Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические вещества потенциометрическое

    Физико-химические газо-жидкостная и адсорбционная хроматография газов и жидких смесей органических веществ, потенциометрическое титрование, колориметрия и другие. [c.10]

    Известны прямые и косвенные окислительно-восстановительные методы. Первые из них имеют значение прежде всего при определении органических веществ. По сравнению с индикацией конечной точки титрования по собственной окраске одного из участвующих в реакции веществ или с использованием окрашенных индикаторов все большее признание находят прямые измерения потенциалов. Это обусловлено простотой потенциометрического измерения окислительно-восстановительных потенциалов, а также наличием в распоряжении аналитиков автоматических титрометров. [c.81]


    Фиксирование конечной точки титрования проводят, как правило, с помощью физико-химических методов (потенциометрическое, кондуктометрическое, амперометрическое титрование). Однако целый ряд органических веществ можно определять с визуальным наблюдением конца титрования по появлению, исчезновению нли изменению окраски титруемого раствора, по возникновению или исчезновению помутнения или по изменению окраски добавленного индикатора. [c.213]

    Развитие потенциометрического метода позволило применить метод кривых заряжения к порошкообразным металлическим катализаторам и катализаторам на носителях. Кривые заряжения порошков можно получать не только поляризацией электрическим током, но и при помощи анодной поляризации органическим веществом с высоким окислительно-восстановительным потенциалом (бензохинон, ацетилен и т. п.). Последний метод особенно эффективен в органических растворителях и когда катализатор легко окисляется при относительно невысоких анодных потенциалах. Возможность снятия кривых заряжения поляризацией органическим веществом позволила подчеркнуть глубокую аналогию между каталитическими и электрохимическими свойствами катализаторов гидрирования. [c.191]

    Угнетение почвенной биоты. Этот важный показатель, пригодный в том числе и для ранней диагностики негативных процессов в почве, находят, как правило, по косвенным признакам. Сравнительно простой прием, позволяющий оценить суммарную активность почвенных организмов, разлагающих органическое вещество и вьщеляющих диоксид углерода, состоит в определении так называемого дыхания почвы, или эмиссии почвой Oj. В полевых условиях на поверхности почвы устанавливают специальные камеры (предложен ряд систем), которые улавливают вьщеляющийся Oj, например, путем его поглощения раствором щелочи затем количество поглощенного СО, можно измерить потенциометрическим титрованием (по электрической проводимости). [c.221]

    Активная щелочь черного щелока включает массовые доли гидроксида и всего сульфида натрия и определяется методом потенциометрического титрования с применением стеклянного и каломельного электродов. К раствору щелока, освобожденному от карбоната и органических веществ, добавляют формальдегид и титруют до pH 3,5 соляной кислотой, которую приливают порциями. После прибавления каждой новой порции отмечают количество прибавленной кислоты и показания рН-метра. По окончании строят кривую потенциометрического титрования и определяют расход соляной кислоты на титрование щелока до pH 8,3. Из этого значения вычитают кислотный эквивалент формальдегида, который определяют в отдельной пробе титрованием раствора формальдегида соляной кислотой в присутствии фенолфталеина. Разность представляет количество кислоты, пошедшее на титрование активной щелочи. [c.185]


    Потенциометрическое титрование применяют для определения не только индивидуальных соединений, но и их смесей. Используют как прямое, так и обратное титрование. Большие возможности для раздельного определения органических веществ кислого и основного характера в разнообразных смесях дает сочетание потенциометрического титрования с неводными растворителями [4, 5, 6]. [c.16]

    Потенциометрическое титрование успешно применяется для определения органических веществ (табл. 6,12). [c.730]

    Другие органические вещества. Гидрохинон можно определять [5] в растворе, содержащем КВг, прямым потенциометрическим титрованием раствором Са(С10)2. [c.57]

    Органические вещества. Большинство органических соединений определяют прямым потенциометрическим титрованием раствором Вга или методом обратного бромометрического титрования. При проведении этих определений необходимо точно следовать предписаниям соответствующих методик, иначе могут получиться неудовлетворительные результаты. [c.87]

    Потенциометрический способ трудно, а в некоторых случаях и невозможно использовать в титрованиях с участием необратимых систем (например, ряда органических веществ). [c.34]

    Потенциометрическое титрование — щироко распространенный способ анализа. Нужно напомнить учащимся, что потенциометрическая схема служит здесь исключительно для определения эквивалентной точки. В остальном приемы выполнения анализов мало чем отличаются от приемов выполнения аналогичных анализов, знакомых учащимся из практикума по объемному анализу или анализу органических веществ. [c.200]

    Промышленные сточные воды, обработанные гипохлоритом кальция или хлорной известью для очистки от вредных органических веществ или от цианидов, обычно содержат некоторый избыток гипохлорит-ионов. Определение щелочности таких вод затруднено, так как избыток окислителя обесцвечивает индикатор. В этих случаях определение рекомендуется проводить потенциометрическим титрованием кислотой со стеклянным электродом или же применить описанные ниже методы определения щелочности сточных вод гипохлоритных заводов. [c.32]

    Восстановлению обычно предшествует полное окисление иридия до четырехвалентного состояния. По зтой причине в испытуемом растворе должны отсутствовать восстановители и особенно органические вещества, которые могут препятствовать полному окислению иридия прн подготовке раствора. Избыток окислителя также мешает определению. При потенциометрическом методе окислитель не мешает, если он титруется вначале с отдельным скачком потенциала. [c.145]

    Титрование кислотами и основаниями можно использовать для определения малых количеств кислот и оснований, однако при концентрации ниже 0,001 М обычно требуется спектрофотометрическое или потенциометрическое определение конечной точки [238]. Некоторые ионные примеси, как галогениды или цианиды, могут быть определень титрованием ионом серебра, но необходимо следить, чтобы отсутствовали органические вещества, способные реагировать с ионом серебра [63, 64]. Аналогично концентрацию ионов серебра можно определить потенциометрическим титрованием хлоридом. [c.274]

    Методы титрования в неводных растворах находят широкое применение в аналитической практике. Их используют для анализа разнообразных неорганических и органических веществ и для дифференцированного титрования многокомпонентных смесей солей, кислот и оснований. Одно из важнейших преимуществ методов неводного титровани г — возможность определять нерастворимые в воде соединения, а также вещества, разлагаемые водоп ил образующие в водных растворах стойкие Е1ерасслаивающиеся амульсии. Титрование неводных растворов может выполняться визуальным методом с применением индикаторов. потенциометрическим, кондуктометрическим. амиерометрическим и другими физикохимическими методами. [c.409]

    Церий (IV) не очень чувствителен к органическим веществам. Це-риметрически определяют мышьяк (III), гексацианоферриат калия, иодид-ион, сурьму (III), олово (II), ванадий (IV) и др., органические кислоты (винную, лимонную, щавелевую), спирты, амины, фенолы, аминокислоты, углеводы, глицерин, глюкозу. Все вышеуказанные соединения окисляются стехиометрически при комнатной температуре или при нагревании. Карбоновые кислоты окисляются до воды, муравьиной кислоты и СОз, аскорбиновая кислота —- до дегидроас-корбиновой, фенолы и амины — до хинонов, производные гидразина-до азота. Титруют в кислом водном растворе, иногда нагревают до 45° С. В качестве индикатора применяют дифениламин, ферроин, дифенилбензидин (обратимые), метиловый красный, метиловый оранжевый (необратимые). Титруют также и потенциометрическим методом. [c.419]

    Описано аргентометрическое титрование сероводорода с потенциометрической индикацией КТТ [1058, 1358], вариант дифференциальной потенциометрии [610], бипотенциометрическое установление КТТ [846] при определении серы в нанограммовых количествах вещества, определение сульфид-ионов в пище (в интервале pH 3—12) [112] и в органических веществах [193]. Смесь [c.67]


    Потенциометрическое определение 120—12 000. мкг брома в автоматическом режиме осуществляют по методу, описанному в работе [802]. По.лпая автоматизация всего хода определения брома и других галогенов в органических веществах осуществлена Ha i установке с программным устройством. [c.200]

    Потенциометрическое определение кобальта в высоколегированных сталях и магнитных сплавах после его выделения фенилтиогидантоиновой кислотой [548]. Навеску сплава обрабатывают, как обычно, раствором соляной кислоты и затем окисляют раствором азотной кислоты. Далее прибавляют 30 мл 50%-ного раствора лимонной кислоты и раствор гидроокиси аммония (1 1) до щелочной реакции по лакмусу и осаждают горячим раствором фенилтиогидантоиновой кислоты (2 г в 60 мл горячей 50%-ной смеси этанола с водой). Отфильтровывают осадок и обрабатывают его вместе с фильтром серной и азотной кислотами, выпаривая и вновь добавляя азотную кислоту до разложения органических веществ. Затем разбавляют раствор до 60 мл и нейтрализуют избыток кислоты раствором гидроокиси аммония. Далее готовят цитратно-сульфатный раствор 500 г лимонной кислоты и 400 г сульфата аммония прибавляют к небольшому количеству воды, приливают 1575 мл раствора гидроокиси аммония (пл. 0,88), охлаждают и разбавляют водой до 2,5 л. К 200 мл этого цитратно-сернокислого раствора приливают анализируемый раствор, 0,05 М раствор феррицианида калия и оттитровывают избыток последнего потенциометрически стандартным 0,05 N раствором сульфата или нитрата кобальта. [c.194]

    Иодид-, иодат-, цианид-ионы, метиловый спирт, глицерин, фенол, салициловую кислоту [65], ацетальдегид, формальдегид, бензальдегид, миндальную коричную, винную, малеиновую кислоты, этиловый, изоамиловый, к-бутиловый и бензиловый спирты [65, 66] определяют окислением перманганатом (взятым в избытке) в среде NaOH при 25 С (в случае неорганических веществ) или при 45 С (в случае органических веществ). Через 10 мин избыток КМпО оттитровывают потенциометрически раствором формиата натрия после добавления Ba la. [c.15]

    Органические вещества. Гидрохинон [12], тетрахлоргидрохи-пон [13], пирокатехин [12] определяют в среде ледяной уксусной кислоты прямым потенциометрическим титрованием раствором РЬ(СНзСОО)4. [c.132]

    III) и некоторых органических веществ в среде органических растворителей. Раствор r lj в К,К-диметилформамиде применяли [6] для прямого потенциометрического титрования Ij, Вта, I I, Си , Fe , Sb и в среде К,К-диметилформамида. Однако все эти методы не имеют практического значения, у [c.168]

    Вообще говоря, в кулонометрическом титровании для определения конечной точки можно использовать любой из подходящих методов, применяемых для этой цели в обычных титриметриче-ских определениях. Однако широко применяющиеся в обычной титриметрии визуальные индикаторы в кулонометрическом титровании используются гораздо реже. В основном здесь применяются инструментальные способы определения конечной точки, такие как потенциометрический, амперометрический и в меньшей степени — спектрофотометрическиц. При амперометрической индикации очень часто, особенно при титровании органических веществ. [c.31]

    В ряде случаев при полярографировании растворов органических веществ, образующих обратимые окислительно-восстановительные системы, на полярограммах наблюдаете,я появление небольшой дополнительной ступени, которой, если судить по потенциометрическим данным, не должно было бы быть. Впервые подобная волна была отмечена Р. Брдичкой и Е. Кноблохом [351] па полярограммах восстановления лактофлавина. Независимо от указанных исследователей такую же по характеру волну на полярограммах а-оксифеназина наблюдал О. Мюллер [352], который специальными опытами показал, что эта волна не может быть приписана восстановлению каких-либо примесей в растворе, и объяснил ее появление существованием неизвестной модификации (или таутомерной формы) изучаемого соединения. Брдичка, наблюдавший подобную волну также на полярограммах метиленовой голубой [353], предположил, что появление подобных волн обусловлено адсорбционными явлениями, и на основании этого предположения развил теорию адсорбционных волн [278]. [c.77]

    Последнее время потенциометрический метод анализа широко применяют для определения огранических веществ. Это значительно расширяет возможности анализа органических веществ и дает в руки исследователей новые более чувствительные и точные методы анализа. В литературе описаны методы потенциометрического определения ряда фармацевтических препаратов титрованием нитратом серебра, некоторых аминов титрованием итратом натрия и другие методы. [c.427]

    Поскольку природная вода и сточные воды в значительной степени загрязнены соединениями угольной кислоты и другими органическими веществами, придающими воде буферные свойства, фактическая потенциометрическая кривая отличается от кривой для чистых растворов. Поэтому потенциометрическую кривую для целей регулирования нейтрализующего реагенга рекомендуется получать Лабораторным титрованием воды, подлежащей обработке. Титрование следует вести тем реагентом, который намечен для использования. Начинают титрование при небольших отклонениях от заданного значения pH, постепенно увеличивая их. [c.14]

    Хромовая кислота не так легко, как марганцевая, восстанавливается органическими веществами и соляной кислотой — одной или в присутствии железа (III). Поэтому ее применение в некоторых титрованиях очень удобно, особенно в тех случаях, когда проводят титрование пробы предварительно обработанной соляной кислотой. Если титрование проводится потенциометрическим методом или с дифениламином или комплексом о-фенантролин-сульфат железа (II) в качестве внутренних индикаторов, то такой метод не оставляет желать лучшегс/. Употребление свежего раствора гексацианоферрата (III) калия в качестве внешнего индикатора, например при определении железа, менее надежно, и от него следует отказаться. [c.218]

    Бихромат калия. Титрование бихроматом калия может проводиться в солянокислом или сернокислом растворах. Если раствор содержит только одну серную кислоту, следует предпочесть титрование перманганатом, за исключением тех случаев, когда раствор содержит органические вещества, так как они легче окисляются перманганатом, чем бихроматом (см. Анализ горных пород, Железо (II) , стр. 998). Обычно титрование бихроматом следует за восстановлением хлоридом олова (II), и его можно проводить как с внутренним, так и с внешним индикатором или же потенциометрически. [c.447]

    Иридий в фильтрате, после разрушения органических веществ смесью H IO4 и H2SO4 и удаления избытка окислителя выпариванием до паров серного ангидрида, осаждают тиомочевиной и определяют после сжигания, прокаливания и восстановления в водороде весовым методом, либо после растворения осадка путем спекания с БаОг колориметрическим или потенциометрическим методом (см. гл. IV), [c.232]

    Все фильтры, сохраненные в ходе анализа, объединяют и озоляют. Прокаленный осадок, если он даже незначительно окрашен, спекают с небольшим количеством ВаОг, спек растворяют в НС1 и после соответствующей подготовки раствора пропускают его через катионит КУ-2 для отделения бария и примеси неблагородных металлов. Фильтрат объединяют с основным раствором VI, содержащим родий и иридий, также предварительно пропущенным через колонку с катионитом. В объединенном растворе разрушают органические вещества царской водкой, выпаривают раствор с НС1 для удаления HNO3 и определяют иридий полярографическим методом (см. гл. IV, стр. 197), родий в том же растворе определяют колориметрическим методом (см. гл. IV, стр. 168), Если содержание этих элементов в пробе велико, производят анализ либо его аликвотной части, либо определяют вначале иридий полярографическим или потенциометрическим методом (см. гл. IV, стр. 146, 197), затем осаждают из раствора родий при помощи меркаптобензотиазола и определяют его весовым методом (см. гл. IV, стр. 120). При малом содержании иридия и большом содержании родия определяют иридий полярографическим методом, иридий и родий выделяют из раствора тиомочевиной (см. гл. IV, стр. 122), осадок прокаливают, восстанавливают и взвешивают. Количество родия определяют по разности. [c.277]

    Окислительно-восстановительное титрование и полярография в течение последних двадцати — тридцати лет стали важными мего-дами анализа в органической химии. Потенциометрическое титрование основано на прямой пропорциональности между количеством вещества в титруемом растворе и объемом титрующего агента, необходимым для достижения точки эквивалентности (определяется либо потенциометрически, либо при помощи окислительно-восстановительного индикатора). Полярографические же определения основаны большей частью на пропорциональности между током электролиза и концентрацией деполяризатора в растворе. Несмотря на сходство химических основ обоих методов, их возможности и области применения несколько различны. Потенциометрия является без сомнения более точной как в отношении количественного анализа, так и для определения потенциалов (последнее отражается в более высокой точности физико-химических результатов, вычисленных из потенциометрических данных). Например, при потенциометрическом титровании точность определения обычно порядка около десятых долей процента, в полярографии — около 2—3%. Потенциалы измеряются с точностью 1 мв [c.260]

    Хлориды, бромиды и йодиды могут быть точно определены потенциометрическим титрованием нитратом серебра в присутствии большинства солей. Поэтому ионообменные методы не представляют большого интереса для определения этих анионов. Однако при микрохимических онределениях хлора, брома и иода в органических веществах, когда эти вещества сплавляются с NagOg и KNOg- axa-розой в присутствии большого избытка свободных щелочей, перед потенциометрическим титрованием галогенидов целесообразно удалить щелочные металлы с помощью катионита в Н-форме [87 ]. Эта операция полезна и в том случае, когда заключительное титрование производят перхлоратом ртути с дифенилкарбазидом в качестве индикатора [35]. [c.245]

    Для определения галогенидов в растворах, содержащих мешающие органические вещества, представляют интерес простые анионо-обменные методы. Типичным примером является определение хлора в сульфитном щелоке [117 ]. Хлор-ионы поглощают сильноосповным анионитом в КОд-форме. Мешающие неэлектролиты, нолиэлектро-литы и слабые кислоты оказываются в вытекающем растворе. После промывания водой хлор-ион извлекают из колонки с помощью 5 М раствора нитрата аммония. Ионы тиосульфата и политионата мешают потенциометрическому определению хлора с помощью нитрата серебра и поэтому должны быть перед титрованием удалены окислением перекисью водорода. [c.246]

    Ион Н+, появляющийся в результате протолиза, существует в воде в гидратированном состоянии, обычно обозначаемом формулой НзО+ или, что более вероятно, Н9О4. Активность этого иона, определяющая степень кислотности раствора, выражается в единицах pH. Значение pH раствора можно определять потенциометрическим или колориметрическим (спектрофотометрическим) методом с использованием кислотно-основных индикаторов (ср. разд. 4.8.4). Из многочисленных органических веществ, которые употребляются для приготовления буферных растворов с определенными значениями pH, в качестве так называемых первичных стандартов рекомендуются следующие  [c.399]

    Рейхерт, Мак-Нейт и Радел [2] сравнили данные потенциометрического титрования перекиси зодорода такими реагентами, как перманганат, соль Мора, тиосульфат, арсенит, двухлористое олово, треххлористый титан, сульфит и нитрит. Они считают, что наилучшие результаты при oKpauieinibix растворах, содержащих органические вещества, дает 1штрит, и описывают подробную методику применения последнего. [c.465]

    Соединения включения амилозы с органическими веществами не обладают свойствами, которые позволили бы наблюдать поста-дийно за их образованием в растворе. В противоположность этому образование соединений включения амилозы с иодом сопровождается интенсивным окрашиванием раствора в голубой цвет кроме того, изменение активности иода, находящегося в равновесии с комплексом в процессе его образования, может определяться электрометрически, т. е. по изменению потенциала электрода, опущенного в раствор, содержащий иод и иодид-ионы. Оба свойства этого комплекса можно уловить при очень низких концентрациях амилозы (0,01% и ниже), при которых комплекс остается в-растворе. Поэтому многие исследователи применяли спектрофотометрические и потенциометрические методы для определения состава комплекса, оценки константы равновесия и термодйнамических величин реакций образования, а также для изучения влияния на реакцию таких факторов, как структура и длина цепи полисахаридов, разветвленность цепи, концентрация соли и тепмература. [c.535]

    Советскими авторами разработаны специальные методы определения в воде и сточных водах индивидуальных органических соединений [0-13]. Методом спектрофотометрии по абсорбционным спектрам в видимой и ультрафиолетовой области (210—850 нм) определены в сточных водах стирол, а-метилстирол, дипроксид, лейканол, ацетофенон [75, 76]. Опубликована методика раздельного определения ароматических углеводородов в сточных водах методом газожидкостной хроматографии (в стоках коксохимического завода определены бензол, толуол, этилбензол, о-, м-, я-ксилолы) [77]. Описано определение в воде хлорор-ганических соединений четыреххлористого углерода, трихлорэтилена, тетрахлорэтана, гексахлорэтана, гексахлор бутадиена [78], бензола и изопропилбензола [79], определение в сточных водах методом газожидкостной хроматографии динитротолурлов, дифениламина, диэтилдифенилмочевины и дибутил-фталата [80], потенциометрическим методом — формальдегида и фенола [81] и др. [82, 83]. Методом газовой хроматографии в воде обнаружены нефть, парафин, бензолы, нафталины, хлорированные и нитрированные ароматические углеводороды [84], в сточных водах — о-дихлорбензол [85]. Альдегиды, кетоны, спирты, простые и сложные эфиры в концентрациях от 10 до 100 мг/л определяли методом газожидкостной хроматографии [86]. Методом газожидкостной хроматографии с пламенно-ионизационным детектором определили и идентифицировали 33 органических вещества, содержавшихся в сточных водах производства пиридина, хинолина и ароматических аминов. [c.14]

    Объемное определение галогенидов в большинстве случаев не вызывает затруднений, если растворы для титрования не окрашены и не мутные. Не всегда, однако, можно проводить даже потенциометрические определения приходится обращаться к весовым методам. Определение галогенов в органических веществах проводят до настоящего времени исключительно весовым методом по Ка-риусу. [c.60]

    К концу 50-х годов в полярографии органических соединений все чаще стали применяться вместо воды (водно-спиртовых смесей) в качестве растворителя высокополярные, апротонные неводные растворители (диметилформамид, ацетонитрил, диметилсульфоксид и др.). Сначала поводом для последних явилась ограниченная растворимость многих органических веществ в воде, а затем оказалось, что применение этих растворителей оправдано и тем, что вместо сложных многоэлектронных процессов в таких условиях протекают одноэлект-ронные, часто обратимые стадии. Это обстоятельство позволило электрохимическим методом получить и изучить большое число первичных свободных радикалов и ион-радикалов определенного строения, а именно, продуктов присоединения одного электрона к л-сопряженным системам. Плодотворной оказалась комбинация электрохимических методов со спектрометрией ЭПР при непосредственном проведении электрохимического процесса в резонаторе спектрометра ЭПР, впервые разработанная американскими исследователями Геске и Маки в 1960 г., Адамсом и др. Получение таких радикалов, расшифровка сверхтонкой структуры спектров ЭПР оказалось важным для квантовохимических расчетов сопряженных систем л-радикалов. Это обусловливает плодотворность применения полярографии для обнаружения таких свободно-радикальных частиц, как семихиноны, кетильные радикалы и т. д. Как известно, существование семихинонов впервые было постулировано Михаэлисом в 1934 г. по одноэлектронным скачкам на потенциометрических кривых, а впоследствии доказательством существования подобных радикалов стало наличие одноэлектронных ступеней на полярограммах определенных органических соединений. Для детекции и изучения стабильности таких свободных радикалов плодотворным оказался также метод вольт-амперометрии на висящей ртутной капле, предложенный для этой цели в 1958 г. польским химиком Кемулей. [c.138]

    Скворцов Н. ПМехрюшева л. и., Бузланова М. Потенциометрическое определение палладия в присутствии ионов металлов и органических веществ.— Завод. [c.166]


Смотреть страницы где упоминается термин Органические вещества потенциометрическое: [c.47]    [c.395]    [c.24]    [c.195]    [c.186]   
Аналитическая химия брома (1980) -- [ c.200 ]




ПОИСК





Смотрите так же термины и статьи:

потенциометрическое



© 2024 chem21.info Реклама на сайте