Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение в хроматографии с программированием температуры

    ПХБ или их концентрация существенно (более чем на порядок) ниже. Обычно разделение ХОП на капиллярных колонках проводят в режиме ступенчатого линейного программирования температуры колонки от 40 до 250-300 °С со скоростью нагрева 2-3 С/мин. Шоке излагаются основные принципы, метрологические и технические характеристики методик определения ХОС с помощью капиллярной газовой хроматографии. Более подробно описание этих вопросов дано в работах [34-37]. [c.258]


    В жидкостной хроматографии температура оказывает значительно меньшее действие, чем в газовой. В большинстве случаев анализ в ЖАХ проводят при комнатной температуре. Повышенные температуры применяют для увеличения скорости анализа, улучшения растворимости анализируемых веществ, а также в отдельных случаях для улучшения разделения. Программирование температуры применяют редко. [c.84]

    В гл. I при рассмотрении влияния температуры на хроматографический процесс было показано, что наряду с изотермическим процессом для разделения смеси трудноразделяемых веществ целесообразно применение метода хроматермографии. Здесь мы рассмотрим наиболее часто применяющийся в газо-жидкостной хроматографии метод температурного воздействия на хроматографический процесс-метод программирования температуры. [c.183]

    Поэтому для разделения смеси веществ, кипящих в широком интервале температур, существуют специальные способы, например применение нескольких колонок, каждая из которых работает в условиях, оптимальных для какой-то одной более или менее узкой, фракции пробы. Однако наиболее удачным оказался способ изменения температуры колонки во времени по определенной программе. Этот способ получил название газовой хроматографии с программированием температуры. [c.85]

    Перечисленные особенности хроматографии с программированием температуры делают этот метод весьма эффективным для разделения и анализа сложных смесей. Однако следует иметь в виду, что возможности выбора неподвижных жидких фаз в хроматографии с программированием температуры ограничены, так как сравнительно небольшое число неподвижных жидких фаз имеет удовлетворительную термическую стабильность при тех высоких температурах, которые приходится применять при программировании. [c.90]

    Р А Б О Т А 33. РАЗДЕЛЕНИЕ И АНАЛИЗ СМЕСЕЙ ЖИДКОСТЕЙ НА ХРОМАТОГРАФЕ ЦВЕТ-2-65 В РЕЖИМЕ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ТЕМПЕРАТУРЫ [c.243]

    При разделении смесей веществ, кипящих в широком температурном интервале, возникают трудности, связанные с тем, что пики низкокипящих веществ группируются в начале хроматограммы, в то время как пики высококипящих веществ могут оказаться чрезмерно размытыми, а время анализа излишне большим. Использование газовой хроматографии с программированием температуры позволяет успешно разделять сложные смеси веществ и существенно расширять возможности хроматографического анализа. Если процесс начинается при низких температурах, сорбируемость большинства компонентов велика, а скорость движения зон, занимаемых ими на сорбенте, мала. По мере роста температуры вследствие уменьшения сорбируемости [c.350]


    Ради полноты картины следует упомянуть о некоторых неизотермических методах, основанных на использовании термических эффектов, различным образом воздействующих на разделение. Развитие этих вариантов, обладающих довольно существенными недостатками, относится к периоду, когда применялась преимущественно газоадсорбционная хроматография. Вследствие ограниченности выбора сорбентов приходилось добиваться известных эффектов разделения, изменяя термические условия опыта. Газожидкостная хроматография, осуществляемая в изотермических условиях или с программированием температуры и позволяющая широко варьировать как неподвижные фазы, так и условия опыта, имеет в настоящее время несомненное преимущество перед этими методами. [c.423]

    Хроматограф, на котором можно осуществить такое разделение, представляет собой довольно сложный прибор, по крайней мере по сравнению с лабораторной ректификационной колонной обычного типа. Для разделения смеси, содержащей компоненты с сильно различающейся летучестью, требуются сложные многоступенчатые газовые хроматографы или приборы с программированием температуры термостата. Поэтому при современном уровне развития техники целесообразно начинать фракционирование с тщательной разгонки на колонке, а полученные фракции с узким интервалом температур кипения затем анализировать или разделять посредством газо-жидкостной хроматографии. Таким образом, оптимальным вариантом можно считать комбинирование обоих методов. [c.217]

    Джонс [38] разделил сложную газовую смесь (На, Оз, N3, СО, СО-2, НаЗ, ННз, Н2О, углеводороды С —С5) на порапаке Q, применив двух колоночный хроматограф. Одна колонка, заполненная порапаком Q, находилась ири температуре сухого льда, и в ней разделялись азот, кислород, окись углерода, а вторая (с тем же сорбентом) — при комнатной температуре, и в ней происходило разделение метана и углекислого газа последующее программирование температуры от комнатной до 125° С позволило разделить все остальные компоненты. Наблюдалась линейная зависимость между парциальными давлениями компонентов и площадью соответствующих пиков на хроматограмме. При анализе не требовалось никакой предварительной обработки газовой смеси для удаления кислых и коррозионных газов. [c.110]

    Среди рассмотренных методов концентрирования наиболее перспективным является метод, основанный на использовании колонки с пористыми полимерными сорбентами в качестве колонки-ловушки при комнатной температуре. При пропускании воздуха через колонку-ловушку, содержащую полимерные сорбенты, органические вещества, находящиеся в воздухе, удерживаются и накапливаются иа колонке, а вода — нет, т. е. эти колонки действуют как газохроматографические колонки, работающие при комнатной температуре, а исследуемый воздух является газом-носителем. Затем эти колонки-ловушки вставляют в газовый хроматограф, и они становятся верхней частью аналитической колонки или вставкой в испаритель. При быстром программировании температуры происходит десорбция накопленных компонентов и их газохроматографическое разделение. [c.119]

Фиг. 68. Влияние температуры на разделение, игх — изотермическая газовая хроматография температура постоянная. ТГХ—газовая хроматография с программированием температуры температура увеличивается от Тд до Т. В обоих случаях смесь делится иа 6 пиков. Фиг. 68. <a href="/info/15368">Влияние температуры</a> на разделение, игх — <a href="/info/140933">изотермическая газовая хроматография</a> <a href="/info/48639">температура постоянная</a>. ТГХ—<a href="/info/5704">газовая хроматография</a> с <a href="/info/39298">программированием температуры температура</a> увеличивается от Тд до Т. В обоих случаях смесь делится иа 6 пиков.
    Разделения с помощью жидкостной хроматографии в больщинстве случаев проводят при комнатной температуре, реже (например, при хроматографии синтетических полимеров) используют нагревание, причем обычно не выше 100 °С. Для термостатирования часто применяют водяные термостаты. В современных жидкостных хроматографах используют обычно воздущное термостатирование с открытым нагревателем и быстрым принудительным перемешиванием. Чтобы исключить при этом опасность взрыва в случае негерметичности жидкостных систем хроматографа, через термостат иногда продувают поток инертного газа (азота или аргона). Программирование температуры колонки в жидкостной хроматографии так же эффективно, как и в газовой. [c.318]

    Это уравнение показывает, что разделение есть функция ilG и что минимальный возможный градиент температуры дает максимальное разделение до тех пор, пока в этот градиент входят характеристические температуры анализируемых веществ. Градиент выражается отношением (Г — Tg)IL, которое показывает, что можно улучшить разделение в степени, пропорциональной L (что подтверждается опытом работы в изотермических условиях). Как и в случае газовой хроматографии с программированием температуры, рассматриваемой ниже, наилучшее разделение получается при изотермическом процессе. Хроматермография является еще относительно новым методом, который, несомненно, будет широко изучаться, так как обеспечивает экономию времени в тех случаях, когда точность разделения имеет второстепенное значение. [c.344]


Рис. ХУ-12. Разделение в газовой хроматографии с программированием температуры как функция величины т/Лд. Рис. ХУ-12. Разделение в <a href="/info/5704">газовой хроматографии</a> с <a href="/info/19367">программированием температуры</a> как функция величины т/Лд.
    В настоящее время возникла целая дисциплина, включающая теорию (теория разделения, оценка работы прибора, выбор параметров, теория основных узлов, теория регулирования и т. д.) и методические вопросы (дозировка, детектирование, программирование температуры и т. д.). Правильный выбор элементов хроматографии, осуществление анализа, а также использование газовой хроматографии в комплексной автоматизации невозможны без знания теории и методик газовой хроматографии. [c.3]

    Градиентное элюирование в жидкостной хроматографии играет такую же роль, что и программирование температуры в газовой хроматографии. Основное назначение обоих способов — получение хорошего разделения за возможно более короткое время, при этом форма (и ширина) пиков практически одинакова на всем протяжении разделения при правильном выборе градиента. Состав растворителя и форму градиента подбирают в соответствии с поставленной задачей и составом разделяемого образца. [c.40]

    Мы уже видели, что в сверхкритической хроматографии давление оказывает большое влияние на коэффициент распределения а, значит, и на время элюирования соединений. Увеличение давления уменьшает коэффициент распределения и время элюирования. Это влияние особенно заметно вблизи критического давления. Для разделения смесей с широкой областью температур кипения полезно использовать способ программирования давления. Полагаем, что этот эффект сравним с эффектом программирования температуры в обычной газовой хроматографии. [c.78]

    Программирование температуры колонки в процессе хроматографического разделения предложено в 1952 году [7]. Программирование температуры —обычно повышение температуры колонки во времени с определенной скоростью используют для сокращения времени разделения сложных смесей, температуры кипения компонентов которой сильно различаются. Разделение таких сложных смесей на одной колонке за приемлемое время в большинстве случаев невозможно, даже если селективность позволяет разделить всю смесь. Чтобы разделить низкокипящие компоненты, нужно использовать более низкую температуру, однако при этой температуре времена удерживания высококипящих компонентов будут настолько велики, что элюировать их из колонки за приемлемое время не удается. Если использовать более высокую температуру, при которой бы высококипящие компоненты элюировали за доступное время, то при этой достаточно высокой температуре не будут разделяться низкокипящие компоненты (рис. 11,2). Такие смеси в изотермическом режиме можно будет разделить только в 2—3 приема при разных температурах или же одновременно на двухтрех разных колонках на разных хроматографах. [c.76]

    Проявительный анализ можно проводить как при постоянной температуре (изотермическая хроматография), так и при изменении температуры сорбента в процессе анализа по заданной программе (хроматография с программированием температуры). В последнем случае изменяется сорбционная емкость сорбента. Если в ходе разделения температура увеличивается, то высококипящие компоненты элюируются при более высоких [c.26]

    Большую роль в повышении эффективности фракционирования слоншых смесей сыграло создание жидкостной хроматографии высокого давления (ЖХВД). Высокая скорость разделения, возмож ность реализации любого из отмеченных выше механизмов сорбции, применимость для разделения любых растворимых в элюенте соединений, независимо от их молекулярной массы, возможность непрерывного контроля элюирования с помош ью высокочувствительных детекторов, управления процессом разделения путем программирования температуры, скорости потока и состава элю-ента, автоматическая регистрация результатов обеспетали широчайшее распространение ШХВД для решения препаративных задач, количественного анализа и идентификации компонентов анализируемых смесей [109, 111, 122 и др.]. [c.17]

    Гликоли, выделенные из фракций спиртов С —G g (получены восстановлением метиловых эфиров СЖК), представлены по данным анализа методом газо-жидкостной хроматографии [247 ] двумя основными группами — первично-первичными (Сд—С ,) и первичновторичными (С4—С] з) с максимумом содержания в области j-g— jg. В связи с наличием в каждой из групп большого числа изомеров по положению гидроксильной группы и щирокого интервала изменения числа атомов углерода в цепи гликолей на газо-жидкостных хроматограммах получают недостаточно четкое разделение отдельных пиков. Приведенные в работе [247 [ условия изотермического (при 150 и 220 °С) газо-жидкостного разделения экстрагированных из зоны гликолей отдельно нцзко- и высокомолекулярной частей на двух жидких фазах различной по41ярности недостаточно эффективны не только для изучения компонентного, но и определения фракционного состава гликолей. Для этих целей следует рекомендовать газо-жидкостное хроматографическое разделение с программированием температуры, а также предварительный перевод гликолей в их производные. [c.105]

    Верзел [13] показал, что при использовании длинных и узких колонок и проб препаративного размера изменения типа газа-но-сителя, типа и количества жидкой фазы, а также размера частиц насадки вызывают небольшие изменения в эффективности. Поэтому с точки зрения материальных затрат в таких колонках выгодно использовать дешевые газ-носитель и материал насадки и небольшие количества жидкой фазы. Насадка крупного зернения не только дешевле, но и позволяет использовать меньший перепад давлений на колонке. То, что узкие колонки требуют меньших по абсолютной величине скоростей газового потока, позволяет несколько увеличить как эффективность колонки, так и эффективность улавливания разделенных компонентов. Малая скорость газового потока облегчает конденсацию разделенных веществ и уменьшает потери, связанные с увлечением их потоком газа-носи-теля и выдуванием из охлаждаемой ловушки. Важность программирования температуры колонки в аналитической хроматографии уже была показана так же важно оно и в препаративной хроматографии. Программирование температуры увеличивает емкость колонки, уменьшает продолжительность разделения и часто позволяет увеличить величину коэффициента селективности. Программирование температуры и равномерный профиль скоростей газового потока в длинных и узких колонках обеспечить нетрудно. Узкая колонка прогревается быстро и равномерно. Это значительно улучшает воспроизводимость основных параметров разделения при повторении циклов. [c.101]

    Каусс с сотрудниками сконструировали полностью авто.матизированный препаративный газовый хроматограф, обеспечивающий разделение при программировании температуры, которое в последнее время находит широкое применение в хроматографии . [c.69]

    Реже применяется газоадсорбционная хроматография — для разделения отдельных групп жидких углеводородов. Так, крупнопо-ристые боросиликатные стекла (размер пор 3—5 нм) обеспечивают хорошее разделение алканов Се—Сю, а также смеси бензола, толуола, этилбензола и кумола [55]. На цеолитах типа X циклоалканы элюируются раньше алканов с тем же числом углеродных атомов, что было использовано для анализа деароматизированной бензиновой фракции методом газоадсорбционной хроматографии с программированием температуры в пределах от 200 до 450 °С [[56]. [c.116]

    Газовая хроматография с программированием температуры (ГХПТ) представляет собой единственный метод достижения оптимальных условий разделения почти любой сложной смеси, выкипающей в широком интервале температур. Температура колонки, при которой пик достигает максимума, называется температурой удерживания. Приближенно определить скорость программирования температуры для данной конкретной смеси можно из значений удерживаемых объемов веществ в рассматриваемой температурной области. Мы предлагаем следующий упрощенный метод определения режима программирования температуры. [c.152]

    Как правило, с уменьшением температуры разделение компонентов увеличивается, однако одновременно увеличивается продолжительность анализа. Поэтому, если нет возможности увеличить температуру, можно уменьшить количество НФ. В любом случае температура в колонке должна обеспечивать нахождение анализируемых компонентов в газовой фазе. Разделение смесей, кипящих в широком интервале температур, в изотермическом режиме весьма затруднительно. Компоненты, обладающие низким сродством к сорбенту, при высокой температуре быстро выйдут из колонки неразделенными, в то время как при низкой температуре компоненты с большим временем удерживания могут не выйти совсем. Для оптимизации анализа в этом случае часто применяют программирование температуры. Изменять температуру колонки в процессе анализа можно различным образом ступенчато, непрерывно, линейно или по какой-либо сложной зависимости. В современных газовых хроматографах для этой цели служат специальные устройства (программаторы температуры), управляющие температурным режимом в колонке во время анализа. При хроматографировании сложной смеси часто применяют линейное программирование. В этом случае задают постоянную скорость возрастания температуры (наприм ер, от 100 до 200 °С со скоростью 2°С/мин). При низких температурах из колонки выходят зоны слабо сорбирующихся компонентов, за которыми следуют зоны веществ со все возрастающим сродством к сорбенту. [c.625]

    Для разделения смеси соединений, характеризующихся широким интервалом т-р кипения, применяют газовую хроматографию с программированием температуры, когда в процессе хроматографирования в заданные промежутки времени повышают т-ру колонки со скоростью от неск. °С/мин до неск. десятков С/мин. Это создает дополнит, возможности расширения области применения ГХ (сравни хроматограммы иа рис.). Для улучшения разделения таких смесей используют также программирование скорости газового потока. При давл. 0,1-2,5 МПа роль газа-носителя сводится в осн. к перемещению исследуемых соед. вдоль колонки. Повышение давления приводит к изменению распределения в-в между подвижной и неподвижной фазами хроматографич. подвижность многих в-в увеличивается. ГХ при давлениях газа 10-50 МПа обладает рядом преимуществ по сравнению с жидкостной хроматографией 1) возможностью целенаправленного изменения объемов удерживания разделяемых соед. путем изменения давления в ширюких пределах 2) экспрессностью анализа вследствие меиьшей вязкости подвижной фазы и большего значения коэф. диффузии 3) возможностью использования универсальных высокочувствит. детекторов. Однако сложность аппаратуры и техники работы при повыш. давлении ограничивает широкое распространение этого метода. [c.468]

    Хроматография с программированием температуры - элюснт-ная хроматография, при которой температуру козюнки в процессе разделения компонентов изменяют по заданному закону. [c.35]

Рис. 8-23. Разделение стандартной смеси нротивоэнилентических лекарственных средств (0,1 мг/мл хлороформа) нри непосредственном вводе пробы в колонку. Условия анализа колонка 10м х 0,53 мм, газовый хроматограф НР 5880 А, газ-носитель азот (4 мл/мии) режим программирования температуры термостата от 100 до 200 С со скоростью 10 град/мин, выдержка при конечной температуре в течение 16 мин детектор ПИД. Рис. 8-23. <a href="/info/305126">Разделение стандартной</a> смеси нротивоэнилентических <a href="/info/199780">лекарственных средств</a> (0,1 мг/мл хлороформа) нри <a href="/info/1020869">непосредственном вводе пробы</a> в колонку. <a href="/info/40380">Условия анализа</a> колонка 10м х 0,53 мм, <//2,65 мкм <a href="/info/5704">газовый хроматограф</a> НР 5880 А, газ-<a href="/info/522275">носитель азот</a> (4 мл/мии) <a href="/info/740163">режим программирования</a> <a href="/info/1020959">температуры термостата</a> от 100 до 200 С со скоростью 10 град/мин, выдержка при <a href="/info/1443833">конечной температуре</a> в течение 16 мин детектор ПИД.
    Отделение галлия от А1, Ве, In, Т1 в виде их трифторацетил-ацетонатов может быть осуществлено методом газо-жидкостной хроматографии [1127, 1307]. Для разделения смесей комплексов применен хроматограф фирмы F M (модель 500) с катаромет-ром в качестве детектора и гелий в качестве газа-носителя. Колонки заполняют стеклянными бусинками (60—80 меш) или хромосорбом W , содержащим силиконовое масло 710 как неподвижную фазу. В изотермическом режиме смесь Ве—Л1—Ga разделяют при Иб С, смесь Л1 — Ga — In при 120""С. Смесь Т1 — Ве — Л1 — Ga — In разделяют при программировании температуры от 85—160 " С. [c.65]

    Крупнопористые боросиликатные стекла (размер пор 3-5 нм) обеспечивают хорошее разделение алканов Сб-Сю, а также смеси бензола, толуола, этилбензола и кумола. На цеолитах типа X циклоаканы элюируются раньше алканов с тем же числом углеродных атомов, что было использовано для анализа деароматизированной бензиновой фракции методом газоадсорбционной хроматографии с программированием температуры в пределах от 200 до 450 °С (табл. 1.34). [c.69]

    Известно, что в обычной ВЭЖХ эффективность хроматографической системы, полученной путем последовательного соединения нескольких колонок (с целью повышения эффективности разделе(ния, не пропорциональна суммарной длине колонок В то же время в микро-ВЭЖХ благодаря уменьшению вихревой диффузии и более эффективному отводу тепла, выделяющегося вследствие перепада давления, увеличение длины колонки позволяет достигнуть достаточно высокой эффективности системы Выделяющаяся в колонке теплота влияет на процессы массопереноса, что ухудшает эффективность разделения Поэтому температуру в колонке следует поддерживать постоянной Малая теплоемкость микроколонок упрощает программирование температуры в ВЭЖХ Этот прием получил широкое распространение в газовой хроматографии (ГХ  [c.9]

    Газо-хроматографические применения цеолитов ограничиваются в основном разделением молекул с невысокой теплотой адсорбции (до 10—12 ккал моль). Сопоставление статических и газо-хроматографических определений теплот адсорбции н-алканов цеолитом МаХ при малых заполнениях показывает, что в отличие от адсорбции на пористой и неспецифически адсорбирующей поверхности графитированной сажи приближение -равновесной теории хроматографии при адсорбции цеолитами справедливо лишь для сравнительно слабоадсорбирую-щихся газов. Применения цеолитов в газовой хроматографии подробно описаны в работе 2]. Газовая хроматография на цеолитах с программированием температуры описывается в статье [12]. [c.201]

    Применение прибора для приема и обработки фракций элюата веществ с началом кипения около 150 °С позволяет провести более надежную количественную оценку микрохроматографирования фрак-ций октилфенола, содержащих не вошедший в реакцию октен. При этом с целью более четкой отгонки растворителей от октена в нижней зоне первых двух секций прибора выдерживают температуру 45 °С, а в остальных — 60 °С. На хроматограмме получают четко разделенные четыре пика (рис. 19), пробы веществ, соответствующих каждому пику, анализируют методом газо-жидкостной хроматографии, как описано в разд. 1.5.2.1., за исключением режима программирования температуры от 200 до 300 °С со скоростью [c.127]

    Программирование температуры колонки. Из рис. 17-10 следует, что при выбранной температуре колонки в ряду эфиров низшим гомологом, имеющим время удерживания больше чем 1 мин, является ме-тилундеканат, а высшим, имеющим время удерживания меньше 100 мин, — метилдокозанат. Даже если бы у химика хватило терпения ожидать свыше 100 мин, ширина пика при столь больших временах удерживания была бы очень велика и чувствительность определения заметно понизилась бы. Практически в этих условиях можно обнаружить не более девяти членов гомологического ряда, даже если бы общее время, необходимое для разделения, составило 1 ч. Но в этом случае имеется прекрасная альтернатива. Если температура колонки линейно возрастает в ходе хроматографического анализа, то соединения любого гомологического ряда будут элюироваться приблизительно за одинаковые промежутки времени (л пропорционально скорее чем lg д). Этот прием, называемый газовой хроматографией с программированным изменением температуры, дает большие преимуще  [c.572]

    Графитированная сажа исследовалась А. В. Киселевым и др. (1968 гг.) и была рекомендована для газоадсорбционной хроматографии с программированием температуры как адсорбент, обеспечивающий высокую селективность и эффективность разделения широких фракций, например н-алканов С5—С , кипящих от 36 до 320° С, а также структурных изомеров углеводородов, имеющих близкие температуры кипения (А. С. Бойкова, К Д- Щербакова, [c.238]

    Очень быстро развивается применение хроматографии для определения состава химических соединений, придающих запах и вкус. Примером, показывающим ценность газовой хроматографии для анализа этих сложных смесей, может служить проведенное недавно разделение свыше 80 компонентов, содержащихся в масле, имеющем привкус свежей земляники. Эту работу провели Тэраниси и другие [166], применив капиллярную колонку с программированной температурой. В табл. XVIП-5 даются ссылки на другие примеры применения газовой хроматографии в области анализа пищевых продуктов. [c.407]

    В хроматографической практике, несмотря на указанные выше преимущества при анализе нримесей, хроматермография применяется существенно реже, чем хроматография с программированием темнературы, что, по нашему мнению, связано в первую очередь с необходимостью использовать более сложное оборудование. В работе [1071 и позже в работе [1081 предложен новый вариант хроматермографии, в котором разделение осуществляется одновременно на всей длине колонки в условиях отрицательного градиента температур. Этот вариант хроматермографии заключается в использовании для разделения постоянного температурного градиента вдоль колонки совместно с программированием температуры. [c.66]

    На рис. 24 приведена хроматограмма разделения олигомеров стирола, полученных методом катионной полимеризации. Разделение проводилось на хроматографической колонке 300 X 0,4 см, заполненной 5% силикона ЗЕ-ЗО на хромосорбе У, при программировании температуры от 100 до 270° С со скоростью 10 градЫин. Более детальное исследование индивидуального состава олигомеров стирола с использованием масс-спектроскопических методов и капиллярной хроматографии было проведено в работе [45]. [c.95]

    Для ввода продуктов деструкции из ловушек в газовый хроматограф ловушки нагревали до 300° С со скоростью 15 град/мин. Каждая ловушка была соединена с отдельным хроматографом, специально предназначенным для анализа продуктов, конденсирующихся в данной ловушке. Для анализа продуктов из первой ловушки использовали хроматограф с программированием температуры колонки и пламенно-ионизационным детектором. Разделение проводили на колонке 700x0,4 см, заполненной 4% карбовокса 20 М на хромосорбе. Анализ легких газов из второй ловушки проводили при комнатной температуре на хроматографе с катарометром. Для разделения использовали колонку 200x0,4 см, заполненную силикагелем. Тяжелые продукты, сконцентрированные на спирали при 150° С собирали и взвешивали. [c.161]


Смотреть страницы где упоминается термин Разделение в хроматографии с программированием температуры: [c.19]    [c.71]    [c.229]    [c.22]    [c.112]   
Газо-жидкостная хроматография (1966) -- [ c.359 ]

Газо-жидкостная хроматография (1966) -- [ c.359 ]




ПОИСК





Смотрите так же термины и статьи:

Программирование

Хроматография разделение



© 2025 chem21.info Реклама на сайте