Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение окиси кадмия

    Возможность расщирения числа анализируемых примесей методом отгонки в потоке газа заключена в использовании реакционноспособных газов, переводящих примеси в летучие соединения. Например, при определении следов С(1 в окиси цинка [1097] окись кадмия селективно восстанавливают в потоке водорода, а затем от гоняют летучий металл в потоке азота. При определении бериллия пробу, смещанную со фторидом церия, нагревают в токе азота, содержащего дозированное количество водяных паров. Образующийся фтористый водород реагирует с соединениями бериллия, и последний отгоняется в виде летучего фторида [1096]. Бор количественно выделяется из разнообразных огнеупорных материалов методом пирогидролиза — нагреванием в платиновой [1487] или никелевой [1422] трубке до 1100—1300° С в парах воды или в потоке влажного кислорода. К недостаткам метода пирогидролиза относится необходимость введения значительных количеств катализатора (закиси-окиси урана, пятиокиси ванадия или метаванадата натрия). [c.249]


    Еще в 20-х годах им был обнаружен параллелизм между способностью твердого тела катализировать определенные реакции и его электронными свойствами , проявляющимися в различной окраске твердого тела [115]. Хорошими катализаторами разложения окиси ртути, перманганата калия, бертолетовой соли и других веществ оказались только интенсивно окрашенные окислы — закись никеля, двуокись марганца, окись меди, окись железа, окись хрома, окись кобальта, черная окись урана. Слабо окрашенная окись кадмия заняла промежуточное положение, а далее следовала белая при обычных и желтая при повышенных температурах ZnO. [c.93]

    Распределительная хроматография. Для отделения кадмия применяется редко. Носителями служат бумага, силикагель, окись алюминия и другие сорбенты, в качестве подвижной фазы используют органические и неорганические растворители. Разделенные на хроматограммах зоны проявляют по образованию цветных реакций с соответствующими органическими или неорганическими реагентами, а затем обрабатывают эти зоны для последующего количественного определения. [c.158]

    НИИ сверхвысокого (порядка 10 мм рт. ст.) вакуума. В лабораторной практике Р. применяют в барометрах, манометрах, вакуумметрах, термометрах, затворах, прерывателях, высоковакуумных насосах, всевозможных реле, терморегулирующих устройствах. Ее используют в качестве балластной, термостатирую-щей и уплотняющей жидкости. Р. нашла применение в полярографическом анализе. Р. и амальгамы используют при амперометрическом и потенциометрическом титровании, кулонометрическом анализе. С помощью Р. определяют пористость материалов. Р. применяют также для точной калибровки мерной посуды, для определения диаметров капиллярных трубок. Широкое применение находят также соединения Р. напр., окись HgO используют в качестве окислителя, для изготовления красок искусственный сульфид HgS — составная часть люминофоров на основе сульфида кадмия и катализаторов в органическом синтезе. [c.326]

    Наиболее важна в практическом отношении возгонка металлов в присутствии кислорода, азота, водорода, хлоридов и инертных газов. В присутствии кислорода на поверхности возгоняемого металла образуется его окись в виде пленки, через которую при возгонке должны диффундировать металл и примеси, находящиеся в нем. В определенных случаях эта окисная пленка по отношению к некоторым примесям действует как запорный слой, не пропускающий эти примеси в газовую фазу. Так, если скорость испарения металла невелика и окисная пленка не имеет разрывов или металл по поверхности специально засыпан слоем его окисла, то металлические примеси, восстанавливающие этот окисел, задерживаются в слое окисла. Например, цинк помещают в тигель и засыпают окисью цинка, при возгонке цинка многие примеси (магний, марганец, алюминий) будут восстанавливать окись цинка и задерживаться в ней. Отделить цинк от кадмия и ртути таким путем нельзя, потому что эти металлы не взаимодействуют с окисью цинка. [c.27]


    Предложена методика определения Ва и Т1 в металлич. кадмии. Образец растворяют в ИКОз, выпаривают и прокаливанием при 500° переводят в окись. Спектральный анализ осуществляют методом добавок на дифракционном спектрографе Хильгер модели Е-543 в дуге постоянного тока. Чувствительность определения Ва — 2-10-5 71—5.10-5%, средняя относительная квадратичная ошибка 20%. Табл. 1, библ. 1 назв. [c.235]

    Окись магния (1 г) растворяют в серной кислоте, как при определении меди (см. стр. 197). Доводят объем анализируемого раствора водой до 10 мл, отбирают в три пробирки по 0,5 мл раствора и анализируют так же, как углекислый кадмий (см. стр. 187). [c.196]

    Для придания композициям определенной окраски в их состав вводят различные красители и пигменты. Желтую, оранжевую или красную окраску можно получить при добавлении к композиции сернистого или селенистого кадмия. Производные кадмия обладают высокой термо- и светостойкостью, однако они ингибируют процесс отверждения полиэфирной смолы. Белая окраска получается при введении двуокиси титана, окиси цинка и литопона. Окись цинка обладает большой ингибирующей способностью при отверждении полиэфирных смол. Литопон обладает высокой тепло- и светостойкостью и является слабым катализатором отверждения. [c.146]

    Температура начала размягчения полученных стекол, определенная по методу погружения стержня, приведена на рис. 1 и 2. Экспериментальные данные показывают, что стекла с большим содержанием щелочи (основные) размягчаются при более низкой температуре, чем кислые стекла с малым содержанием ЫагО. Окись бериллия повышает тугоплавкость опытных стекол, а окислы стронция, кадмия и бария делают стекло более легкоплавким. Особенно эффективно действие на этот показатель малых добавок МеО. [c.34]

    Механизм образования красного кадмия следующий при 300— 350 °С происходит диссоциация карбоната или оксалата кадмия на углекислый газ и окись кадмия. Последняя образуется в очень реакционноспособном состоянии и сразу же вступает во взаимодействие с серой и селеном, получается красная масса с сильным коричневым оттенком. Эта масса содержит определенное количество сульфида и селенида кадмия в виде их смеси dS + dSe. При дальнейшем повыщении температуры до 400—500 °С краснокоричневый цвет переходит в ярко-красный живого оттепка, что, [c.324]

    Микрокристаллоскопическое исследование и определение цвета. Мелко измельченную пробу твердого вещества распределяют тонким слоем на предметном стекле так, чтобы можно было под микроскопом установить различие или общность форм отдельных мельчайших частичек и их цвет, по которому можно приближенно установить состав соединения. Так, в черный цвет окрашены, например, сульфиды железа, никеля, кобальта, меди (II), ртути, серебра, свинца, висмута и оксиды меди и никеля в коричневый цвет — окись кадмия и двуокиси свинца и марганца в зеленый — оксиды и соли хрома (III), соли железа (II), карбонат гидроксомеди, некоторые соли никеля в желтый — окись ртути (II) и свинца (II), сульфиды кадмия, олова (IV), мышьяка (III) и (V), многие хроматы в оранжевый — сульфиды сурьмы (III) и (V) в красный или оранжево-красный — сурик, многие дихроматы, модификации окиси и сульфида ртути (II), соли кобальта, в синий — многие соли меди (II) и некоторые обезвоженные соли кобальта (II). [c.347]

    Однако окись кадмия, прокаленная при температуре выше 500 °С, растворяется в растворе сульфата цинка очень медленно и ошибка определения этой формы кадмия будет мала. Подыскать селективный растворитель, который бы с удовлетворительной скоростью растворял окись кадмия и не действовал на силикат кадмия, не удалось, так как оба эти соединения оказались очень близки по степени растворения во всех испытанных реагентах. Так, смесь Лоу полностью переводит в раствор окись кадмия, но на 40% переводит также и силикат кадмия. В качестве растворителя для окисла и силиката кадмия была выбрана 0,1 н. серная кислота, в которой сульфид и феррит кадмия нерастворимы даже в присутствии некоторого количества ионов меди(II) и железа(III), которые могут быть переведены из обрабатываемого кадмийсодержащего материала в раствор. При обработке 0,1 н. серной кислотой в раствор будет переходить также и основной сульфат кадмия. [c.180]

    Обжиг концентратов сульфидных цинковых руд производится при такой температуре (850—900 °С), чтобы основным продуктом была окись цинка, а сульфат цинка образовывался в малом количестве. Сульфиды сопровождающих металлов — свинца, железа, кадмия, меди и др. также образуют окислы. Нежелательный феррит цинка ZnO-FeaOg образуется при температурах около 600 °С реакция интенсифицируется повыщением температуры, но требует определенного времени, так как связана с диффузией в твердом состоянии. [c.270]


    Методика определения. На стеклянную пластинку размером 20 X 20 или 20 X 25 см помещают предварительно просеянную безводную окись алюминия (размер частиц не должен превышать 350 меш). Окись алюминия или носитель распределяют на пластинке металлическим валиком до толщины слоя не более 500 мк. В качестве подвижного растворителя применяют смесь, состоящую из 18 мл н-бутанола, 12 мл ацетона и 0,6 мл азотной кислоты (р = 1,36 ej M ). В качестве свидетелей используют 0,5 и. растворы Си (N63)2 и d (N03)2. В правый угол приготовленной пластинки, на расстоянии 2 см от края ее, нэносят капилляром каплю исследуемого раствора смеси u + и d++, содержащего каждый ион в концентрации 0,5 г-экв/л. Через 1,5 см по ширине пластинки наносят еще каплю исследуемого раствора для параллельного опыта и дальше через каждые 1,5 см — по капле раствора свидетелей (солей кадмия и меди). Таким образом, наносят четыре пятна. Диаметр наносимого пятна не должен быть более 2 мм., иначе разделение нонов будет неполное. Пластинку помещают в камеру, на дно которой наливают растворитель. Пластинку ставят в наклонном положении так, чтобы слой носителя не осыпался с нее,.нижний край пластинки осторожно погружают в растворитель на 1 см. [c.304]

    Нейтрализовать раствор при гидролитическом осаждении можно растворами соды, едкого натра, аммиака и т. д. чаще же всего используют окись цинка. Ее преимущество, во-первых, в том, что в растворы, которые далее используются для извлечения цинка и кадмия, не вводят никаких посторонних ионов во-вторых, окись (гидроокись) цинка вместе с раствором 2п804 образует буферную пару с определенным pH, зависящим от концентрации цинка в растворе (обычно 5,2). Тем самым становится невозможным осаждение других содержащихся в растворе металлов за счет местного превышения pH. На рнс. 66 показана схема получения индиевого концентрата из вельц-окислов, в которой используется гидролитическое осаждение. В результате двукратного осаждения окисью цинка и обработки щелочью можно из вельц-окислов, содержащих - 0,01% индия, получить концентрат, в котором несколько процентов индия [100]. [c.305]

    Весовыми формами для определения кадмия служат его неорганические соединения (окись, соли), внутрикомплексные соединения с органическими реагентами, тройные комплексы с неорганическими и органическими соединениями и выделенный электролитически металл. Распространенный ранее электрогравиметри-ческий метод, позволяющий определять до 500 мг С(1, для получения точных результатов требует длительного электролиза. Обычно электролитом служит раствор цианида. Ускоренные варианты этого метода менее надежны. Для массовой работы наиболее пригодны методы, основанные на выделении соединений кадмия различными неорганическими и, особенно, органическими осадителями. Обычно их используют для определения и-10 — и-10 мг С(1, реже [c.50]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]

    Левина [314] опубликовала обзор работ по использованию масс-спектрометра для изучения термодинамики испарения и показала, что этот метод может быть применен для изучения состава паров в равновесных условиях и определения парциальных давлений компонентов, а также термодинамических констант. При повышенных температурах изучались галогенные производные цезия [9], были получены теплоты димеризации 5 хлоридов щелочных металлов [355] исследовались системы бор — сера [458], хлор- и фторпроизводных соединений i и z на графите [53], Н2О и НС1 с NazO и LizO [442], UF4 [10], системы селенидов свинца и теллуридов свинца [398], цианистый натрий [399], селенид висмута, теллурид висмута, теллурид сурьмы [400], окиси молибдена, вольфрама и урана [132], сульфид кальция и сера [105], сера [526], двуокись молибдена [76], цинк и кадмий [334], окись никеля [217], окись лития с парами воды [41], моносульфид урана [85, 86], неодим, празеодим, гадолиний, тербий, диспрозий, гольмий, эрбий и лютеций [511], хлорид бериллия [428], фториды щелочных металлов и гидроокиси из индивидуальных и сложных конденсированных фаз [441], борная кислота с парами воды (352), окись алюминия [152], хлорид двувалентного железа, фторид бериллия и эквимолекулярные смеси фторидов лития и бериллия и хлоридов лития и двува лентного железа [40], осмий и кислород 216], соединения индийфосфор, индий — сурьма, галлий — мышьяк, индий — фосфор — мышьяк, цинк — олово — мышьяк [221]. [c.666]

    В качестве катализатора применяют уксуснокислые соли цинка (или кадмия). Активированный, прокаленный газовый уголь пропитывают свежеприготовленным раствором катализатора (цинкаце-тата), затем отделяют его от раствора и просушивают при 160—170°. Уголь должен обладать высокой активностью и определенной степенью дисперсности. Кроме угля в качестве носителя можно применять силикагель и активированную окись алюминия. До известного предела процент конверсии уксусной кислоты увеличивается по мере относительного увеличения содержания катализатора, достигая 99% (рис. 114). [c.273]

    Некоторые колбы для растворения, вроде аппарата Сог1е15 а для. определения углерода, допускают присоединение аппарата для получения углекислоты. Тогда весь сероводород из сосуда для растворения можно вытеснить умеренным током углекислоты. Остающийся в колбе для растворения раствор железа можно с успехом применять для определения меди (стр. ]76) или кремния (стр. 86). Затем к раствору уксуснокислых солей, находящемуся в поглотительной колбочке, прибавляют 5 мл медного раствора и после перемешивания сполна превращают желтый сернистый кадмий в черную сернистую медь. Благодаря прибавленной вместе с сернокислой медью серной кислоте уксуснокислые соли превращаются в сернокислые, что облегчает последующее промывание фильтра. Фильтруют через беззольный фильтр, промывают слабо подкисленной теплой водой. Промывание надо считать законченным, когда фильтрат при прибавлении сероводородной воды больше не окрашивается в темный цвет. В предварительно взвешенном фарфоровом тигле сернистую медь превращают в окись меди прокаливанием, которое сначала ведут при низкой температуре, а затем в течение нескольких минут — при красном калении. Под конец короткое время нагревают очень сильно, чтобы сернокислую медь, которая могла образоваться, тоже перевести в окись меди. Умножением найденного веса СиО на [c.184]

    Для определения сульфидной серы можно применять также и способ-S hulte (стр. 181), по которому выделяющийся сероводород осаждают сперва в виде сернистого кадмия последний переводят затем в окись меди, которую и взвешивают. [c.279]

    Для количественного определения кадмия предложены три флуоресцентных реактива, приведенных в табл. IV-11. 2-(о-ок-сифенил)-бензоксазол, выпускаемый нашей промышленностью под названием люмоген светло-зеленый , в щелочной среде дает с кадмием осадок, первоначально использовавшийся для его весового [351] и объемного определений [352] затем раствор этого осадка в ледяной уксусной кислоте был предложен для окончания анализа флуоресцентным путем [219]. Двум другим реактивам мешают многие элементы, от которых кадмий должен быть отделен но 8- (бензолсульфониламино) -хинолин позволяет с большой чувствительностью определять кадмий в присутствии десятикратного избытка цинка [139]. [c.161]

    Были запатентованы также [16— 19] катализаторы, представляющие собой комбинацию окислов цинка, кадмия и ванадия. Над такими катализаторами был получен из бутилового эфира олеино1вой кислоты олеиловый спирт с выходом 80—90%. Испытывались также различные бинарные комбинации [9, 20] окислов цинка, алюминия, железа, кадмия, свинца, титана, марганца, олова, висмута и хрома. Хотя окись меди более активна в реакции гидрирования углерод-углеродных связей, чем при восстановлении карбоксильной группы, ее комбинация с окисью кадмия [6] при определенном соотношении обладает некоторой селективностью при восстановлении олеиновой кислоты, кислот китового жира и Ьпермацета. Добавка окиси хрома ухудшает селективность. [c.235]

    Мы уже указывали, что в начальный неустойчивый период горения дуги в спектре появляются линии ртути и кадмия (последний лишь частично дистиллирует в плазму из пробы в начальный период). Затем, обычно в течение 30—40 сек., дуга горит стабильно. За это время выгорают носитель ОагОз и основная часть примесей, имеющих температуру кипения ниже 2000° С. Такие элементы, как железо, марганец, магний и некоторые другие, не успевают полностью испариться за этот период, и поступление их в разряд сильно завтк ит от небольших изменений режима дуги. Такой характер поступления примесей в пламя дуги отражается на интенсивностях линий различных примесей и воспроизводимости определений. Поэтому для более надежного определения Ре, Мп, М приходится применять внутренний стандарт. Для этой цели в окись галлия вводится 1 % хрома, служащего внутренним стандартом. [c.330]

    Анализ урана. В первую очередь этот метод был использован с небольшим видоизменением при анализе различных урановых материалов. Так, с носителем ЫаР определялись бор и кадмий в ир4 [12 ]. Для определения Мо в ир4 вводился СигЗ [ ]. Для анализа ОзОа Брекпот использовал в качестве носителя окись индия [ 25]. Применение указанного метода к анализу СзОз описано также в [c.334]

    Рекомендуется также метод , основанный на осаждении циркония из солянокислого раствора в виде манделята (соли миндальной кислоты) циркония(СвН5СНОНСОО)42г. Определение может быть выполнено в присутствии титана, железа, ванадия, алюминия, хрома, тория, церия, олова, бария, кальция, меди, висмута, сурьмы и кадмия. Содержание свободной серной кислоты в растворе не должно превышать 5%. Аммонийные соли препятствуют осаждению вследствие образования, как предполагает автор, растворимого комплексного манделята аммония и циркония. Определение сводится к следующему. Раствор, содержащий хлорид или сульфат цирконила в соляной кислоте, в количестве 0,050—0,3 г в пересчете на окись циркония, разбавляют приблизительно до 20 мл концентрированной соляной кислотой. К раствору прибавляют 50 мл 16%-ной миндальной кислоты и разбавляют до 100 мл. Температуру раствора медленно повышают до 85° и нагревают при этой температуре 20 мин. Выделившийся осадок отфильтровывают, промывают горячим раствором, содержащим 2% соляной кислоты и 5% миндальной кислоты, и прокаливают до окиси циркония. [c.590]

    В вып. III 1-го издания Основ химии (1870) Д. И., не оставляя еще мысли о помещении 1п где-то около Zn и С(1, т. е. во II группе, рассматривает 1п, вместе с Хп и Сс1, но одновременно отмечает и его отличие от них. Индий хотя и летуч, но труднее, чем цинк и кадмий, что уже одно мол ет указать на его несходство с этими металлами, потому что пай его, если он справедливо определен, находится в средине между паями пинка и кадмия, а именно пай цинка равен 65,2, пай кадмия = 112, а пай ипдия равен 75,6. Отличается индий тем, что его окись не растворяется в аммиаке, как окиси двух предыдущих металлов (т. XIV, стр. 187). И далее Индий редко сопровождает цинк, имеет особый спектр, повидимому сходен с Zn, но дает разные степени окисления и пе образует хоропю кристаллизующихся солей (т. XIV, стр. 192). [c.803]

    С кислородом, водородом, окисью углерода, углекислотой, когда эти газы адсорбированы на кадмии, сурьме и висмуте, никакого манометрического эффекта при ультрафиолетовом облучении не наблюдается. Но с окисью углерода, адсорбированной на никеле, при 20° С наблюдается сильная фотодесорбция неиз-менившегося газа необратимого характера действительно, газ, выделившийся при облучении, повторно не адсорбируется. Граница активных длин волн находится при 2400 А. Если ввести желатиновую пленку, служащую фильтром, эффект фотодесорбции исчезает. Эффект пе может быть приписан образованию на поверхности металла слоя тетракарбонила никеля, так как если слой предварительно нагреть в атмосфере окиси углерода, чтобы получить на поверхности карбонил никеля, то при облучении наблюдается выделение газа, способного конденсироваться в жидком воздухе, однако с другой спектральной областью активных излучений. Несомненно, что в этом последнем случае мы имеем фото десорбцию тетракарбонила никеля (вероятно, термическую). Если облучить окись углерода, адсорбированную на слое безводного сульфата никеля, то освободившийся газ адсорбируется снова, хотя нагревание светом в этом случае исключено, так как фотодесорбирующее действие ограничено определенной спектральной областью и пе может наблюдаться во всей области поглощения. [c.396]

    Смешанные карбонилы цинка, кадмия, индия, талия и олова могут сублимировать, легко растворяются в органических растворителях и не увлажняются водой. Криоскопические определения молекулярного веса в бензоле отвечают приведенным выше формулам. Темпера1тура плавления их находится в интервале 70—80°. Они легко разлагаются ири нагревании, образуя металлическое зеркало. Разбавленные кислоты выделяют из них свободный карбонилгидрид кобальта. Водород на них не действует даже нри высоком давлении. Выше 40° окись азота превращает их в карбонилнитрозил кобальта. Пиридин, ортофенантролин и амины образуют с ними комплексы без освобождения окиси углерода. [c.164]


Смотреть страницы где упоминается термин Определение окиси кадмия: [c.211]    [c.329]    [c.211]    [c.646]    [c.229]    [c.402]    [c.430]    [c.474]    [c.58]    [c.136]    [c.257]    [c.321]    [c.58]    [c.229]   
Смотреть главы в:

Анализ электролитов и растворов -> Определение окиси кадмия




ПОИСК





Смотрите так же термины и статьи:

Кадмий определение

Окись кадмия



© 2025 chem21.info Реклама на сайте