Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анодное растворение металлов при больших анодных поляризациях

    Аналогичная картина должна наблюдаться и при замедленном протекании других стадий. В связи с этим при не слишком больших удалениях от состояния равновесия обнаруживается некоторая симметрия в протекании процессов катодного выделения металлов-и их анодного растворения. Так, например, анодная поляризация ртути, серебра, таллия и кадмия оказывается близкой по величине к катодной поляризации этих же металлов при одинаковых катодной и анодной плотностях тока, т. е. при равной скорости осажде-ния и растворения. Изменение анодного и катодного перенапряжения с ростом плотности тока точно так же подчиняется для этих-металлов примерно одному и тому же закону. [c.507]


    В пленочной теории, по которой наступление пассивного состояния связано с поверхностным оксидным слоем, большое внимание уделяется его возникновению и формированию. Основными факторами, определяющими этот процесс, являются потенциал металла, а также концентрации ионов металла и ОН- Потенциал металла должен быть достаточно положительным для того, чтобы обеспечить устойчивое состояние данного оксида. Концентрации металлических и гидроксильных ионов должны быть достаточно велики, чтобы стало возможным образование соответствующих основных солей или гидроксидов, последующие превращения которых приводят к пассивирующим оксидам. Пассивность должна наступать тем легче, чем выше электродная поляризация ири анодном растворении металла и чем ниже скорость удаления ионов металла от поверхности электрода. [c.483]

    Для получения высокочистого катодного железа электролит не должен содержать металлов, более электроположительных, чем железо (медь, никель и др.). Кроме того, большая поляризация железа создает возможность для соосаждения и некоторых электроотрицательных примесей. Большая анодная поляризация при электролизе с растворимыми анодами создает условия для растворения таких электроположительных металлов, как медь и никель. [c.100]

    О скорости течения на электроде той или иной электрохимической реакции лучше всего судить по изменению потенциала электрода при пропускании через него тока. Реакции, идущие с большой скоростью, не приводят к сколько-нибудь заметным изменениям потенциала электрода при пропускании через него тока. Реакции, протекающие со значительным торможением какой-либо из стадий суммарного процесса, сопровождаются значительным изменением потенциала электрода. В первом случае реакция не сопровождается заметной поляризацией электрода, во втором — электрод подвергается сильной поляризации. Так, например, незначительное изменение потенциала электрода при анодном растворении металла показывает, что реакция ионизации (1.1) идет без заметного торможения. При этом электрод практически не поляризуется. Значительная поляризация электрода, наблюдающаяся, например, при протекании на нем реакции восстановления ионов водорода или молекул кислорода [c.9]

    Исследования проводили при = 20 40 60 и 80 С. По мере повышения 4 осаждение сплавов и их анодное растворение происходит с уменьшением поляризации. Так, при а = 20 С потенциал сплава N1—Со (80 % Со) ф —1,08 В, а при — = 80 С ф —0,78 В. При указанных значениях 4 плотность тока 1о для сплавов больше, чем для никеля, и меньше, чем для кобальта. Полагают (8 ], что при низких 4 поверхность металла [c.165]


    На рис. 190 представлена зависимость количества возникающих на поверхности точечных анодов и их глубины от плотности анодного тока. Эта зависимость в логарифмических координатах описывается уравнением прямой с показателем степени п 1, что указывает на наличие прямой пропорциональности между числом возникающих питтингов и плотностью тока. Средняя глубина питтингов при анодной поляризации возрастает с плотностью тока очень медленно, а начиная с определенной плотности тока (5-10 а/см ) она падает (рис, 190, кривая 2). С увеличением плотности поляризующего тока на поверхности металла возникает все больше мелких питтингов (табл. 55). Это является результатом того, что металл в большинстве питтингов пассивируется и они со временем перестают функционировать. Проявляется двойственная роль анодной поляризации в одних центрах она способствует активному растворению металла, в других — пассивированию поверхности. В активном состоянии остается лишь небольшое число активных центров, в которых, очевидно, не был достигнут ток пассивации. В этих центрах скорость растворения металла возрастает непрерывно с плотностью тока вследствие того, что поляризующий ток распределяется на малое число активных центров (рис. 190, кривая < ). [c.356]

    Анодное растворение металлов при больших анодных поляризациях [c.130]

    Для получения высокочистого катодного железа электролит не должен содержать металлов, более электроположительных, чем железо (медь, никель и др.). Кроме того, большая поляризация железа создает возможность для соосаждения и неко- орых электроотрицательных примесей. Большая анодная поляризация при электролизе с растворимыми анодами создает условия для растворения таких электроположительных металлов, как медь и никель, поэтому их не должно содержаться в анодах. В этом отношении электролиз солей железа подобен электролитическому рафинированию никеля. [c.93]

    В последние годы изучено большое количество органических соеди-нен,ий, адсорбция которых на электродах приводит к значительному торможению электрохимических процессов [1—3]. Введение их в электролиты увеличивает поляризацию и в определенных условиях позволяет получить катодные отложения металлов улучшенной структуры [4—61. Как правило, существует определенная связь между эффективностью действия таких веществ, как ингибиторы электрокристаллизации, и анодным растворением металлов, а также замедлением коррозии черных и цветных металлов в ра-, створах [7]. Последняя основана на прямом влиянии адсорбционных пленок на электродные процессы [8—91 и зависимости адсорбции от знака и величины заряда поверхности металла [10—11]. [c.120]

    Коррозионные потенциалы амальгам в растворах солей соответствующих металлов почти достигают значений обратимого потенциала легирующего компонента благодаря очень низкой скорости коррозии и отсутствию заметной анодной поляризации. Например, коррозионный потенциал амальгамы кадмия в растворе С(1504 ближе к термодинамическому для реакции Сс1 - Сс " - - 2ё, чем для чистого кадмия в этом же растворе. Стационарная скорость коррозии чистого кадмия значительно выше, чем его амальгамы, что ведет к еще большим отклонениям измеряемого коррозионного потенциала от соответствующего термодинамического значения. Вообще говоря, стационарный потенциал любого металла, более активного, чем водород (например, железа, никеля, цинка, кадмия) в водных растворах, содержащих собственные ионы, отклоняется от истинного термодинамического значения на величину, зависящую от преобладающей скорости коррозии, которая сопровождается разрядом Н+ [17]. Измеренные значения положительнее истинных. Это справедливо также и для менее активных металлов (например медь, ртуть), которые корродируют в присутствии растворенного кислорода. [c.64]

    Аномальное поведение металлического электрода по сравнению с тем, которое можно было бы ожидать исходя из уравнения (1.17), обусловлено прямым или косвенным влиянием концентрационной поляризации или изменением химических свойств поверхности, затрудняющим переход катионов в раствор на границе металл — электролит. Резкое изменение скорости анодного растворения после достижения определенного потенциала обычно связывают с накоплением на поверхности электрода адсорбированного кислорода или химически связанных с металлом кислородных соединений. По мере смещения потенциала в сторону положительных значений степень покрытия кислородом все больше возрастает. При достижении определенного потенциала ф электрод оказывается почти полностью покрытым оксидным слоем. Миграция катионов из металлической решетки в раствор через такой оксидный слой затрудняется, [c.14]


    Из схематической анодной кривой, представленной на рис. 1.2, видно, что испытания нужно вести таким образом, чтобы потенциал металла находился в области активного растворения (АБ) и по возможности был смещен в сторону положительных значений от стационарного, но не выходил за пределы потенциала пассивации (фп). Это достигается введением в электролит окислителей в определенных концентрациях, а также увеличением подвода кислорода. Сместить потенциал можно и путем анодной поляризации, но поляризация не должна быть большой, а потенциал следует поддерживать на уровне более отрицательном, чем уровень потенциала пассивации. [c.25]

    Большое влияние на работу конструкции оказывают внешние токи. При катодной поляризации в большинстве случаев может быть обеспечена защита от коррозии. При анодной поляризации для систем металл — раствор, не склонных к пассивации, происходит усиленное растворение металла. Необходимо принимать специальные меры по защите от коррозии конструкций и сооружений от блуждающих токов. Специфическое влияние на коррозионные процессы оказывают ультразвук и радиоактивное излучение. [c.24]

    Если сравнить стандартные электродные потенциалы TI и таких технически важных металлов, как Fe, Сг, N1, Мо,Та, Nb, Zr, то можно легко убедиться, что Ti в их ряду является одним из наиболее термодинамически неустойчивых. Однако его коррозионная стойкость значительно выше, чем у многих перечисленных металлов. Ti легче пассивируется, чем Fe, Ni, Сг. Мо, Та, Nb, Zr ещё более склонны к пассивации, чем Ti, вследствие происходящей в коррозионной среде самопассивации без применения внешней анодной поляризации. Тем не менее при положительных электродных потенциалах Мо, Сг и Ni имеют область перепассивации, в которой они растворяются в виде ионов более высокой валентности, в то время как у Ti подобная область перепассивации в кислых средах не наблюдается. Zr более стоек, чем Ti, в растворах НС1, H S04 и других кислот. Но при анодной поляризации в растворах НС1 Zr подвержен растворению с образованием питтингов. Таким образом, лишь Та и Nb превосходят Ti по коррозионной стойкости, что обусловлено их более лёгкой пассивируемостью и большей устойчивостью пассивного состояния. [c.63]

    Много работ посвящено изучению стойкости платины и других металлов платиновой группы при анодной поляризации их в растворах хлоридов. Исследовалось электрохимическое поведение титана, покрытого платиной, родием, иридием [152, 153], а также сплавами платины с иридием [154] и сплавами с палладием [155, 156]. Сплавы платины с иридием отличаются от чистой платины значительно большей стойкостью при электролизе. Так, при электролизе 32%-ной соляной кислоты доля тока, расходуемая на растворение платинового анода, составляет около 5%, а при применении сплава из платины, с 10% иридия эта доля снижается до 0,9% [157]. [c.76]

    Анодное и коррозионное поведение железа исследовано в основном в спиртовых растворах, растворах органических кислот и в апротонных растворителях. В большинстве случаев наряду с безводными исследованы и водно-органические растворы. При анодной поляризации железо переходит в раствор в двухвалентном состоянии, в процессе ионизации принимают участие молекулы растворителя и присутствующие в растворе анионы. Возможность прямого участия анионов в анодном растворении металлов в органических средах намного больше, чем в водных растворах, в случае железа эта возможность особенно проявляется. Для водно-органических смесей отмечается участие в отдельных стадиях растворения молекул воды и органического растворителя [653]. В механизме растворения большую роль играют адсорбционные явления, примером его может служить последовательность стадий при окислении железа в апротонных перхлоратных растворах [76]  [c.120]

    Имеется еще и другая возможность уменьшения скорости растворения металла — это непосредственное уменьшение скорости анодной реакции ионизации металла без вмешательства ингибитора в катодный процесс. Очевидно, что если каким-нибудь химическим средством затруднить течение этой реакции, то кривая фа (см. рис. 1,1) за счет увеличения поляризации все больше будет наклоняться к оси ординат и скорость процесса при заданном потенциале достигнет ничтожно малых величин. В ряде случаев таким образом может быть достигнут и потенциал полной пассивации. [c.31]

    Учитывая рассмотренные выше закономерности, можно полагать. что при внутренней анодной поляризации стали ингибиторами с общим анионом типа М0 природа пассивирующих слоев остается такой же, как и при внешней анодной поляризации. Специфическое действие ингибиторов проявляется в том, что, адсорбируясь на поверхности металла, они понижают общую свободную энергию системы и повышают стабильность пассивных пленок. В зависимости от природы адсорбированных частиц, их концентрации на поверхности и прочности связи меняется скорость растворения, поляризуемость и плотность тока, необходимая для пассивации, а также потенциал пассивации. В таких условиях пассивация может наступить и без большого внутреннего тока окислительновосстановительной реакции ингибитора лишь за счет небольших плотностей тока реакции восстановления кислорода, растворенного в электролите. [c.63]

    Адсор бция поверхностно активных веществ как фактор, влияющий на кинетику электродных процессов, подробно рассматривалась в предыдущих главах. Здесь достаточно указать, что адсорбционный слой, тормозящий разряд металлических ионов, неминуемо должен тормозить и обратную реакцию ионизации, причем каждое поверхностно активное вещество должно по-разному влиять на электрокристаллизацию и анодное растворение металла. Такой вывод вполне естествен, поскольку сама адсорбция поверхностно активных веществ, а значит, и состояние адсорбционного слоя, как правило, зависят от потенциала ионного слоя. Поэтому влияние одного и того же вещества на процессы электрокрнсталлизации и растворения металлических ионов, особенно при больших поляризациях, может оказаться резко различным. Наиболее вероятно проявление подобных различий в тех случаях, когда равновесный потенциал электрода лежит вблизи его потенциала нулевого заряда. [c.391]

    Так как айодное растворение никеля сопровождается большой поляризацией, то уже при малой плотности тока (рис. 105, участок АБ) наблюдается электрохимическое образование закиси никеля NiO. Растворение металла при этом тормозится, и начинается пассивация анода (участок БВ). Адатомы никеля, участвующие в образовании окисной пленки, не теряя связи с кристаллической решеткой металла, обусловливают тем самым прочное сцепление фазовой пленки с металлом и со- j j здают надежную изоляцию его от электролита. В результате анодный потенциал возрастает вплоть до У разряда гидроксильных [c.275]

    Добавки фторида в кислотную ванну сдвигают в отрицательную сторону начЗоТьный потенциал металла и сильно активируют анодный процесс растворения, препятствуя анодному окислению металла — на анодных кривых появляются линейные участки, в пределах которых поляризация анода мала, и металл интенсивно растворяется. С увеличением концентрации фторида длина активного участка анодной кривой растет, возрастает и величина критической плотности тока , после достижения которой начинается процесс анодирования (фиг. 9). Труднее (при больших плотностях тока) начинается процесс анодирования в солянокислой среде. [c.142]

    Анодные кривые для титана и хрома одинаковы. На кривой можно отметить следующие характерные точки — стационарный потенциал, внешний ток равен нулю, V — потенциал начала пассивации соответствует максимальному току анодного растворения металла. При потенциалах более положительных, чем потенциаоЧ начала пассивации, скорость анодного растворения металла уменьшается —потенциал полной пассивации, при котором устанавливается минимальный анодный ток. При потенциалах, более положительных, чем потенциал полной пассивации, металл находится в пассивном состоянии, поддерживаемом внешней анодной поляризацией. Различие в анодном поведении титана и хрома состоит в следующем при высоких положительных потенциалах пассивное состояние титана не нарушается, в то время как у хрома наступает состояние перепассивации [10—12], в котором он начинает растворяться в виде шестивалентных ионов. Анодный ток, соответствующий началу пассивации, для хрома значительно больший, чем для титана. Потенциал полной пассивации у хрома более отрицательный, чем у титана. Перенапряжение водорода на хроме несколько более низкое, чем на титане. Стационарный потенциал молибдена в 40%-ной H SO равен +0,3 в, т. е. значительно более положителен, чем потенциал полной пассивации титана в этой среде. Поэтому в области потенциалов, где титан активно анодно растворяется на молибдене, протекают катодные процессы. Анодное растворение молибдена наблюдается только при значительном смещении его потенциалов в положительную сторону. Сопоставлением весовых потерь и количества пропущенного электричества установлено как в наших опытах, так и в работе [13], что растворение молибдена происходит в виде шестивалентных ионов. Молибден является коррозионностойким металлом в серной кислоте. Поэтому растворение молибдена в виде ионов высшей валентности при анодной поляризации можно трактовать как состояние перепассивации. Перенапряжение водорода на молибдене значительно более низкое, чем на титане. Палладий в серной кислоте анодно не растворяется. Рост анодного тока при высоких положительных потенциалах соответствует реакции выделения кислорода. Перенапряжение водорода на палладии значительно ниже, чем на титане. [c.179]

    Электрохимическая пассивность. При рассмотрении в гл. XIII вопроса об анодных потенциалах считалось, что растворение анода обычно начинается, как только ему сообщили пот-енциал, немного более положительный, чем обратимый потенциал в данном электролите. При увеличении плотности тока потенциал в результате концентрационной поляризации несколько возрастает, но веЛичина этого изменения потенциала обычно невелика. На стр. 576 было отмечено, что при обычных температурах анодное растворение металлов группы железа не начинается до тех пор, пока потенциал электрода не превысит теоретический обратимый потенциал на сравнительно большую величину, например на 0,3—0,4 е эта заметная поляризация или необратимость объясняется тем, что одна из стадий процесса ионизации является медленной и требует высокой энергии активации. Тем не менее, несмотря на большую поляризацию, анод из железа, кобальта или никеля может растворяться количественно в согласии с требованиями законов Фарадея. Однако при увеличении плотности тока достигается точка, в которой потенциал анода резко возрастает и одновременно происходит уменьшение силы тока в то же самое время анод практически перестает растворяться, оставаясь в других отношениях на вид неизменным. Металл, как говорят, переходит в пассивное состояние, явление же это называется пассивацией-, так как в рассматриваемом случае пассивно ть возникает в результате анодной, т. е. электрохимической обработки, то одно из этих прилагательных часто употребляется для обозначения рассматриваемого типа пассивности [9]. [c.649]

    Коррозия при неравномерной аэрации. Интересный тип коррозии имеет место тогда, когда деполяризатор, обычно кислород, неравномерно распределяется по поверхности металла это явление называется коррозией при неравномерной аэрации [20]. Если кислород имеет доступ к некоторым участкам поверхности металла, то на этих участках деполяризация будет происходить легче, чем на других. Поэтому потенциал на более аэрированных участках стремится стать более положительным, вследствие чего на менее аэрированных участках будет итти более быстрое растворение металла. Ионы водорода смогут разряжаться на участках, насыщенных кислородом, которые по отношению к остальным участкам поверхности будут являться катодами. То, что сильнее растворяются части поверхности металла, к которым кислород не имеет доступа, на первый взгляд может показаться ненормальным однако это объясняется более сильной деполяризацией на тех участках, к которым быстрее поступает кислород, и, следовательно, здесь ионы водорода непрерывно расходуются на реакцию с деполяризатором . Появление участков с анодной и катодной поляризацией на металле в результате неравномерной аэрации легко может быть показано экспериментально большой сосуд и поставленный в него пористый тигель наполняются раствором хлористого калия и два одинаковых куска железа или цинка, взятых от одного и того же образца, помещаются в эти растворы. Оба металла, т. е. электроды, присоединяются при помощи проводов к гальванометру. При этом ток не проходит. Однако если один из растворов насыщается кислородом, то в системе возникает э. д. с. и отмечается про- [c.666]

    Отсюда следует, что при больших анодных поляризациях пе-ренапрял енне диффузии при анодном растворении металла имеет [c.291]

    Значительно большая часть поляризации носит кинетйческий характер. При анодном окислении металла реакция окисления и выхода иона из кристаллической решетки может быть замедленной стадией. ПАВ, ингибируя процесс растворения металла, может оказывать значительное влияние на величину химической поляризации. [c.56]

    Еще большая разница наблюдается в случае инертных металлов. Анодная поляризация при растворении металлов группы же-.аеза заметно ниже их катодной поляризации (при той же плотности тока). Тем не менее она и здесь достигает нескольких десятых, а,олей вольта и значительно превосходит анодную поляризацию, сопровождающую растворение промежуточных и нормальных металлов. Ряд металлов, составленный в порядке возрастания метал-.лического перенапряжения (см. табл. 22.1), передает, таким образом, и последовательность увеличения поляризации при их анодном растворении. [c.477]

    Катодное осаждение никеля обычно характеризуется весь--ма значительной химической поляризацией, определяемой замедленной стадией разряда. Большая электродная поляриза-зия при разряде я ионизации этого металла приводит к тому, что анодному растворению подвергается не только основной металл, но и более положительные, чем никель, примеси. На катоде же происходит разряд iиoнo в никеля к большинства примесей, перешедших с анода в раствор. [c.384]

    На металлах, у которых критическому потенциалу пассивации соответствует очень высокая скорость растворения, анодная пассивация реально наступает только при достижении более высоких потенциалов. Г. М. Флорианович показала, что железный анод в тщательно обескислороженном растворе кислоты удается запасси-вировать только при потенциалах выделения кислорода. Наоборот, пассивация заметно облегчается при введении в раствор перекиси водорода даже в очень малых концентрациях. Добавка 1—2 г пергидроля на литр кислоты дает больший эффект, чем повышение тока на несколько а1см . Таким образом, роль окислителя в процессе пассивации металла не всегда сводится к анодной поляризации металла. Иногда вещество, содержащее окислитель, может быть и непосредственным эффективным донором пассивирующего кислорода. [c.441]

    Изучена анодная поляризация Р1, Р<1,1г, Ш1, Ре, РЬ и Мо в растворах, содержащих 15-50 г/л тиокарбамида и 5 - 30 г/л серной кислоты. Измерены стационарные потенциалы металлов. Установлено, что стационарные потенциалы металлов лежат в большом диапазоне значений от - 0,27 В у РЬ до + 0,64 В у КН. Изменение состава электролита в различной степени оказывает влияние на значения потенциалов металлов Анализ поляризационных кривых показал, что все исследованные металлы, за исключением свинца, анодно растворяются в серноыюлых растворах тиокарбамида. Установлено, что благородные металлы растворяются со значительной поляризацией. Изучена анодная поляризация Аи, Ag, Си и нержавеющей стали в растворе, содержащем 50 г/л тиоционата калия и 50 г/л карбоната калия. Установлено, что Ли, Аз и Си растворяются со значительной поляризацией. Определены потенциалы активного растворения металлов [c.70]

    Следует отметить, что при известных условиях адсорбция может привести к пассивации и тогда, когда ингибитор не восстанавливается. В этом случае, однако, требуется либо присутствие в коррозионной среде каких-нибудь других окислителей, либо наложения-некоторой анодной поляризации. Примером могут служить бензоат-ионы, которые при определенных условиях переводят металл, в частности железо, в пассивное состояние и обеспечивают его защиту от коррозии [14 194 195 205 239]. При этом оказывается, что смещение потенциала в положительную сторону и пассивное состояние металла достигаются лишь в присутствии растворенного кислорода и при определенной минимальной степени покрытия поверхности металла ингибитором. Чем положительнее потенциал образца, тем меньшие объемные концентрации ингибитора требуются для достижения такой степени покрытия. После того, как металл запассивирован на его поверхности не обнаруживается значительных количеств бензоата. Можно предположить поэтому, что при смещении потенциала в положительную сторону и формировании оксидной пленки относительно слабо связанные с поверхностью ионы бензойной кислоты (их удельный заряд мал, а специфическая адсорбиру-емость выражена слабо) вытесняются либо ионами гидроксила, обладающими большим удельным отрицательным зарядом и повышенной специфической адсорбируемостью, либо атомами кислорода, либо растущей пленкой оксида. [c.51]

    Автор работы [75], наоборот, совсем не учитывает кристаллизационного перенапряжения при оценке электродного потенциала деформированного медного электрода в водном растворе Си504. При этом он утверждает, что деформированный металл (медь), погруженный в раствор собственных ионов, никогда не принимает обратимого потенциала. Предполагается, что в прямой анодной полуреакции растворения участвует деформированный металл, а в сопряженной обратной катодной полуреакции осаждения — равновесный электровосстановленный (т. е. не-деформированный). В результате между ними устанавливается не обратимый, а смешанный потенциал, хотя баланс массопере-носа сохраняется. Такое предположение находится в прямом противоречии с известными экспериментальными данными о катодном выделении меди на поверхности медных усов [76], свидетельствующими о большом кристаллизационном перенапряжении (до ста милливольт). При этом анодное растворение кристаллов меди происходило в определенных слабых местах, на которых затем обратно осаждался металл при последующем включении катодной поляризации, тогда как на остальной поверхности выделения металла не происходило. Возвращение ад-атома в кри- [c.89]

    В работе [83], наоборот, совсем не учитывается кристаллизационное перенапряжение при оценке электродного потенциала деформированного медного электрода в водном растворе Си304. При этом утверждается, что деформированный металл (медь), погруженный в раствор собственных ионов, никогда не принимает обратимого потенциала. Предполагается, что в прямой анодной полуреакции растворения участвует деформированный металл, а в сопряженной обратной катодной полуреакции осаждения — равновесный электровосстановленный (т. е. недеформированный металл). В результате между ними устанавливается не обратимый, а смешанный потенциал, хотя баланс массопереноса сохраняется. Такое предположение находится в прямом противоречии с известными экспериментальными данными о катодном выделении меди на поверхности медных усов [84], свидетельствующими о большом кристаллизационном перенапряжении (до 100 мВ). При этом анодное растворение кристаллов меди происходило в определенных слабых местах, на которых затем обратно осаждался металл при последующем включении катодной поляризации, тогда как на остальной поверхности выделения металла не происходило. Возвращение ад-атома в кристаллическую решетку при катодном процессе, связанное с преодолением кристаллизационного перенапряжения, переводит атом в первоначальное состояние напряженного металла, и элементарный акт растворения — восстановления является обратным при соответствующем равновесном потенциале. [c.92]

    Исходя из рассмотренных поляризационных кривых, ясно, что испытания нужно вести таким образом, чтобы потенциал металла все время находился в области активного растворения АБ) и по возможности был бы смещен в положительную сторону от стационарного, но не выходил при этом за пределы потенциала пассивации. Подобное состояние достигается, во-первых, введением в электролит окислителей в определенных концентрациях, а также увеличением концентрации кислорода. Сместить потенциал можно также путем анодной поляризации. Которая, однако, не должна быть большой, а потенциал следует поддерживать на уровне, более отрицательном, чем уровень потенциала пассивации. При увеличении анодного тока растворения во избежание пассивации следует применять размешивание, oTopoe будет способствовать отводу продуктов анодной реакции от поверхности испытуемых образцов. [c.34]

    Если при наложении положительного потенциала весь ток или его большая часть расходуется на растворение металла (его переход в раствор в виде ионов), то металл находится в активном состоянии и, следовательно, не может быть использован в этих условиях в качестве анода. Если же при анодной поляризации ток практически полностью расходуется на другой процесс, для протекания которого требуется более положительный потенциал, чем для раствореция металла (например, выделение кислорода на никеле при электролизе воды), в этом случае металл пассивен и может служить анодным материалом. Пассивация вызывает существенное изменение поверхностного слоя металла, благодаря чему становится возможным протекание процесса, требующего большей затраты энергии, тогда как растворение металла — более легкий процесс в отношении затраты энергии — полностью прекращается или протекает с очень малой скоростью. При этом нарушается закон электрохимической кинетики, согласно которому скорость анодного растворения металла должна возрастать при увеличении потенциала электрода. При изменении условий, в которых находится металл, состояние пассивности в ряде случаев может быть нарушено. Поэтому изменения плотности тока (или потенциала металла), концентрации электролита, температуры или других условий поляризации, иногла совсем незначительные, могут служить причиной перехода металла из пассивного состояния в активное и наоборот. [c.206]


Смотреть страницы где упоминается термин Анодное растворение металлов при больших анодных поляризациях: [c.297]    [c.403]    [c.100]    [c.449]    [c.50]    [c.78]    [c.781]    [c.244]    [c.41]   
Смотреть главы в:

Теоретические основы коррозии металлов -> Анодное растворение металлов при больших анодных поляризациях




ПОИСК





Смотрите так же термины и статьи:

Анодное растворение

Анодное растворение металлов

Металлы растворение

Ток анодный



© 2025 chem21.info Реклама на сайте