Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уксусная кислота диэлектрические свойства

    Поскольку уксусная кислота достаточно неудобна в работе, использование ее в качестве растворителя имеет смысл лишь тогда, когда это дает существенные преимущества по сравнению с другими, менее ядовитыми соединениями. В электрохимии ее применяли в трех различных областях кислотноосновном титровании, полярографии на КРЭ и как растворитель для реакции анодного ацето ксил про вания. К важнейшим свойствам растворителя, используемого при титровании, особенно при кулонометрической генерации титрованного раствора и потенциометрическом определении конца титрования, относятся диэлектрическая постоянная, кислотность и основность и константа ионного произведения. Уксусная кислота интересна в первую очередь своей кислотностью. По сравнению с другими кислотами, применение которых возможно для этих целей, например серной и муравьиной, уксусная кислота характеризуется лучшим сочетанием свойств. Ее диэлектрическая постоянная ниже, чем у этих двух кислот, но она не настолько мала, чтобы затруднить проведение электрохимических измерений. Хотя по кислотности уксусная кислота уступает указанным кислотам, все же она достаточно сильная кислота и способна титровать многие слабые основания. Уксусная кислота имеет намного меньшую константу автопротолиза (2,5 10 ) [2], благодаря чему она гораздо более удобная среда для титрования. [c.32]


    Полиамиды растворимы при комнатной температуре в фенолах, концентрированных минеральных кислотах, моно- и трихлор-уксусной кислоте, фторированных спиртах и некоторых других специфических растворителях. При нагревании они растворяются в ледяной уксусной кислоте, формалине, бензиловом спирте и этиленхлоргидрине, а при действии разбавленных минеральных кислот гидролизуются. Полиамиды устойчивы к холодным растворам слабых органических кислот, минеральным маслам, жи-, рам, щелочам, а также к воздействию микроорганизмов, плесени и моющих средств (например, мыла и щелочных препаратов). По прочности и стойкости к истиранию полиамидные волокна превосходят другие виды синтетических волокон, искусственные и натуральные волокна, но в мокром состоянии их прочность несколько уменьшается. Эластичность полиамидов исключительно высока полиамидные волокна и пленки могут без разрыва растягиваться на 400—600%. Полиамиды морозостойки (сохраняют эластичность при —50°С), обладают весьма высокими диэлектрическими и антифрикционными свойствами. [c.229]

    Формамид обладает необычной диэлектрической постоянной (110), существенно превосходящей диэлектрическую постоянную воды. Этот растворитель находится в жидком состоянии в удобной для работы области температур (2,5-193 °С) и имеет низкое давление паров при комнатной температуре. По вязкости он превосходит ДМФ (3,3 сП по сравнению с 0,80 сП для ДМФ). В отличие от ДМФ формамид лишь эпизодически применялся в качестве растворителя электролитов, причем область рабочих потенциалов в формамиде оказалась уже, чем в ДМФ. Более высокая диэлектрическая постоянная вообще не дает особых преимуществ формамиду перед ДМФ, так как диэлектрическая постоянная последнего также достаточно велика, чтобы обеспечить адекватную проводимость растворов. В основном с помощью формамида можно варьировать условия опыта путем изменения определенных свойств растворителя. Формамид - хороший растворитель для различных неорганических соединений, включая хлориды, нитраты и сульфаты ряда переходных и щелочноземельных металлов. Подобно воде, формамид растворяет более полярные органические соединения и смешивается с водой он очень гигроскопичен и легко гидролизуется с образованием уксусной кислоты и аммиака. Формамид использовался и качестве растворителя при полярографии на КРЭ некоторых переходных элементов и ряда органических соединений. [c.21]


    Эти величины, выраженные в логарифмических единицах и приведенные в последней графе таблицы, изменяются от 3,5 для уксусной кислоты до 0,8 для 2,6-динитрофенола. Это показывает, что различное влияние ацетона на силу кислот при переходе от смеси диоксана с водой (смешанный растворитель обладает химическими свойствами, близкими к воде, но диэлектрической проницаемостью ацетона) определяется прежде всего отличием в энергии сольватации (взаимодействия) анионов кислот с дипольными [c.338]

    Ослабление силы кислот в уксусной кислоте обусловлено не только ее малой основностью, но и ее низкой диэлектрической проницаемостью. На это указывает то обстоятельство, что сила бромистоводородной кислоты больше, чем хлористоводородной, а также и то, что в муравьиной кислоте (диэлектрическая проницаемость равна 57), несмотря на ее еще более сильные протогенные свойства, галогеноводородные кислоты сильно ионизированы, даже при малых разбавлениях. В муравьиной кислоте, как в кислом растворителе, сильно диссоциированы также слабые основания. На такую роль диэлектрической проницаемости указывает близость констант диссоциации кислот, оснований и солей в уксусной кислоте (табл. 25). [c.280]

    Было показано, что взаимодействия ион — растворитель и ион — ион меняются в широких пределах при переходе от одного растворителя к другому. Качественно можно предсказать, в каком направлении будут изменяться некоторые свойства растворенного вещества при изменении диэлектрической проницаемости растворителя. Например, можно ожидать, тo константа ионизации слабой кислоты будет уменьшаться при уменьшении е растворителя. Это подтверждается на примере константы ионизации уксусной кислоты в воде и безводном этаноле. В воде, для которой диэлектрическая проницаемость 78,5, константа ионизации уксусной кислоты 1,75-10 , а в этаноле (е = 24,2) она падает до 2.10- . [c.367]

    Муравьиная кислота, несмотря на более сильные протогенные свойства по сравнению с уксусной кислотой, почти не ослабляет силу минеральных кислот, так как обладает высокой диэлектрической проницаемостью. [c.405]

    В среде уксусной кислоты число веществ, проявляющих кислотные свойства, уменьшается так, карбоновые кислоты в среде уксусной кислоты не проявляют кислых свойств, сильные же в воде кислоты становятся слабыми [1, 59] (р/(а = 3—11). Ослабление силы кислот в уксусной кислоте обусловлено не только ее малой основностью, но и низкой диэлектрической проницаемостью (е = 6,13). [c.26]

    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    Хотя ангидрид уксусной кислоты, несомненно, является неприятным растворителем, все же он обладает рядом интересных свойств. Его диэлектрическая постоянная (20,7) достаточно велика, чтобы относительно легко проводить электрохимические измерения. Ангидрид находится в жидком состоянии в удобной для работы, области температур (от -73,0 до +140,0 °С). Однако гораздо важнее то, что он дает возможность работать в необычайно широкой области потенциалов. Использовался при кулонометрическом титровании слабых оснований [1, 2] и полярографии катионов [3  [c.34]

    Влияние диэлектрической проницаемости на дифференцирующие свойства растворителей можно проследить и при рассмотрении диссоциации кислот в основных растворителях. Так, гидразин (е = 52) нивелирует силу кислот, а пиридин (,е=12,5) оказывает дифференцирующее действие. Сила кислот и соотношение в их силе в пиридине близки к силе и соотношению в уксусной кислоте, что подтверждает вывод о том, что влияние этих растворителей в значительной степени обусловлено их низкой диэлектрической проницаемостью. [c.34]


    Выразительной иллюстрацией влияния растворителя на силу электролита может служить рис. 1, г, на котором изображена зависимость константы диссоциации от ДП растворителя. Отметим прежде всего, что прямолинейность зависимости логарифма константы равновесия от обратной диэлектрической проницаемости соблюдается в исключительно широком интервале значений ДП — от 6 до 187 (187— это диэлектрическая проницаемость одного из чемпионов по значению этого свойства — метилацетамида). Но в данном случае не это самое примечательное. Знакомясь с экспликацией к рис. 1, г с перечнем растворителей, обращаем внимание на их чрезвычайно сильное химическое разнообразие. В самом деле, на одной прямой мирно уживаются высокоосновные растворители (например, пиридин) с сильнокислотными (уксусная кислота) слабоактивный пропиленкарбонат соседствует с химически активным диметилсульфоксидом и т. д. [c.54]

    Следует также отметить, что прп сравнительно небольших избытках спирта (до 50—100% по сравнению со стехпометрическнм) свойства реакционной среды — полярность, диэлектрическая проницаемость, pH и др. по мере углубления процесса, особенно на его первых стадиях, резко изменяются, что оказывает влияние на реакционную способность реагентов, которая может несколько увеличиться. Это обстоятельство учитывается вводом в кинетическое урагление коэффициента ускорения [125]. Ускорение (индукционный период) этерификации отмечено при изучении взаимодействия фталевого ангидрида с 2-этилгексанолом [125, 126], лаури-ловой и адипиновой кислот с лауриловым спиртом [121], уксусной кислоты с бутанолом [118], а также этанола и метанола с молочной кислотой [117, 123]. [c.35]

    Величина диэлектрической проницаемости растворителей также оказывает существенное влияние на их дифференцирующее действие. Проследить влияние диэлектрической проницаемости на дифференцирующие свойства растворителей особенно отчетливо можно, сравнивая растворители с близкими кислотно-основными свойствами. Например, протогенные растворители — муравьиная и уксусная кислоты — значительно различаются величинами диэлектрической проницаемости (муравьиная кислота — 57, уксусная кислота — 6). Это различие сказывается на увеличении дифференцирующих свойств уксусной кислоты по сравнению с муравьиной. [c.33]

    Эти величины, выраженные в логарифмических единицах и приведенные в последней графе таблицы, изменяются от 3,5 для уксусной кислоты до 0,8 для 2, (3-ди нитрофенол а. Это показывает, что различное влияние ацетона на силу кислот при переходе от смеси диоксана с водой (смешанный растворитель обладает химическими свойствами, близкими к воде, но диэлектрической проницаемостью ацетона) определяется прежде всего отличием в энергии сольватации (взаимодействия) анионов кислот с дипольными молекулами растворителя, так как катион у всех кислот один и тот же. В связи с ранее сказанным следует заметить, что член [c.384]

    Больший интерес представляет связь Ь со свойствами растворителя. Электростатические взаимодействия между реагирующими молекулами и между реагентами и растворителем сильно зависят от диэлектрической проницаемости среды. Из табл. 6.6 видно, что в общем Ь растет с увеличением диэлектрической проницаемости среды. Имеется несколько исключений, наиболее ярко выраженным из которых является уксусная кислота. Значения Ь также возрастают, по мере того как основность растворителей падает, а кислотность возрастает. Анилин, уксусная кислота и муравьиная кислота обладают более кислым характером по сравнению с их ближайшими соседями. Этим можно объяснить, что они имеют большее значение Ь, чем это следует из сопоставления диэлектрических констант. С увеличением содержания воды в растворителе Ь увеличивается. Поскольку Ь является функцией логарифмов [c.187]

    Рассматривая зависимость дифференцирующего действия растворителей одновременно от кислотно-основных свойств растворителя и величины диэлектрической проницаемости, можно сказать, что в одних случаях наибольшее значение имеют кислотно-основные свойства растворителя, а в других—величина диэлектрической проницаемости. Например, высокие дифференцирующие свойства ацетонитрила обусловлены его малыми кислотно-основными свойствами, так как его диэлектрическая проницаемость относительно вел ика (е = 37,5). То же можно сказать и о дифференцирующем действии формамида (е=105) в отношении кислот, а также нитро-метана (е = 35,9) и нитробензола (е = 34,8) в отношении оснований [27]. С другой стороны, как было показано, дифференцирующее действие уксусной кислоты и пиридина, являющихся растворителями с ярко выраженными протогенными и протофильными свойствами, соответственно обусловлено низкими значениями диэлектрической проницаемости. [c.34]

    Поскольку уксусная кислота достаточно неудобна в работе, использование ее в качестве растворителя имеет смысл лишь тогда, когда это дает существенные преимущества по сравнению с другими, менее ядовитыми соединениями. В электрохимии ее применяли в трех различных областях кислотно-основном титровании, полярографии на КРЭ и как растворитель для реакции анодного ацетоксилирования. К важнейшим свойствам растворителя, используемого при титровании, особенно при кулонометрической генерации титрованного раствора и потенциометрическом определении конца титрования, относятся диэлектрическая постоянная, кислотность и основность и константа ионного произведения. Уксусная кислота интересна в первую [c.49]

    Хотя ангидрид уксусной кислоты, несомненно, является неприятным растворителем, все же он обладает рядом интересных свойств. Его диэлектрическая постоянная (20,7) достаточно велика, чтобы относительно легко проводить электрохимические измерения. Ангидрид находится в жидком состоянии в удобной [c.51]

    Амиды обладают достаточно сильными основными свойствами для того, чтобы их можно было титровать сильными кислотами в ледяной уксусной кислоте в качестве растворителя. Исторически этот прием сыграл важную роль в подтверждении теории кислот Бренстеда — Лоури, а практически это удобный аналитический метод определения констант большого числа амидов самого разнообразного строения. Так, нет другого такого класса слабых оснований, для которого мы имели бы так много данных, как для алифатических амидов. За несколькими исключениями, значения рКа ДЛЯ одних И тех же амидов, взятые из совершенно разных источников, согласуются в пределах одного порядка или даже точнее. Большое значение имеют серии параллельных измерений основности в воде и уксусной кислоте Достаточно хорошее совпадение результатов в этих двух растворителях позволяет прямо приводить значения рКа, полученные в уксусной кислоте, к шкале pH — Но. Наиболее неудачным было определение основности формамида, но предполагая, что расхождение обусловлено сольватацией, расхождение можно объяснить чрезвычайно высокой диэлектрической [c.231]

    Взаимосвязь эффекта поглощения с диэлектрическими свойствами жидкой среды может быть проверена экспериментально и количественно оценена путем измерения поглощения полимерными пленками смесей (растворов) жидкостей - поглощающихся и непоглошающихся. Наиболее удобными системами для количественных оценок являются водные растворы диоксана и уксусной кислоты, диэлектрические свойства которых изменяются в широких пределах и описаны в справочной литературе [72]. Зависимость поглощения водного раствора 54 [c.54]

    Диэлектрическая проницаемость уксусной кислоты равна 6.1. Следовательно, диссоциация сильных кислот должна ослабляться при переходе от водных растворов к растворам в уксусной кислоте. Протогенные свойства уксусной кислоты как растворителя также должны обусловливать ослабление диссоциации кислот. Но из приведенных данных видно, что кроме ослабления диссоциации происходит также дифференциация силы кислот. В уксусной кислоте разность значений р/С H IO4 и HNO3 составляет 3,6, т. е. эти кислоты различаются по способности к диссоциации приблизительно в 65 раз. [c.94]

    Классификация растворителей вытекает из свойств водородных соединений метан — инертный растворитель (и все углеводороды), аммиак — основной, вода — амфотерный, фтороводород — кислый. Важнейшая характеристика растворителей — их диэлектрическая проницаемость. По ее величине все растворители располагаются в элю-отропный ряд Цвета — Траппе. Этот ряд связан с полярностью и сор-бируемостью веществ ( 24, 45, 173). Меняя химический состав растворителя, можно изменять силу растворенных в нем кислот и оснований и преврашать соли в кислоты или основания. Например, мочевина Нз —СО—1 Н2 проявляет в жидком аммиаке кислотные свойства, в безводной уксусной кислоте — сильные основные, в водном растворе — слабые основные. [c.50]

    В отличие от углеводородных растворителей, в которых катализатор образует высокомолекулярные ассоциаты и теря ет активность [111, 112], уксусная кислота, обладаюш,ая высокими диэлектрическими свойствами и способностью сольвати-Ровать катализатор полярными молекулами, поддерживает его активную форму на всех последовательных элементарных актах окислительных превращ,ений диалкилбензолов до фталевых кислот с высоким выходом последних [113, 114]. [c.35]

    Тщательное исследование Кольтгофа и Брукенщтейна [39—42] показало, что кислотно-основные свойства в ледяной уксусной кислоте могут быть поняты только с помощью представлений об ионизации растворенного вещества и ассоциации образующихся ионов в ионные пары, а также в триплеты и квадруплеты. Константа ионизации кислоты или основания в уксусной кислоте (с учетом образования ионных пар) позволяет получить значительно более полезные выражения для силы кислоты или основания, чем это дает простая константа диссоциации . Диэлектрическая проницаемость ледяной уксусной кислоты мала (6,13 при 25° С) даже сильные электролиты имеют константы диссоциации меньше 10 [41, 43—45]. Для наиболее сильной (хлорной) кислоты в ледяной уксусной кислоте Брукенштейн и Кольтгоф нашли р/С равными 4,87 в то время как для соляной кислоты рК равно 8,55. Поэтому в таких растворах имеется немного ионов эффектом ионной силы (солевой эффект) можно пренебречь. Сложность равновесий в ледяной уксусной кислоте подтверждается тем, что индикаторные основания колориметрически отзываются на ассоциированную форму (ионные пары) кислоты, а не на активность протона. Кажущаяся сила кислоты зависит от выбранного индикаторного основания, и эта величина может отличаться от значения, найденного потенциомет-рически. [c.198]

    Ведь было показано, что аналогичные ей функции Я для анионооснований и Н+ для катионооснований не отражают свойств растворителя, а скорее зависят от природы эталонного основания. В уравнении (4-79) величины / можно рассматривать как коэффициенты активности в обычном смысле только в случае, если растворитель водный, так как за стандартное состояние иона водорода в воде принята активность, равцая единице.. Если свойства растворителя заметно отличаются от свойств воды, величины / следует рассматривать как коэффициенты распределения в этом случае рекомендуется пользоваться уравнением (4-25). Если В — молекулярное основание, то соотношение РН+-РВ/РВН+ в первом приближении не должно зависеть от диэлектрической проницаемости [см. уравнение (4-28)] до тех пор пока соли катиона ВН+ полностью диссоциированы. В растворителях с очень низкой диэлектрической проницаемостью, таких, как ледяная уксусная кислота 2 , ассоциация ионов настолько велика, что величина Но оказывается зависящей от природы эталонного основания. [c.101]

    Для электролиза неорганических соединений пригодно значительно меньше растворителей, чем для электролиза органических соединений, поскольку при этом возникают трудности, связанные с растворимостью. Для этой цели, как правило, подходят лишь растворители с довольно высокой диэлектрической проницаемостью нитрилы с низким молекулярным весом, амиды, сульфоксиды, сульфоны и карбонаты. Однако если растворитель специфически взаимодействует с неорганическим ионом, то полезные результаты могут быть получены даже при электролизе в растворителе с совсем низкой диэлектрической проницаемостью. К таким растворителям относятся уксусная кислота, пиридин, аммиак и этилендиамин. Общие сведения, касающиеся свойств и использования растворителей, фоновых электролитов и электродов сравнения, приведены в работах Такагаши [1], Манна [2] и Батлера [3]. [c.404]

    Другой причиной синергического эффекта является образование маслорастворимыми ПАВ так называемых смешанных мицелл с включением в состав мицелл молекул поляризующих или деполяризующих соединений [18]. Роль таких добавок могут выполнять спирты, кетоны, простые и сложные эфиры, амины, жирные кислоты разного строения, уксусная кислота, а также твердые частички — наполнители-сегнетоэлектрики (нитрит натрия), ферромагнетики (микрочастички железа, никеля, кобальта), наполнители (микрокальцит, микродоломит и пр.) [18]. Регулируя объемные свойства маслорастворимых ПАВ, число их агрегации, критическую концентрацию мицеллообразования за счет промежуточных поляризующих соединений (вода, легкие спирты и эфиры, фенолы) и поляризующих соединений (указанных выше добавок), можно повышать до оптимальных значений поверхностную активность комбинированных продуктов, их диэлектрическую проницаемость и электрическую проводимость и добиваться улучшения поверхностных, в частности защитных свойств. Еще более ощутимые результаты получаются, когда наряду с промежуточными поляризующими и поляризующими соединениями используется внешняя поляризация мощными акустическими, электрическими, магнитными или электромагнитными полями — процесс Электромаг [18, 120—122]. [c.137]

    По своим свойствам растворители сильно различаются. Поэтому для тех растворителей, амфотерность которых гораздо слабее, чем у воды, выражение кислотно-основных возможностей в этих простых терминах может иметь ограниченную ценность. Например, закономерности, установленные для водных растворов, могут оказаться слабо выраженными или совсем не выполняться в других растворителях. В отсутствие хорощо выраженной самодиссоциации растворителя некоторые основные компоненты раствора могут взаимодействовать с данной кислотой по-разному, что приводит к крайне специфическому поведению, которое не может быть отражено с помощью лищь одной шкалы измерений. Растворители с диэлектрическими постоянными значительно меньшими, чем у воды, благоприятствуют ассоциации противоположно заряженных ионов, что также приводит к отклонению от поведения, ожидаемого на основе кислотно-основного равновесия в воде. Эти сложности поведения хорошо иллюстрируются данными, полученными для ледяной уксусной кислоты — растворителя с диэлектрической постоянной, близкой к 6 при 20 °С [7, 8]. [c.309]

    Аналогично силоксановому каучуку, сополимеры этилена и винилацетата и сополимеры этилена с пропиленом также вз лкани-зуются лучами высокой энергии. Физико-механические и диэлектрические свойства изделий, полученных из полимеров, вулканизованных перекисями (стр. 261) и излучением высокой энергии, в основном совпадают. И здесь особо важное значение имеет отсутствие продуктов разложения перекисей, что позволяет применять эти продукты в областях, в которых предъявляются особенно высокие требования с физиологической точки зрения. При облучении сополимеров этилена и винилацетата может произойти отщепление лишь следов уксусной кислоты по тому же механизму, по которому образуется метан в силоксановом каучуке [уравнения (373) и (374)]. [c.376]


Смотреть страницы где упоминается термин Уксусная кислота диэлектрические свойства: [c.102]    [c.91]    [c.405]    [c.101]    [c.640]    [c.162]    [c.101]    [c.50]    [c.243]   
Водородная связь (1964) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрические свойства

Кислоты свойства

Уксусная кислота физ. свойства



© 2025 chem21.info Реклама на сайте