакции наблюдается только при особых условиях, которые не существуют при обычном крекинге. Например, гидрогенизация ароматических з глеводородов наблюдается при очень высоком давлении водорода и в присутствии специального катализатора. Алкилирование парафинов олефинами проводится а присутствии большого избытка парафинов при очень высоких давлениях. Только полимеризация олефинов и некоторые реакции конденсации олефинов и ароматических углеводородов встречаются в условиях крекинга при высоком давлении, поэтому в результате наблюдается уменьшение выходов бензина, как было указано выше. [c.121]

    Тропш, Томас и Эглофф [48] исследовали влияние давления на термическую конверсию газообразных парафинов и нашли, что природный газ при 550° С и одинаковой конверсии за цикл дает более высокие выходы жидких продуктов при повышении давления от 17,5 до 70,5 K2 M и соответственно более низкие выходы газообразных олефинов. Влияние давления на процессы полимеризации и конденсации больше, чем на реакции разложения. [c.187]

    Термическому превращению следующего члена гомологического ряда сопряженных диенов — пиперилену посвящено несколько работ, в которых исследуется в основном состав продуктов полимеризации пиперилена [391—393]. Шуйкин и Нарышкина [394] изучали влияние давления и температуры на состав продуктов превращения пиперилена и нашли, что при повышенных давлениях получается главным образом ароматическая фракция, состоящая в основном из бензола, толуола и ксилола. При пониженном давлении бензол и толуол получались лишь в незначительных количествах. Повышение температуры от 450 до 550 °С с точки зрения авторов ведет к увеличению конверсии пиперилена в ароматические углеводороды и смолы, а также к снижению содержания образующихся легкокипя-щих углеводородов. [c.231]

    Это влияние давления иа реакции крекинга, проявляющееся в большей или меиьшо стенепи иа избирательности расщепления, сначала каягется чрезвычайно странным. Давление оказывает решающее влияние только на вторичные реакг(ии, ири которых вследствие полимеризации исчезают [c.226]

    Специфическое влияние давления на скорость реакции полимеризации выявляется при сравнении его с такими параметрами процесса, как температура и концентрация катализатора. При повышении температуры и увеличении концентрации катализатора скорость реакции увеличивается, но при этом образуются низкополи-меризованные продукты. Давление же ускоряет реакцию и способствует получению высокополимеризованных продуктов. [c.194]

    Так, например, изучение полимеризации циклогексе-на под давлением до 400 МПа и температуры до 310°С показало, что давление существенно не влияет на скорость реакции и полимеры по своему строению не отличаются от полученных при низком давлении. В то же время отмечается сильное влияние давления на полимеризацию винилциклогексена. Удовлетворительного объяснения этому пока не найдено. [c.194]

    Влияние давленая. С повышением давления значительно увеличивается скорость полимеризации, так как при этом возрастает число столкновений активных центров с мономерами. Повышение давления позволяет понизить температуру полимеризации, а следовательно, получить продукты с более высоким молекулярным весом. Процесс полим изации бутадиена при 7000 ат и 48 С продолжается 46 ч (на 95%), При 61" С —всего 19 ч, а при 1 ат полимеризация продолжается сотии суток (в отсутствие катализатора). Однако вопрос о применении повышенных давлений при полимеризации должен решаться всегда совместно с выбором катализаторов. Так. полиэтилен, получавшийся раяее только иод давлением 1000—2000 ат (полиэтилен высокого давления), может быть получен по способу Циглера при использовании в качестве катализаторов триэтилалюминия и хлоридов титана и при нйзком давлении (полиэтилен низкого давления). [c.45]

    Значительное влияние структуры поверхности и характера обработки катализатора указывает на то, что поверхность играет чрезвычайно важную роль и непосредственно участвует в полимеризации. При осажденных катализаторах изменение физической и химической структуры осадка непосредственно определяет молекулярный вес получаемого полимера и степень его стереорегулярности, При предварительно приготовленных окпснометаллических катализаторах характер и метод приготовления носителя с высокой удельной поверхностью оказывают сильное влияние па протекание реакции полимеризации. Низкие давления, необходимые для получения стереорегулярных полимеров, непосредственно связаны с тем, что олефины хемосорбпрованы на поверхности применяемых твердых катализаторов [96]. Следовательно, мономер концентрируется на этой поверхности даже при сравнительно низком внешнем давлении газа. Поверхность может увеличить скорость реакции роста полимера в результате повышения скорости присоединения мономерных остатков по сравнению с одновременно протекающей реакцией передачи цепи. Движущей силой реакции распространения цепп в этом случае является экзотермическая адсорбция олефпна. [c.298]

Рис. 3.4. Влияние давления на стационарную скорость полимеризации (а) и еыход полимера в процессе полимеризации этилена при 80 °С иа ката лизаторе ТМК (0,8% Т1). Рис. 3.4. <a href="/info/30124">Влияние давления</a> на <a href="/info/1588517">стационарную скорость полимеризации</a> (а) и еыход полимера в <a href="/info/89576">процессе полимеризации</a> этилена при 80 °С иа ката лизаторе ТМК (0,8% Т1).
    Повышение давления вызывает резкое увеличение скорости реакции полимеризации. Изучение влияния давления на процесс полимеризации этилена показало, что при температуре 90°С и времени полимеризации I ч (концентрация хромоцена 0,055 ммоль на 0,4 г 5102, температура дегидратации 600°С) образование полимера наблюдается при давлении не менее 0,7 МПа. Повышение давления до 2,1 МПа увеличивает выход полимера в 8—10 раз. Если давление повысить до 2,8 МПа и более, скорость увеличивается настолько, что контроль температуры вызывает большие затруднения [130]. [c.113]

    Вышо было рассмотрено влияние давления на равновесие ы скорость химических реакций. При этом в ряде случаев возникала необходимость истолкования результатов исследований сложных процессов (в частности, в раздело, посвященном кинетике гомогенных и гетерогенно-каталитичс ских газовых реакций). Состав продуктов сложных процессов может претерпевать существенные изменения в зависимости от применяемого давления. Так, повышение давления при полимеризации ненасыщенных соединений не только ускоряет этот процесс, но и приводит во многих случаях к увеличению молекулярного веса образующихся полимеров. Увеличение давления при изосинтезе обусловливает образование, наряду с углеводородами, также значительных количеств кислородсодержащих соединений. Число подобных примеров дюжет быть легко удшожено. Естественно, что состав продуктов сложных процессов определяется равновесием и скоростью составляющих их простых реакций. [c.172]

    Указанными исследованиями установлена различная склонность алкенилсиланов к полимеризации под давлением в зависимости от строения мономеров — в первую очередь от характера двойной связи и ее положения по отношению к атому кремния, Найдено, что в случае кремнийолефинов подтверждаются известные для углеводородных мономеров закономерности, характеризующие влияние заместителей на склонность замещенных этиленов к полимеризации. [c.192]

    Как видно из приведенного выше краткого обзора, полимеризации органических соединений прп высоких давлениях посвящено значительное число работ. Рассмотрение результатов исследований приводит к выводу, что скорость реакций полимеризации, а также средний молекулярный вес образующихся полимеров в подавляющем большинстве случаев увеличиваются с иовышением давления. К сожалению, очень небольшое чпсло работ по полимеризации под давлением носит количественный характер. ] 1ежду тем для выяснения причин отмеченного влияния давления на реакции полимеризации необходимо установить изменение скорости отдельных стадий этих реакций при повышении давления, [c.197]

Рис. 29. Влияние давления на скорость полимеризации стирола V, кр, ко (при Зб°С) и константу гомолитического распада инициатора кц (перекись бензоила в СС14 при 70°С) (а), а также иа молекулярную массу полимера М (при 60°С) (б) Рис. 29. <a href="/info/30124">Влияние давления</a> на <a href="/info/296003">скорость полимеризации стирола</a> V, кр, ко (при Зб°С) и константу <a href="/info/487138">гомолитического распада</a> инициатора кц (<a href="/info/11016">перекись бензоила</a> в СС14 при 70°С) (а), а также иа <a href="/info/532">молекулярную массу</a> полимера М (при 60°С) (б)
    П. П. Кобеко, Е. В. Кувшинский и А. С. Семенова [357] исследовали влияние давления на кинетику полимеризации стирола при давлеш1ях до 6000 кГ см в интервале температур 62—132°. Авторы также определяли величину усадки ш, вызванной превращением мономера в полимер (рпс. 23), и измерили молекулярные веса полученных полимеров. Ими было [c.198]

    Уоллинг и Пеллон [362] изучали полимеризацию стирола прп 40° и давлениях до 6000 кГ см . Эти исследователи определяли влияние давления на константу скорости роста цепей, измеряя скорость полимеризации эмульсии стирола, содержавшей около 40% полимера и около 60% незаполимеризовав-шегося стирола. Ниже приведены полученные в этой работе результаты  [c.205]

    На основании этих результатов, а также данных о влиянии давления на скорость блочной полимеризации стирола и на скорость распада перекиси бензоила [223] авторы нашли для реакции обрыва цепи величину 4 см/ молъ. Таким образом, Уоллинг и Пеллон [362] также пришли к выводу [c.205]

    Л, Ф. Верещагин, А, Д. Снегова и Е, Ф, Литвин [363] исследовали влияние высокого давления нри полимеризации стирола на функцию распределения молекулярных весов полистирола. Эти авторы установили сдвиг интегральных кривых распределения в сторону больших молекулярных весов. Одновременно была обнаружена неоднородность молекулярного веса полимера по радиусу реакционного сосуда, которая маскирует влияние давления — в середине реактора средний молекулярный вес (а также степень превращения мономера) меньше, чем у стенки, В реакторах меньшего внутреннего диаметра были получены более монодисперсные и более высокомолекулярные полимеры. [c.205]

    Нами уже приводились некоторые данные (стр. 190) о влиянии давления на полимеризацию метилметакрилата. Кинетика этой реакции при высоких давлениях была исследована Е, В, Мелехиной и Г, В. Кувшинскнм [330]. Авторы установили, что-при повышении давления от 1 до 4500 кГ/см скорость полимеризации возрастает приблизительно в тысячу раз при 25° и приблизительно в 70 раз — при 70°. Молекулярный вес поли-метилметакрилата заметно возрастает нри увеличении давления. В работе измерена также усадка при полимеризации метилметакрилата — она уменьшается с 26,7 см. /молъ нри атмосферном давлении до 11,5 см /моль — при 4500 кГ/см. . [c.206]

    В последнее время все большее распространение получает предположение, что в основе роста степени полимеризации с дав-леюхем лежит увеличение вязкости, затрудняющее обрыв цепей в результате взаимодействия двух растущих полимерных радикалов, но не мешающее росту цени за счет присоединения молекул мономера (см. выше, стр. 205). В связи с этим необходимо хотя бы вкратце рассмотреть вопрос о влиянии давления на вязкость. [c.209]

    Напомним, что, по-видпмому, впервые Стерн и Эйринг [221] воспользовались предположением о диффузионной кинетике процессов обрыва цепей при интерпретации влияния давления иа скорость реакций полпмеризации. Эти авторы предложили уравнение, связывающее константу скорости полимеризации к с константами скорости инициирования, роста и обрыва материальных ценей  [c.213]

    Влияние давления на величину отдельных констант, входящих в это уравнение, должно приводить к изменению скорости реакции и молекулярного веса полимера. Стерн и Эйринг считали величину к практически не зависящей от давления, а /Сп— примерно пропорциональной давлению зависимость /г-, и к от давления соответствует изменению текучести. Однако анализ уравнения (111.35), проведенный Гоникбергом и Верещагиным [358], показал, что оно приводит к выводу о все ускоряющемся возрастании среднего молекулярного веса полимера с давлением. В действительности же рост молекулярного веса полимеров замедляется по мере увеличения давления. Таким образом, применение уравнения (И1.35) приводит к неправильным результатам, находящимся в противоречии с опытом. Это противоречие нельзя считать устраненным и в настоящее время. Как было показано Нихолсономи Норришем [361] (см. стр. 204), константа скорости обрыва цепи при полимеризации стирола уменьшается вдвое при повышении давления от 1 до 1000 кГ/см и далее — всего на 20% при повышении давления от 1000 до 3000 кГ/см . В то же время вязкость жидкостей возрастает приблизительно вдвое в интервале 1—1000 кГ/см и далее — не менее, чем втрое в интервале 1000—3000 кГ/ см . По данным Уоллинга и Пеллоиа [327] (см. стр. 206), увеличение давления с 2450 до 8500 кГ/см приводит к росту молекулярного веса по-лиаллилацетата всего иа 10%. Яркой иллюстрацией замедления роста молекулярного веса по мере повышения давления являются данные, приведенные в табл. 65 (стр. 200). Очевидно, для [c.213]

    Влияние давления (23]. При достаточно высоких давлениях, порядка 1000 атм и вытие. одновременно растут скорость полимеризации и X. чем этот путь ускорения полимеризации выгодно отличается от,других. [c.125]

    Влияние давления на скорость крекинга—самый спорный, вопрос. С теоретической точки зрения, константа скорости мономолекулярной реакции крекинга должна быть независимой от давления. Однако вторичные би- и полимолекулярные реакции крекинга (полимеризация и конденсация), как будет показано ниже, ускоряются под влиянием давления. Немного сделано по кинетике разложения чистых химических соединений в жидкой фазе при высоких давлениях. Виллиаме, Перрин и Гибсон[5бб] исследовали разложение бромистого фенилбензил-метилаллиламмония в растворе хлороформа при давлениях от 1 до ЗОСЮ кг1см . Влияние давления было ничтожным. Давление слегка замедляло реакцию. Полагают, что давление является одним из важных факторов при крекинге, сильно увеличивая выходы крекинг-бензина. Лесли и Потткофф [29] первыми изучали влияние давления на кинетику образования бензина при крекинге. Давление, созданное добавлением азота, не влияло на крекинг. В других опытах давление поддерживалось при помощи разложения нефти от 14 до 35 кг/см при 42Т С, [c.119]


Смотреть страницы где упоминается термин Полимеризация влияние давления: [c.272]    [c.200]    [c.45]    [c.121]   
Технология синтетических каучуков (1987) -- [ c.147 , c.150 ]

Химия искусственных смол (1951) -- [ c.196 , c.224 , c.248 ]

Волокна из синтетических полимеров (1957) -- [ c.22 ]

Синтетические каучуки Изд 2 (1954) -- [ c.345 ]




ПОИСК





Смотрите так же термины и статьи:

Величина как наиболее общая характеристика влияния давления на скорость полимеризации

Влияние давления на отдельные стадии радикальной полимеризаИонная полимеризация

Влияние давления на полимеризацию и сополимеризацию этилена

Влияние давления на полимеризацию хлоропрена

Влияние давления при полимеризации на структуру полимеров

Влияние температуры и давления на радикальную полимеризацию

Давление влияние его на на полимеризацию ацетилена

Диметилбутадиен, полимеризация, влияние давления

Особенности влияния давления на жидкофазные реакции полимеризации различного типа

Полимеризация влияние

Полимеризация влияние высоких давлении

Полимеризация газов влияние давления

Полимеризация олефинов влияние давления применение

Полимеризация олефинов, влияние давления на нее

Полимеризация олефинов, влияние давления на нее ароматических углеводородов

Полимеризация олефинов, влияние давления на нее из бензина при помощи

Полимеризация олефинов, влияние давления на нее фтористого бора

Полимеризация олефинов, влияние давления на нее электрических разрядов

Предельная температура полимеризации влияние давления

Радикальная полимеризация влияние давления

Уоллинг (США). Влияние высоких давлений на элементарные реакции полимеризации по свободно-радикальному механизму



© 2025 chem21.info Реклама на сайте