Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические свойства макромолекул

    Геворкян A. В., Конформационны е и термодинамические свойства макромолекул в тройных полимерных системах, Усп. химии, 41, 401 (1972). [c.587]

    Наряду с методами светорассеяния и осмометрии седимента-ционный анализ представляет собой абсолютный метод определения молекулярных масс полимеров в очень широком интервале — от нескольких тысяч до десятков миллионов. Изучение свойств растворов полимеров на скоростной аналитической ультрацентрифуге позволяет исследовать гидродинамические и термодинамические свойства макромолекул, определять их размеры и форму, количественно характеризовать равновесную гибкость изолированных макромолекул. Седиментационный анализ удобен также [c.13]


    Термодинамические характеристики растворов полимеров, как было показано, тесно связаны с цепным строением, размерами и гибкостью макромолекул, а также с энергией их взаимодействия с растворителем. Эти основные параметры определяют также многие другие свойства растворов полимеров, по которым, в свою очередь, можно судить о строении и свойствах макромолекул. Так, например, гибкость цепей отражается не только на высоких значениях энтропии смешения, но и на условиях передвижения молекул в растворах при диффузии, течении и др. В этом отношении изучение разбавленных растворов полимеров представляет тем больший интерес, что оно выясняет строение и свойства индивидуальных макромолекул, лежащих в основе всех полимерных материалов. [c.188]

    Линейные гибкие макромолекулы. Способность молекулярных цепей изменять свою конфигурацию в зависимости от внешних условий, т. е. гибкость или жесткость этих цепей, является кардинальной характеристикой макромолекул, определяющей свойства полимерных систем. Различие в поведении гибких и жестких частиц проявляется, как указывалось, в электрохимических свойствах (глава пятая), в термодинамических свойствах растворов полимеров (глава восьмая), в молекулярно-кинетических свойствах коллоидных систем (главы вторая и восьмая), в свойствах гелей (глава девятая) и др. Это различие связано и с основными характеристиками структуры и физикомеханическими свойствами полимерных материалов. Как уже указывалось, гибкость и жесткость макромолекул являются относительными характеристиками, зависящими от ряда внешних условий, прежде всего, от температуры однако, применительно к обычному интервалу средних температур, полимеры с гибкими и жесткими макромолекулами достаточно отчетливо различаются между собой влияние других факторов (пластификации, скорости деформации) описано ниже (стр. 242—251). [c.227]

    Была предложена также теоретическая модель равновесного поведения гибких макромолекул в порах адсорбентов [1901. Она основывается на учете снижения числа возможных конформаций цепей вследствие геометрических ограничений, налагаемых стенками пор и действием адсорбционных сил. Вычислены термодинамические свойства адсорбированных полимеров [191] на основе теории адсорбции [192]. [c.137]


    В процессах получения полимерных материалов весьма важную роль играет смачивание твердых поверхностей олигомерными и полимерными молекулами. Хорошее смачивание является необходимым условием прочного адгезионного соединения и высоких показателей физико-механических свойств материала. Однако с термодинамической точки зрения и эта проблема также сводится к адсорбции полимерных молекул на границе раздела. Здесь возникает еще один весьма важный вопрос — об изменении адсорбционного взаимодействия на границе раздела фаз при полимеризации или поликонденсации. Действительно, условия возникновения адсорбционных связей на границе раздела должны существенно зависеть от свойств макромолекулы ее химической природы, молекулярной массы и гибкости. [c.12]

    Термодинамические свойства этой системы могут быть определены при рассмотрении канонического ансамбля таких систем и рассмотрении функции распределения. Далее находится статистическая сумма, а затем основные термодинамические функции. Анализируя выражения для свободной энергии и энтропии, Гиббс и Ди Марцио пришли к выводу, что ниже экспериментально измеряемой температуры стеклования Tg должна существовать некоторая температура Т2, при которой (и ниже которой) конформационная энтропия полимера равна нулю. Они установили, что эта температура должна зависеть от разности энергий 82—8i (гош- и транс-изомеров), энергии образования дырок а и молекулярной массы полимера. Анализируя реальную полимерную систему, проходящую через точку Т2, где конформационная энтропия 5 = 0, авторы [21]отмечают, что при высоких температурах (когда S>0) существует большое число способов расположения молекул в аморфной фазе. При этих температурах ни одна из конформаций макромолекул не имеет предпочтения перед другой. При охлаждении полимера энергия макромолекул уменьшается, и переход из высокоэластического в стеклообразное состояние сопровождается двумя процессами 1) начинают преобладать низкоэнергетические молекулярные конформации (/ уменьшается), что делает цепи более жесткими 2) сокращается объем (понижается По, что эквивалентно уменьшению свободного объема). [c.100]

    Третий и четвертый пункты при правильной постановке эксперимента практически выполняются. Зависимость коэффициента диффузии от концентрации и полидисперсности полимера должна приниматься во внимание. Зависимость от концентрации является результатом отклонения термодинамических свойств растворов полимеров от свойств идеальных растворов и отклонения формы макромолекулы в растворе от сферической. Анализ [3—б] обоих факторов приводит к уравнению [c.123]

    Теоретическое обоснование существования приблизительно линейной зависимости Pj (или AT ) от концентрации дали, независимо друг от друга, Флори [1] и Хаггинс [2] путем статистической обработки термодинамических свойств линейных макромолекул в растворе. [c.158]

    Теоретическое значение измерений вязкости заключается в том, что из величины [т]] и молекулярного веса М (лучше всего это проделывать для узких фракций полимера) можно весьма просто найти очень важный молекулярный параметр а — степень набухания макромолекулы в изучаемом растворителе (но сравнению с идеальным 0-растворителем). С величиной а мы встречались уже в теории второго вириального коэффициента полимеров. Любопытно, что можно сопоставить молекулярные параметры, полученные на основании чисто термодинамических свойств полимера, подобных второму вириальному коэффициенту, и чисто кинетических свойств, например вязкости. Мы уже видели (стр. 98), что параметр а связывает обе группы свойств полимерной молекулы, причем теория Флори удовлетворительно передает эту связь. [c.153]

    В последнем случае дальнейшее изменение термодинамических свойств среды может привести к внутримолекулярному структурному превращению, в результате которого макромолекулы переходят в конформацию, характерную для аморфного состояния. Такое внутримолекулярное превращение принято называть переходом спираль — клубок, в соответствии с теми конформациями цепи, которые имеют молекулы в исходном и конечном состояниях. Рассмотрим сначала поведение при кристаллизации обычных макромолекул, у которых в разбавленном растворе не сохраняется упорядоченная конформация. [c.57]

    Объединение макромолекул в надмолекулярные коллоидные образования идет настолько обратимо и легко, что реальные системы часто состоят из сосуществующих и находящихся в термодинамическом равновесии макромолекул и ассоциатов. Разделить их изучение столь же трудно, как и в теории растворов выделить дисциплины, изучающие в отдельности ионы, нейтральные молекулы и ассоциаты. Следует отметить, кроме того, что структуры, образующиеся при соединении суспензоидных частиц (гели) часто обладают свойствами, весьма сходными с макромолекулярными структурами (студнями). Статистику гибких цепей используют в настоящее время не только для ВМС, но и для описания контактного и вращательного движения в структурированных типично дисперсных системах (гелях). [c.17]


    Сказанное в полной мере относится и к теории Флори и Хаггинса. В 1942 г. Флори и Хаггинс независимо друг от друга объяснили необычное значение энтропии растворов полимеров с позиций статистической механики. Эти знаменитые работы, послужившие толчком для развития исследований термодинамических свойств полимерных растворов, составляют фундамент современных теорий растворов. Аномальные значения энтропии растворов в теории Флори — Хаггинса объясняются общим для всех полимеров свойством проявлять собственную гибкость, т. е. способностью полимерных цепочек достаточно большой длины легко приобретать множество различных конформаций. Теория была развита на основании чисто абстрактных общих представлений, однако она содержит так называемый параметр взаимодействия Флори — Хаггинса, учитывающий влияние межмолекулярных сил и, таким образом, отражающий индивидуальность и химическую природу макромолекул. [c.152]

    Теоретич. основы Ф. заложены в статистической термодинамической теории р-ров полимеров Флори — Хаггинса (см. Растворы). Большинство методов Ф. основано на зависимости растворимости полимерных фракций от размера, состава (для сополимера) или др. свойств макромолекул. Если в р-ре полимера качество растворителя будет постепенно ухудшаться (о хороших , идеальных и плохих растворителях см. Растворы), напр, в результате понижения темп-ры или добавления осадителя, то после достижения т. наз. критической точки начнется разделение р-ра на две фазы — разбавленную (фаза I) и концентрированную (фаза II, т. наз. гель). Равновесие между фазами устанавливается в течение определенного времени (иногда довольно длительного). При осуществлении большинства методов Ф. достижение равновесных условий сопряжено с известными трудностями, не всегда преодолимыми. [c.388]

    Иными словами, учитывается лишь взаимодействие между атомами, непосредственно присоединенными к двум соседним атомам главной цепи, а всеми остальными взаимодействиями пренебрегают. До последнего времени такое приближение не только было принято в статистической физике макромолекул, но широко использовалось (и используется) также при рассмотрении термодинамических свойств низкомолекулярных соединений (в частности, при определении из температурного хода теплоемкости величин потенциальных барьеров, тормозящих внутреннее вращение [ ]). Между тем это предположение никогда не было подтверждено никакими более или менее вескими доводами и, в сущности, продиктовано исключительно требованиями удобства и простоты вычислений. [c.41]

    Книга Тенфорда Физическая химия полимеров представляет несомненный интерес для всех, желающих познакомиться с научными основами учения о свойствах макромолекул. В книге четко и подробно изложены основы современных структурных, термодинамических, электрохимических и кинетических методов исследования строения, формы и свойств макромолекул, а также основные результаты измерений. [c.7]

    В общем виде можно дать следующую классификацию типов микрогетерогенности в многокомпонентных полимерных системах 1) молекулярная микрогетерогенность, проявляющаяся в измене- НИИ в межфазном слое таких физических характеристик, которые определяются макромолекулярным строением полимерных цепей (термодинамические свойства, молекулярная подвижность, плотность упаковки, свободный объем, уровень межмолекулярных взаимодействий и др.) 2) структурная микрогетерогенность, определяемая изменениями во взаимном расположении макромолекул друг относительно друга в поверхностных и переходных слоях на разном удалении от межфазной границы и характеризующая ближний порядок в аморфных полимерах и степень кристалличности в кристаллических полимерах 3) микрогетерогенность на надмолекулярном уровне, определяемая различиями в типах и характере формирования и упаковки надмолекулярных структур в поверхностных слоях и в объеме 4) химическая мйкрогетероген-ность, обусловленная влиянием границы раздела на формирование полимерных молекул микрогетерогенность этого типа может быть также дополнительной причиной указанных выше трех типов микрогетерогенности. [c.285]

    Такой подход направлял внимание исследователей на проблемы кинетики (поскольку мелкораздробленные двухфазные системы должны, как правило, постепенно разделяться на макроскопические фазы) и на проблему сольватации. При этом главные проблемы теории растворов полимеров (термодинамические свойства растворов, особенности строения макромолекул и др.) оставались вне поля зрения. [c.210]

    Наряду с изучением падлтолекулярпого строения аморфных полимеров большое и принципиальное значение имели работы В. А. Каргина в области исследования структуры и природы кристаллического состояния полимеров. Совместно с Г. Л. Слонимским он подверг теоретическому рассмотрению один из принципиальных вопросов — вопрос о фазовом состоянии полимеров. Анализируя принципиальную особенность полимерных систем, заключающуюся в том, что в случае гибких цепных макромолекул имеют место две структурные единицы — макромолекула и звено, выступающие в ряде процессов как независимые структурные единицы, В. А. Каргин впервые указал на расхождение структурных и термодинамических критериев оценки фазового состояния систем, построенных из макромолекул. Критический анализ термодинамических свойств кристаллических полимеров и самого понятия фазы в применении к таким сложным системам, как частично кристаллические полимеры, позволил прийти к однозначному выводу о том, что кристаллические полимеры представляют собой однофазные дефектные системы. [c.8]

    Полимеры способны растворяться в низкомолекулярных веществах. В образующихся растворах по достижении термодинамического равновесия макромолекулы полимера перемешаны с молекулами растворителя так же, как в обычных низкомолекулярных растворах. Однако большие размеры макромолекул вносят ряд особенностей в свойства растворов и видоизменяют процесс растворения. Вследствие наличия в растворах больших частиц такие растворы приобретают некоторые свойства, характерные для коллоидных растворов (прежде всего неспособность проходить через мембраны). [c.277]

    Как известно, ВМС способны к образованию термодинамически равновесных молекулярных растворов с особыми термодинамическими свойствами, обусловленными гибкостью цепей макромолекул, обладающих больщим числом конформаций. Вместе с тем исследования последних лет показали, что для этих систем характерно развитие процессов ассоциации макромолекул в растворах в зависимости от характера взаимодействия макромолекул друг с другом и с молекулами растворителя и от концентрации раствора макромолекулы могут существовать либо в виде гибких цепей (статистических клубков), либо как плотные глобулы свернутых цепей, либо в виде ассоциатов друг с другом. При развитой мозаичности — различии полярности участков цепей макромолекул — они, как указывалось, могут обладать значительной поверхностной активностью для подобных веществ характерна также резко выраженная склонность к агрегированию молекул и их глобулизации наряду со способностью к солюбилизации нерастворимых в данной среде веществ. [c.236]

    В первой части книги, охватывающей главы I и II, речь пойдет о теоретическом рассмотрении полимеров в растворе методами статистической механики. Достаточно полное описание физической модели полимера будет приведено только во второй главе, и оно не может быть сделано кратко. Попытаемся, однако, с самого начала дать читателю некоторое представление о предмете исследования в той степени, в какой это необходимо для формулировки математического метода, имеющего целью объяснить мехэниче- ские, оптические и термодинамические свойства макромолекулы в растворе. [c.9]

    Мы все время говорим о термодинамической, равновесной гибкости макромолекул, определяемой величиной АЕ. Кинетическая гибкость, характеризующая поведение макромолекулы. во времени, т. е. скорость конформационного превращения, зависит главным образом не от АЕ, а от высоты энергетического барьера, разделяющего различающиеся конформации. И термодинамическая, и кинетическая гибкости варьируют в широких пределах. Макромолекулы, построенные из сопряженных л-связей или из сопряженных ароматических колец, являются жесткими — они лишены конформационной подвижности. В отличие от макромолекул с а-связями (полиэтилен, каучук), сопряженные цепи являются своего рода л-электроннымн полупроводниками. С этим связано поглощение света в длинноволновой области — соответствующие полимеры практически черны. Гибкость и полупроводниковые свойства макромолекул не совместимы. [c.73]

    Предполагается, что на термодинамические свойства макромолекулы влияют концевые группы. С изменением молекулярного веса полимера изменяется молярная доля концевых групп, а следовательно, и термодинамические свойства макромолекулы. Это не учитывалось Флори при выводе уравнения полидисперсности. Расчеты А. А. Стрепихеева, вычислившего свободную энергию поликапро-амида со степенью полимеризации от 1 до оо при различных температурах, показали, что с уменьшением степени полимеризации свободная энергия, приходящаяся на элементарное звено полиамида, возрастает. Поскольку в состоянии равновесия смесь макромолекул при данном среднем молекулярном весе должна обладать минимумом свободной энергии, то при достижении равновесия число макромолекул с низким молекулярным весом и большим запасом свободной энергии должно уменьшаться. Как следствие будет уменьшаться содержание молекул с высоким молекулярным весом, что должно привести к повышению однородности полиамида по молекулярному весу в состоянии равновесия. Высказанное предположение основывается на общих теоретических предпосылках. [c.166]

    Минимальный объем текущей жидкости, который подвергается сдвиговому усилию, соответствует объему, необходимому для обеспечения сегментального движения макромолекулы. Улучшение термодинамических свойств растворителя (в концентрированных растворах полимеров), а также повышение температуры обусловливают увеличение подвижности макромолекул (или же способствуют уменьшению среднестатистических размеров кинетического сегмента). Так как под влиянием сдви-говьгх усилий происходит не только относительное смещение слоев жидкости, но и вращение ее элементарных объемов (см. рис. 3.3), то взаимное расположение кинетических сегментов полимерных цепей изменяется. При достаточно больших т происходят распрямление макромолекул в потоке, а также их преимущественная ориентация вдоль его оси. Прекращение действия внешних сил обусловливает возвращение системы в первоначальное изотропное состояние в результате релаксационных процессов. [c.184]

    Расчет гибкости конкретных полимерных цепей должен основываться на их химическом строении. Так, конформации мономерных звеньев в полимерах типа (—СН2—СНН—) (например, полистирол, см. рис. 3.1) и (—СН2—СНг—) определяются преимущественно взаимодействиями массивных боковых привесков Н. Сведения об этих конформациях удается получить путем исследования кристаллических полимеров методом рентгеноструктурного анализа. Вследствие конфигурационной гетерогенности и дисперсии длин цепей обычные полимеры не кристаллизуются или кристаллизуются лищь частично. Однако стереоре-гулярные полимеры кристаллизуются хорощо, их можно получить даже в виде монокристаллов. Но в блоке и стереорегулярные полимеры кристаллизуются не полностью. Наряду с гетерогенностью, кристаллизации препятствуют кинетические факторы. Для того чтобы образовать кристалл, макромолекулы должны переориентироваться. Стастические флуктуирующие клубки закристаллизоваться не могут — цепи должны вытянуться. Даже если термодинамические условия благоприятствуют развертыванию клубков и ориентации цепей, эти процессы могут потребовать слищком длительного времени по сравнению с временем опыта. Необходимо преодолеть барьеры внутреннего вращения. Равновесные термодинамические свойства поворотно-изомерной макромолекулы определяются разностями энергий поворотных изомеров напротив, кинетические свойства определяются высотами энергетических барьеров. Для кристаллизации существенна не только термодинамическая, но и кинетическая гибкость цепей. Прогрев полимера или его набухание в низкомолекулярном растворителе облегчают кристаллизацию. [c.132]

    Здесь следует заметить, что необходимо различать понятия термодинамической (статистической) и кинетической жесткости цепи. Первая характеризует поведение цепи в условиях, когда изучаются равновесные свойства макромолекулы. Вторая (кинетическая жесткость) — поведение цепи в неравновесных условиях проведения эксперимента, т. е. когда цепь из одного равновесного положения переходит в другое. Она определяется параметром, пропорциональным отношению внутренней вязкости макромолекулярного клубка к вязкости растворителя. В зависимости от величины вязкости растворителя макромолекула может деформироваться (большая вязкость растворителя) или не деформиро- [c.52]

    Рискуя навлечь на себя критику в категоричности обобщений, мы все же возьмем на себя смелость заявить, что основной тенденцией современных исследований все в большей степени становится переход к аналитическим методам исследования, под которыми мы понимаем исследования на уровне отдельных атомов. Логика здесь простая вне зависимости от того, что является объектом исследования — явления окружающей природы или же социальные явления, одно остается бесспарным никакое явление не может считаться изученным до конца, поскольку сведения, которыми мы располагаем на данном этапе, отражают лишь соответствующий уровень наших исследований. Например, в первой главе этой книги было показано, что физико-химические свойства каучука, а также разбавленных растворов полимеров определяются термодинамическими характеристиками макромолекул, из которых состоят эти системы, и даже в большей степени структурных элементов макромолекул, т. е. сегментов. В этом плане физическая химия полимеров, разумеется, не является исключением, и эту точку зрения прекрасно сформулировал В. И. Ленин, сказав, что электрон так же неисчерпаем, как атом. [c.68]

    Изменения активности некоторых белков коррелируются, как правило, с изменениями ряда физических свойств. Так, изменение формы белковой молекулы можно установить по изменению некоторых гидродинамических характеристик (например, коэффициента трения, инкремента вязкости), по изменению светорассеяния, поверхностных свойств, диффузии через полупроницаемые мембраны и скорости седиментации [90]. Изменения термодинамических свойств (энтальпии и энтропии), объема, растворимости, оптического вращения, поглощения в инфракрасной области, дифракции электронов, а также некоторые другие характеристики, приведенные Каузманом [90], используются для Оцейки изменений формы белковых молекул. Большинство этих измерений было проведено па макромолекулах неизвестной структуры, для которых не была установлена последовательность аминокислотных остатков. В настоящее время благодаря усовершенствованию методов деградации белков, аналитического определения Концевых групп, методов разделения и идентификации отдельных фрагментов можно успешно изучать белки с молекулярным весом порядка 20 ООО. Хотя эта работа еще не достигла молекулярного уровня, тем не менее она дает возможность лучше использовать значения физических констант белковой молекулы известной структуры для объяснения механизма взаимодействия фермента с субстратом. Структура такого белка, как фиброин (белковое вещество натурального шелка), в настоящее время хорошо изучена благодаря сравнению рентгенограммы и ИК-спектров нативного волокна с рентгенограммами [35, 38, 108, 140] и ИК-спектрами [168] небольших фрагментов белка известной структуры, полученных при деградации, а также синтетитегаихпмшнептидо [c.386]

    Больщинство молекулярных параметров полимеров определяется исходя из свойств разбавленных растворов. Теория термодинамических свойств разбавленных растворов полимеров была разработана независимо друг от друга Флори и Хаггинсом [1, 2]. Эта теория, развитая многими другими авторами, оказалась полезной для качественной и полуколи-чественной интерпретации поведения разбавленных и концентрированных растворов, а также для определения средних молекулярных весов и размеров макромолекул по экспериментальным данным, оценки взаимодействия растворенного полимера с растворителем и т. д. Эта теория неприменима, если между молекулами полимера имеет место специфическое взаимодействие или если речь идет о более сложных системах полимер — растворитель. Ограниченность теории разбавленных растворов проявляется со всей очевидностью в случае с привитыми сополимерами. Правда, Хаггинс [3] попытался вывести ряд уравнений для прив итых сополимеров, но ОНИ" пока еще не могут быть использованы. [c.114]


Смотреть страницы где упоминается термин Термодинамические свойства макромолекул: [c.128]    [c.89]    [c.267]    [c.19]    [c.233]    [c.107]    [c.31]    [c.222]    [c.19]    [c.233]    [c.374]    [c.90]    [c.17]    [c.278]   
Основы химии высокомолекулярных соединений (1961) -- [ c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Термодинамические свойства



© 2025 chem21.info Реклама на сайте