Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зависимость скорости фотохимических реакций от температуры

    Важной особенностью фотохимических реакций является слабая зависимость скорости фотохимической реакции от температуры. Это имеет место в случаях, когда конечные продукты фотохимической реакции образуются непосредственно из возбужденных частиц, а также, когда фотохимическая стадия является лимитирующей стадией всего процесса. Например, в приведенной выше реакции фотохимического разложения HI образовавшийся атом Н неизбежно реагирует с HI (вероятность любых других превращений атома Н пренебрежимо мала). Поэтому скорость суммарного про- [c.318]


    Приводя в заключение главы сводку данных о некоторых фотохимических реакциях (табл. Х.4), из которых часть исследована только качественно, обращаем внимание на последнюю графу таблицы. В ней приведены значения температурных коэффициентов. В целом можно отметить, как правило, малую зависимость скорости фотохимических реакций от температуры. Исключением является образование бромистого водорода, квантовый выход которого мал при комнатной температуре и приближается к единице с ее повышением. Сильно влияет температура также на фотохимическое разложение формальдегида. [c.283]

    Зависимость скорости фотохимических реакций от температуры [c.313]

    Экспериментальные данные о зависимости скорости фотохимической реакции от температуры противоречивы. По одним данным скорость фотохимического образования трехокиси серы возрастает с повышением температуры, причем из сравнения времени, необходимого для достижения той же степени превращения при 50 и 160°, получается значение энергии активации, равное 5,3 ккалЫоль. По другим данным - скорость фотохимической реакции не меняется при повышении температуры от 18 до 65°. Это расхождение можно объяснить тем, что в первом исследовании длина волны основной части поглощаемого излучения лежала [c.27]

    Влияние температуры, давления и интенсивности света на скорость фотохимической реакции. Скорость фотохимической реакции пропорциональна количеству поглощенных квантов света и величине квантового выхода. Для первичной фотохимической реакции скорость не зависит от температуры. Однако отсутствие такой зависимости не может служить окончательным доказательством об- [c.135]

    Скорость фотохимической реакции не зависит от температуры, если конечные продукты реакции образуются непосредственно из возбужденных частиц, если лимитирующей стадией образования конечных продуктов является фотохимический процесс, или энергия активации темновых реакций очень мала. Энергия электронного возбуждения молекул обычно имеет более высокое значение, чем прирост средней тепловой энергии, при нагревании от комнатной до повышенных температур. Например, повышение температуры ацетальдегида от 20 до 220 °С приводит к увеличению средней тепловой энергии на 12,5 кДж-моль, в то время как энергия электронного возбуждения молекулы ацетальдегида составляет около 418,4 кДж-моль. Поэтому направление и эффективность фотолиза мало зависят от температуры. Зависимость скорости первичного фотохимического процесса от температуры может быть значительной, если энергии поглощенного кванта не хватает для разрыва связи. [c.313]


    Скорость фотохимических реакций. Скорость фотохимических реакций так же, как и темновых реакций, зависит от концентрации превращаемых веществ и температуры. Кроме того, она пропорциональна количеству поглощенной энергии излучения. Согласно закону Бэра — Ламберта, между интенсивностью / падающего монохроматического излучения и интенсивностью излучения /, прошедшего через слой вещества А, существует зависимость [c.450]

    Характерной особенностью фотохимических реакций является слабая зависимость их скорости от начальной температуры смеси. Изменение в широких пределах начальной температуры смеси не оказывает существенного влияния на интенсивность излучения. Соответственно этому, как показывает опыт, в предпламенной зоне не происходит возрастания скорости предпламенных процессов, что, в свою очередь, не отражается и на скорости распространения пламени (скорости горения). Так, например, изменение начальной температуры метано-воз-душной смеси с 20 до 680°С приводит к возрастанию скорости распространения пламени всего в 10 раз (с 30 до 300 см/с [144], в то время как согласно правилу Вант-Гоффа скорость большинства химических реакций с повышением температуры только на 10 градусов возрастает в 2—4 раза. Ни тепловая , ни диф- [c.124]

    Полученные результаты показывают, что скорость реакции сильно зависит от концентрации перекиси водорода (рис. 194), причем максимум скорости относится к концентрациям 35—40% мол. С повышением температуры скорость реакции увеличивается так, что логарифм скорости находится в линейной зависимости от обратной температуры. В области 10°С прямая имеет излом вследствие наложения влияния диффузии. Энергия активации чисто радиационной реакции равна 6,5 ккал моль эта величина близка к энергии активации при проведении этой реакции в виде фотохимической. Зависимость скорости от концентрации [c.555]

    При малых интенсивностях света 1>р/о и скорость реакции будет пропорциональна квадрату интенсивности света. При больщих интенсивностях р/о> 1 и скорость реакции будет пропорциональна интенсивности света в первой степени. Поскольку часто за первичными фотохимическими процессами следуют вторичные реакции, то зависимость скорости реакции от температуры, давления и интенсивности света будет определяться конкретным механизмом реакции. [c.136]

    Фотохимические реакции отличаются значительно меньшей зависимостью скорости от температуры, чем темновые химические процессы. Это объясняется тем, что за счет поглощения света в первичных реакциях приобретается настолько большая энергия, что повышение температуры может изменить ее лишь очень незначительно. [c.316]

    Фотохимические реакции отличаются слабой зависимостью скорости от температуры 1,2 н- 1,5). Это объясняется тем, что [c.259]

    Недостаток описанных выше экспериментов, касающихся окисления метана, состоит в том, что измерения проводили лишь при одной температуре и, следовательно, вычисленное значение разности энергий активации двух реакций является приближенным. Чтобы получить более точное значение, необходимо знать температурную зависимость скоростей образования. С целью изучения этой зависимости было исследовано фотохимическое окисление метана в интервале температур от комнатной до 400° С. Другие условия эксперимента оставались неизменными. Результаты, полученные при Т = 300° С, показаны на рис. 48 и 49. Можно видеть, что при этой температуре, так же как и при 360° С, среди продуктов найдены только гидроперекиси и формальдегид. [c.68]

    Реакция протекает в широком интервале температур от —30 до +30°С [39], от 65 до 90 °С [35, 40] или от 90 до 140°С [35, 36]. Процесс можно осуществлять в две стадии первую — при температуре ниже температуры размягчения полимера (до 110°С), вторую — при более высокой температуре (110°С—140°С) [39]. Температура не оказывает существенного влияния на скорость [3] как фотохимически инициируемой, так и радиационно инициируемой реакции. В зависимости от продолжительности процесса в готовом продукте может содержаться от 4 до 65% хлора [2, 3, 25, 32, 35], что обусловлено, по-видимому, диффузионным характером процесса [37]. [c.10]

    При фотохимическом хлорировании в зависимости от мольного соотношения реагентов степень замещения атома водорода в боковой цепи на атомы хлора различна. Наряду с освещением проведению процесса благоприятствует повышенная температура (100-150 °С), которая заметно ускоряет скорость реакции замещения атомов водорода в боковой цепи алкилароматического углеводорода. С повышением температуры квантовый выход при хлорировании увеличивается. Так, если при хлорировании толуола на свету при — 80 °С каждый поглощенный квант света вызывает вступление в реакцию 25 молекул хлора, то при хлорировании в газовой фазе это число молекул увеличивается до 8 10 [56]. При комнатной температуре (20-25 °С) фотохимическое хлорирование сопровождается замещением атома водорода в ароматическом ядре. Присутствие кислорода в реакционной смеси нежелательно, так как при этом реакция радикального хлорирования замедляется и квантовый выход снижается. [c.26]


    Сообщается о полученных авторами новых экспериментальных данных полноты фотохимического окисления органических веществ в водном растворе под действием света ртутных ламп высокого давления. Приводятся данные о зависимости констант скорости фотолиза от длины углеводородной цепи для нескольких рядов гомологов, температуры, положения в ряду изомеров и некоторых других свойств. На этой основе изучаемые реакции отнесены к многоступенчатым вторичным реакциям радикального типа. [c.231]

    КИНЕТИКА ХИМИЧЕСКАЯ (греч. к пб11ко5 — способный двигать) — учение о скорости химических реакций, важнейший раздел физической химии. Под К- X. понимают зависимость скорости химической реакции от концентрации реагирующих компонентов, температуры, давления, катализатора и других параметров, например, потенциала электрода — в электрохимических реакциях, интенсивиости света — в фотохимических реакциях, дозы излучения — в радиационно-химических реакциях й т. д. Скоростью химической реакции называется число актов реакции, происходящих за единицу времени в единице объема фазы — в случае гомогенной реакции, или на единичной поверхности раздела — в случае гетерогенной реакции. Одной из важнейших характеристик К. X. является константа скорости реакции, которую определяют через концентрацию реагирующих компонентов. Йапример, для реакции [c.126]

    О зависимости скорости фотохимических процессов от частоты света, температуры и присутствия посторонних примесей было опубликовано много работ, обнаруживших некоторые общие закономерности. Согласно закону эквивалентности Эйнштейна-Штарка скорость фотохимической реакции под действием излучений различной длины волны зависит от числа поглощенных квантов. Однако этот закон оправдал себя лишь для небольшого числа реакций. В общем оказалось, что большие световые кванты обладают большей эффективностью, т. е. чем короче длина волны или чем выше частота, тем больше скорость ракции Тейлор (Н. S. Taylor) предложил следующую формулировку Поглощение света представляет собою квантовый процесс, в котором участвует один квант на абсорбирующую молекулу (или атом). Фотохимический выход определяется последующими за акто.м поглощения термическими реакция.ми . Фотохимические опыты в большинстве случаев сопряжены с рядом значительных трудностей. Например, не удается получить строго монохроматического света достаточной интенсивности, чрезвычайно сильно влияют посторонние примеси и очень трудно отделить квантовые процессы от последующих, чисто термических химических процессов, идущих за процессом поглощения. [c.49]

    Многие исследователи изучали влияние тепла и других факторов на скорость фотохимической реакции разложения диазосоединений. Зейеветц и Мунье [52] исследовали зависимость светочувствительности ди азосоединений от температуры и величины pH раствора и показали, что в интервале 35—100° С чувствительность диазосоединений к ультрафиолетовым лучам лишь незначительно возрастает с повышением температуры. Что касается влияния pH раствора, то при значениях pH < 7 диазосоединения обладают мак-симальной чувствительностью во-к свету и в то же время они термически относительно стой- ки. Наоборот, при значенйях, pH > 7 стойкость диазосоединений к нагреванию заметно снижается, тогда как устойчивость к свету возрастает (рис. 5), причем течение реакции в щелочной среде осложняется возможностью параллельной реакции азосочетания диазосоединения с продуктами фотолиза. Эти свойства свидетельствуют, что чувствительной к свету формой ди азосоединения является катион диазония. Последнее находит свое подтверждение и в том, что только в немногих случаях облучение неактивных щелочных солей диазония приводит к появлению активной формы, а также в результатах опытов Шмидта и Майера (стр. 27) [26]. [c.25]

    Поэтому можно ожидать, что термическая активация не Ьюжег сильно изменить величину квантового выхода возбуждения 111 По-видимому, здесь есть известная аналогия с фотохимическими реакциями, которые приблизительно при тех же соотношениях между энергией фотона и средней тепловой энергией идут практически без энергии активации т. е. их скорость и квантовый выход Не зависят от температуры. Что касается влияния температуры на величину 1)2, то из исследований флуоресценции известно, что константы скорости испускания и безызлучательной дезактивации обычно мало меняются с температурой. Из этих двух величин несколько более сильная зависимость обнаруживается у константы скорости безызлучательных переходов, но и ее энергия актива [c.14]

    Одновременное протекание фотохимических и темновых реакций окисления обусловливает определенные особенности температурной зависимости скорости фотоокисления этих соединений. Скорость фотоокнсления гексаэтилдиолова весьма. мало меняется при возрастании температуры от —30 до +5°С и сравнительно быстро увеличивается при дальнейшем росте температуры (рис. 2). Таков же характер влияния температуры на фотоокисление тетраэтилолова и тетраэтилсвинца (рис. 3). Для гексаэтилдиолова при возрастании температуры от —30 до +40° С величина у (квантовый выход по кислороду) вначале растет медленно и составляет при- [c.418]

    Однако настойчивое утверждение, что настоящий лимитирующий фактор должен существовать при всех условиях, чуждо кинетике, изучающей ход реакций. Отношение между законом лимитирующих факторов и основными понятиями кинетики реакций было установлено Ромеллом в 1926 г. [20]. Он указал, что блэкмановский термин самый медленный фактор не имеет смысла и что можно говорить только о самом медленном процессе в последовательном ряду процессов. Скорость простой гомогенной реакции является обычно функцией всех наличных факторов, например концентраций всех реагирующих веществ, температуры и (в фотохимическом процессе) интенсивности света. Влияние лимитирования типа, предполагаемого Блэкманом, может существовать только в том случае, если реакция, у которой измеряется суммарная скорость, состоит из нескольких последовательных ступеней, причем одна ступень снабжает реагирующими веществами следующую. Если процесс снабжения идет медленно, он становится < узким местом и скорость суммарной реакции может стать не зависимой от всех факторов, которые не влияют на эту одну лимитирующую или определяющую скорость ступень. Простой пример этого представляют многие фотохимические реакции, в которых снабжение активированными молекулами является узким местом или лимитирующим процессом. Всякий раз, когда на практике получают кривые типа Блэкмана , можно считать, что здесь имеют дело с рядом последовательных реакций, в котором имеется, по крайней мере, одна ступень, лимитирующая максимальную производительность. В этом случае скорость суммарного процесса не может превзойти максимальную скорость прохождения системы [c.274]

    Иногда возникают затруднения при вычислении констант скорости реакций свободных радикалов и других промежуточных частиц, образующихся в большинстве фотохимических реакций. В обычных системах концентрация свободных радикалов очень мала (около 10 ° моль л), что является следствием очень высокой реакционной способности этих частиц и относительно малых интенсивностей поглощаемого света. При обработке кинетических данных требуются специальные методы для оценки неизвестных концентраций свободных радикалов и для того, чтобы сделать возможным вычисление констант скорости и установление кинетических законов. Если фотохимическая система при данной температуре освещается светом постоянной интенсивности при условии приблизительного равенства измеряемых и локальных скоростей, разумно предположить, что очень реакционноспособные частицы, такие, как свободные радикалы и атомы, не являющиеся конечными продуктами, быстро достигают постоянной относительно низкой концентрации. В это время скорости реакции этих частиц равны скорости их образования. Этот принцип известен как условие стационарности [126]. На рис. 6-4 приведен график зависимости теоретической концентрации метильных радикалов от времени при термическом распаде паров ацетальдегида при концентрации 1-10 молъ1л и температурах 400, 450 и 500°. Заметим, что концентрация метильных радикалов быстро растет после начала реакции и достигает предельной величины, которая для термической реакции является наибольшей при максимальной температуре. Концентрация метильных радикалов достигает своего предельного значения за несколько секунд при 500°, в то время как при 400° по истечении 60 сек она не превышает 95% от предельного значения. Очевидно, что условие стационарности может давать разумные результаты при условии, что время образования продукта больше, чем время установления стационарного состояния. К счастью, обычно это так и бывает, хотя возможны и отклонения. [c.518]

    Независимость от температуры скорости образования или квантового выхода продукта часто используется как критерий образования продукта в первичном процессе. Все имеющиеся в настоящее время данные свидетельствуют о том, что большинство первичных процессов диссоциации не зависит от температуры. В противоположность термическим реакциям, где реагируют только молекулы, обладающие высокой энергией, в фотохимических реакциях молекулы, поглощающие свет и претерпевающие фотораспад, перегруппировку и т. д., имеют обычное распределение по энергиям в основном состоянии. Увеличение средних тепловых энергий, происходящее в температурном интервале обычных фотохимических реакций, мало по сравне нию с энергией электронного возбуждения, производимого поглощенным квантом. Например, повышение температуры ацетальдегида от 20 до 220° вызывает увеличение средней тепловой энергии на 3 ккал1молъ, в то время как обычное электронное возбуждение составляет около 100 ккал1молъ. Поэтому в большинстве случаев тепловые энергии не принимаются во внимание при определении направления и эффективности фотораснада. Зависимость скорости первичного процесса от температуры может быть значительной в некоторых случаях, например, когда энергии поглощенного кванта не хватает для разрыва связи или имеется энергия активации диссоциации возбужденной светом молекулы. Однако независимость от температуры скорости образования продукта не всегда означает, что продукт образуется в первичном процессе. Это также можно объяснить участием горячих радикалов или вторичными реакциями с малыми энергиями активации. Прежде чем сделать определенные выводы, нужно рассмотреть все эти возможности. [c.521]

    Полученные результаты показывают, что скорость реакции сильно зависит от концентрации перекиси водорода (рис. 184), причем максимум скорости относится к концентрациям 35— 40% мол. С повышением температуры скорость реакции увеличивается так, что логарифм скорости находится в линейной зависимости от обратной температуры. В области 10°С прямая имеет излом вследствие наложения влияния диффузии. Энергия активации чисто радиационной реакции равна 6,5 ккал1моль] эта величина близка к энергии активации при проведении этой реакции в виде фотохимической. Зависимость скорости от концентрации при фотохимическом или термическом разложении перекиси водорода также подобна аналогичной зависимости при радиационном осуществлении реакции. Это показывает, что кинетика реакции во всех подобных случаях практически не зависит от способа ее возбуждения и определяется характером развития реакционных цепей. [c.550]

    В настоящем обзоре остановимся лишь на взаимодействии лазерного излучения с поверхностью твердых тел. Под влиянием интенсивного лазерного облучения поверхность эмиттирует электроны (плотность тока до —10 а см ) и нагревается до температур —10 000° К. Под действием излучения импульсного лазера может происходить унос материала. Скорость уноса материала может достигать 10 см1сек. При высоких мощностях лазера происходит ионизация уносимого вещества, энергия ионов может достигать нескольких килоэлектронвольт. Проводились также эксперименты по облучению твердых частиц, взвешенных между электродами, были получены многократноионизированные ионы больших энергий. С помощью спектральных методов можно получить новую информацию о свойствах веществ. Химическая реакция под действием лазерного излучения малой мощности исследовалась в [88]. Авторы изучали действие излучения лазера на рубине на разбавленные водные растворы соли Мора (окисление Ре " до Ре " ). Интенсивность излучения подбиралась такой, чтобы не происходило пробоя в растворе в результате термические реакции не имели места в условиях эксперимента. Анализ зависимостей количества окисленного Ре " от поглощенной дозы излучения, а также зависимости скорости образования Ре" " от интенсивности излучения позволил установить фотохимический механизм окисления ионов Ре " . [c.430]

    Изучая температурные кривые фотосинтеза, Ф. Блэкман впервые установил, что при температурах в пределах 20—30° С в зависимости от вида растения фотосинтез следует, в общем, правилу Вант-Гоффа, согласно которому скорость химических реакций возрастает с повышением температуры на 10° С в 2—2,5 раза. При более высоких температурах, разных для разных растений, наблюдается перелом кривых фотосинтеза, которые начинают опускаться круто вниз. Поскольку на скорость фотохимических процессов изменения температуры влияния почти не оказывают результаты наблюдения Блэкмана также подчеркивали наличие в фотосинтезе реакций не только фотохимических, но и фермен-тативны.ч (биохимических). [c.141]

    Первичные фотохимические процессы - процессы, приводящие к образованию активных промежуточных частиц (колебательно- или элек-тронно-возбужденных) при воздействии на среду светового излучения. Дезактивация электронно- или колебательно-возбужденной частицы происходит по одному из каналов дезактивации 1) диссоциация молекулы на атомы и радикалы, 2) ионизация молекулы с образованием молекулярного иона и электрона, 3) излучение света возбужденной молекулой (флуоресценция), 4) тушение возбуждения при столкновении с другой молекулой. Скорость первичных фотохимических процессов не зависит от температуры. Наличие зависимости от температуры в фотохимической реакции указывает на сложный механизм процесса и на существенное влияние вторичных химических реакций на скорость процесса. [c.172]

    Состояние светового насыщения фотосинтеза свидетельствует-о том, что свет не является лимитирующим фактором для осуществления фотохимических реакций. Одиако абсолютная величина светового насыщения, наклон световой кривой могут В значительной мере изменяться в зависимости от условий. Одни факторы —температура, концентрация углекислого газа, возраст листьев, система ферментов, адаптация к сильному илиг слабому освещенн.ю — влияют на процесс усвоения СОа и вызы-аают снижение скорости светового насыщения фотосинтеза. Вследствие этого уменьшается наклон кривой светового насыщения. Другие факторы —содержание хлорофилла, отсутствие марганца, акцепторов электронов и т. д. — влияют на фотохимический процесс и также могут изменять световую кривую-(А. Т. Андреева). При повышении интенсивности света и концентрации углекислого газа светового насыщения не наблюдается. [c.211]

    Влияние температуры на фотосинтез находится в зависимости от интенсивности освещения. При низкой освещенности фотосинтез от температуры не зависит (( ш=1)- Это связано с тем, что при низкой освещенности интенсивность фотосиптеза лимитируется скоростью световых фотохимических реакций. Напротив, при высокой освещенности скорость фотосинтеза определяется протеканием темновых реакций, и в этом случае влияние температуры проявляется очень отчетливо. Температурный коэффициент ( ю может быть около двух. Так, для подсолнечника повышение температуры в интервале от 9 до 19°С увеличивает интенсивность фотосинтеза в 2,5 раза. Температурные пределы, в которых возможно осуществление процессов фотосинтеза, различны для разных растений. Минимальная температура для фотосинтеза растений средней полосы около 0°С, для тропических растений 5—10°С. Имеются данные, что полярные растения могут осуществлять фотосинтез и при температуре ниже О С. Оптимальная температура фотосинтеза для большинства растений составляет примерно 30—33 С. При температуре выше 30—33°С интенсивность фотосинтеза резко падает. Это связано с тем, что зависимость процесса фотосинтеза от температуры представляет собой равнодействующую противоположных процессов. Так, повышение температуры увеличивает скорость темвовых реакций фотосинтеза. [c.144]

    Скорость превращения прямо пропорциональна интенсивности света и, следовательно, нельзя предполагать участия в реакции двух фотохимически возбужденных молекул. Далее эта скорость изменяется в зависимости от температуры, и, следовательно, процесс не является полностью фотохимическим. Скорость превращения не зависит от вязкости среды, начальной концентрации пигмента и от какого-либо диализуемого кофактора, так что реакция, по-видимому, мономолекулярна [6, 128]. Борд-мен рассматривает фотопревращение протохлорофиллида как процесс, происходящий за счет соударений внутри протохлорофилл-белкового комплекса [6]. [c.453]


Смотреть страницы где упоминается термин Зависимость скорости фотохимических реакций от температуры: [c.176]    [c.194]    [c.143]    [c.138]   
Смотреть главы в:

Химическая кинетика и катализ 1974 -> Зависимость скорости фотохимических реакций от температуры

Химическая кинетика и катализ 1985 -> Зависимость скорости фотохимических реакций от температуры




ПОИСК





Смотрите так же термины и статьи:

Реакция скорость, зависимость

Реакция температуры

Скорость зависимость

Скорость реакции от температуры

Скорость реакции фотохимической

Скорость температуры

Фотохимическая реакция

Фотохимические скорость

зависимость от температур



© 2024 chem21.info Реклама на сайте