Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гели, определение серы

    Благодаря высокой температуре разряда в инертных газах (аргоне, гелии), которая вблизи катода достигает 15 000— 20 000°С [232], можно добиться высокой чувствительности определения трудновозбудимых элементов. Очень хорошие результаты получают при определении серы в нефтепродуктах с использованием атмосферы аргона. Этот метод подробно рассмотрен в гл. 7. [c.127]


    Чувствительность определения серы при помощи полого катода в среде гелия по искровым линиям выше, чем по дуговым, а в среде аргона наоборот. Это объясняется тем, что степень ионизации при разряде в аргоне меньше, чем в гелии [346]. [c.135]

    Обычные методы определения серы основаны на реакциях сульфат- или сульфид-ионов, хотя можно применять и методы, основанные на реакциях элементарной серы или таких ее соединений, как окислы, тио-, дитио- или роданид-ные соединения. Во многих случаях малорастворимые сульфаты и сульфиды используются для турбидиметрических определений. Большая чувствительность метода определения сероводорода в виде метиленового голубого позволяет использовать его для определения других соединений серы в тех случаях, когда можно количественно получить сероводород. Соединения с реакционноспособными серу-содержащими группами в газах и парах, дающие окраски, определяют при помощи специальной реактивной бумажки или гранулированных гелей. [c.311]

    Для определения малых содержаний (1-10" %) серы в растворах используют предварительное электролитическое выделение элемента и последующее возбуждение спектра в атмосфере гелия при пониженном давлении в низковольтной искре 163].  [c.151]

    Кроме жидкостных, для определения плотности был применен гелиевый пикнометр [16]. Инертный газ гелий не только не взаимодействует с исследуемым материалом, но при комнатной температуре практически не сорбируется им. Атомы гелия имеют малый диаметр (2,15 X X 10 м). Они проникают в большую часть микропор материала. В опытах определяется недоступный для гелия объем В табл. 1 приведены основные результаты этой серии опытов. [c.77]

    Схема установки для определения кислорода представлена на рис. 23. К баллону с гелием через вентиль тонкой регулировки 1 подсоединяют реакционную трубку 5, на 1/3 заполненную платинированным графитом. Для удерживания слоя графита и повышения его активности ставят платиновые сетки. Контактный слой платинированного графита должен находиться в центре печи 6, где он нагревается до 900 °С. В конце реакционной трубки помещают серебряную проволоку в виде канители для поглощения серы. Непосредственно к оттянутому концу реакционной трубки присоединяют трубку 7 с окисью меди, обогреваемую электропечью 8 (до 300 С), и поглотительную трубку 10 с аскаритом для количественного поглощения двуокиси углерода. Между трубками 7 и 10 подключают трехходовой кран 9, необходимый для продувки системы гелием после введения пробы. [c.71]


    Благодаря высокой температуре разряда в инертных газах (аргоне, гелии) можно повысить чувствительность определения трудновозбудимых летучих элементов (серы, фосфора, мышьяка, цинка и др.  [c.135]

    Гораздо меньшие затраты на аппаратуру требуются для гель-хроматографии в тонком слое (см. гл. П). В этом случае в конце опыта вместо объема выхода необходимо измерить расстояние от стартовой линии до пятна вещества — длину пробега ]56]. При стандартизации результатов хроматографии на бумаге длину пробега относят к пути, пройденному растворителями (определяют величину / /) в тонкослойной гель-хроматографии длину пробега исследуемого вещества относят к пути, пройденному хорошо идентифицированным веществом [72]. Для белков (а только для них тонкослойная гель-хроматография и применялась до настоящего времени) удается таким образом определять молекулярный вес, имея в распоряжении всего несколько микрограммов вещества [56, 72, 73]. В качестве стандартов здесь также используются белки, приведенные в табл. 22. Из фиг..36 видно, что отношение длины пробега ряда белков к пути, пройденному цитохромом с, является линейной функцией от логарифма молекулярного веса. Как показывает опыт, эту калибровочную линию нельзя считать достаточно универсальной, поскольку ее наклон довольно сильно изменяется от одной серии экспериментов к другой. Результаты определения молекулярного веса становятся более точными, если соответствующие стандартные белки наносят на каждую пластинку. Это вполне возможно, так как на пластинку шириной 20 см свободно можно одновременно нанести по меньшей мере 10 образцов. Благодаря несложному оборудованию и небольшим затратам вещества точность определения молекулярного веса этим методом можно повысить. [c.167]

    В определенных условиях, если, например, через гелий под давлением 1/4—1 мм рт ст пропустить искру от больших лейденских банок, он испускает линии, которые не принадлежат ни к одной из рассмотренных серий. Аналогичные линии были также найдены в спектрах звезд.. Такой спектр, получающийся в разрядной трубке только за счет искры, называют искровым спектром гелия, в отличие от обычного дугового спектра. Линии искрового спектра точно отвечают тем линиям, появления которых следует ожидать как на основании теории Вора, так и в соответствии о принципами волновой механики для однократно ионизированных атомов гелия, если предположить что они отличаются от атомов водорода только тем, что ядро атома гелия имеет вдвое больший положительный заряд по сравнению с ядром атома водорода. Линии искрового спектра гелия описываются уравнением (13а) на стр. 110, если принять 2=2 и М=А (атомный вес гелия). В полном согласии с теорией для константы Ридберга в случае гелия получается несколько большее значение, чем в случае водорода, а именно по спектроскопическим измерениям [c.134]

    Томсон в 1904 г. математически разработал аналогичную модель атома. Его статья имеет очень выразительное заглавие О строении атома исследование устойчивости и периодов колебания совокупности корпускул, расположенных с равными интервалами по окружности круга с применением результатов к теории атомного строения [2]. Согласно Томсону, положительный заряд атома распределен равномерно по всему его объему, тогда как корпускулы (так Томсон называет электроны) занимают внутри атома некоторое определенное положение. Томсон показывает расчетом, что такая модель атома может быть устойчива лишь при расположении корпускул либо в серии концентрических колец (если корпускулы вынуждены двигаться в одной плоскости), либо в ряде концентрических сфер (если допустить, что они могут двигаться во всех направлениях). Стабильность кольца (или сферы) достигается только при определенном числе корпускул в них в этом случае атом не способен удерживать дополнительно ни положительный, ни отрицательный заряд. Распределив все атомы в ряд (следуя порядку увеличения числа корпускул), мы получим сначала систему, которая ведет себя подобно атому одновалентного электроположительного элемента следующая система ведет себя подобно атому двухвалентного электроположительного элемента, в то время как на другом конце ряда у нас имеется система, которая ведет себя подобно нульвалентному атому ей непосредственно предшествует система, которая ведет себя подобно атому одновалентного электроотрицательного элемента, тогда как ей в свою очередь предшествует система, ведущая себя подобно атому двухвалентного электроотрицательного элемента [там же, стр. 262]. С глубокой проницательностью Томсон проводит далее аналогию между таким накоплением корпускул и свойствами элементов в двух первых периодах от гелия до неона и от неона до аргона. [c.29]

    При определении фосфора, серы и мышьяка в твердых образцах пробу в виде мелких стружек растворяли в Ш мл 6М НС1 при кипячении в течение 10-30 мин [308]. Выделившиеся при этом РН3, H2S и АзНз током гелия направлялись в криогенную ловушку (жидкий азот), после нагревания которой до 80°С смесь газов анализировали на тефлоновой колонке (2 м х 3 мм) с Порапаком QS при 30°С. Применение ФИД позволяет достичь С на уровне 2, 280 и 4 нг соответственно при Sj 0,07. [c.376]


    Скорость гелеобразования. Вот уже в течение многих лет изучается продолжительность времени, требующегося для превращения в гель определенного типа золя кремневой кислоты, который приготовлялся из кислоты и силиката. Принимается, что время гелеобразования обратно пропорционально скорости полимеризации или скорости формирования геля. В серии статей Хард и соавторы [216а] сообщили фактически обо всех факторах, оказывающих влияние на время гелеобразования золей кремневой кислоты, приготовляемых из кислоты и силиката натрия с отношением 5102 Ма20 3,3 1. Необходимо также сослаться на исследование Сена и Гоша [2166], которые, применяя разные кислоты, вывели уравнения, связывающие время гелеобразования с pH, концентрацией и температурой. Как сообщалось в гл. 3, время гелеобразования достигает максимума при значении pH 2. В области pH 3—о время гелеобразования изменяется в прямой зависимости от концентрации ионов Н+ (или в обратной зависимости от концентрации ионов ОН-). В интервале pH 4—9, как показано на рис. 5.16, минимум продолжительности времени гелеобразования наблюдается вблизи области нейтральности. Эти данные основаны главным образом на результатах Меррилла и Спенсера [217]. Ниже будет отмечено, что концентрация ионов натрия, пропорциональная концентрации кремнезема, обеспечивает наиболее быструю скорость процесса гелеобразования при pH 7—8, тогда как в отсутствие солей коллоидный кремнезем превращается в гель наиболее быстро при pH 5—6 (см. гл. 4). Различные кислоты вызывают наибольшую скорость гелеобразования при немного различающихся значениях pH. [c.702]

    В 1906 г. Чарлз Гловер Баркла установил, что различные элементы испускают определенные серии характеристических рентгеновских лучей. Уильям Генри Брэгг и его сын Уильям Лоренс Брэгг смогли объяснить это в 1912 г. дифракцией рентгеновских лучей кристаллическими веществами. В 1913 г. Генри Мозли, используя в качестве антикатодов в рентгеновских трубках различные элементы, получил по методу Брэггов эмиссионные спектры этих элементов. При этом он обнаружил, что длины волны таких рентгеновских лучей уменьшаются с увеличением атомной массы излучающего элемента. Связь между увеличением атомной массы элементов и уменьшением длины волны зависела от величины положительного заряда ядра атома. Мозли составил диаграмму и показал, что, зная длину волны рентгеновских лучей, можно рассчитать электрический заряд ядра элемента. Например, заряд ядра равен для водорода +1. гелия +2, лития +3, урана -(-92. Величина заряда ядра соответствует порядковому номеру, понятие о котором ввел Иоганнес Роберт Ридберг, чтобы исправить выявленное нарушение закономерности в расположении элементов в периодической системе. Некоторые элементы с большей атомной массой размещены в соответствии с зарядом их ядра в системе перед элементами с меньшей массой (Аг — перед К, Со — перед №, Те — перед I). Именно в этом заключается физический смысл порядкового номера элемента. [c.104]

    Описано определение серы в органических соединениях методом газовой хроматографии [244]. Метод состоит в сожжении вещества в токе кислорода в присутствии Р1-катализатора. Вода удерживается Са304, ЗОг отделяется от СО2 и О2 с помощью динонилфталатной колонки, использующей в качестве вытесняющего газа гелий. Анализ занимает 20 мин. Относительная ошибка определения не превышает 1%. [c.26]

    По внешнему виду нефелин представляет собой серый порошок. В состав концентрата входят AljOj — 28% SiOj— 42,8% NaaO — 12,1% aO — 2,3% и К О — 7,5%. Гелеобразующие композиции получают путем растворения при перемешивании нефелина в растворе соляной кислоты, приготовленной на пресной или минерализованной попутной пластовой воде. Способность к гелеобразованию определяется содержанием оксидов кремния и алюминия, которые при растворении в соляной кислоте образуют гелеобразующие композиции, способные взаимно коагулировать, образуя гели, состоящие из аморфных положительно заряженных оксидов алюминия и отрицательно заряженных поликремниевых кислот, расположенных в определенных соотношениях. [c.268]

    Впервые прибор для гель-хроматографического анализа полимеров выпущен фирмой Waters в 1964 году, спустя пять лет после открытия метода. Сегодня жидкостные хроматографы для анализа молекулярно-массового распределения (ММР) полимеров выпускаются во всех промышленно развитых странах, в России известны хроматографы серии ХЖ. К числу последних модификаций зарубежных приборов относится гель-хроматограф фирмы Waters hem. Div. с вискозиметром для определения молекулярной массы, ММР, а также степени ориентации макромолекул. Карусельная конструкция прибора позволяет одновременно испытывать 16 образцов. [c.109]

    Пористость и внутренняя поверхность целлюлозы может быть определена при изучении проникновения (по типу гель-проника-ющей хроматографии) различных полимерных молекул Причем, если используют серию полимеров с увеличивающейся молекулярной массой (например, декстраны, полиэтиленгликоли), то может быть получено распределение пор по размерам Так, для хлопкового волокна подобные измерения показали, что примерно 75% общего объема пор (0,3 мл на 1 г сухого волокна) занимают поры диаметром 20 А Характерно, что в сухом хлопковом волокне общий объем пор меньще, чем во влажном Делигнифицирован-ная древесная целлюлоза имеет средний размер пор в 2-4 раза превыщаюцщй размер пор хлопковой целлюлозы [11] (специфика определения размера поверхности целлюлозы в случае ферментативного гидролиза будет обсуждена в разделе 1 2) [c.15]

    Нахождение параметра растворимости полимеров из данных зависимости Q o (бр) не всегда дает достаточно точный результат. Чем меньше различия в б растворителей, выбранных для испытаний, и искомого значения б полимера, тем выше равновесная степень набухания и точнее результат. Влияние молекулярного веса растворителя при этом не учитывается. По уравнёнйю (5), на котором основан указанный метод, предполагается, что удельная энергия межмолекулярного взаимодействия в системе полимер — растворитель (набухший гель) является -среднегеометрической из удельной энергии когезии компонентов. Однако это справедливо только для систем с близким характером действующих межмоле-кулярных сил. В связи с этим было предложено 24 при определении б эластомеров использовать уравнение (6), введя в него коэффициент К, учитывающий отклонение реальных систем от соотношения (6). Коэффициент К является величиной постоянной для серии растворителей с близким характером межмолекулярного взаимодействия. [c.16]

    Несмотря на значительное развитие лазерной техники метод флуоресцентного анализа не получил пока широкого развития в газоаналитической практике и реализуется только на сложных лабораторных установках. Наиболее заметные результаты в лазерном атомно-флу оресцентном анализе достигнуты при определении содержания неона в гелии 10 мол. %, а в лазерном молекулярно-флуорес-центном — при определении оксида и диоксида азота, диоксида серы = 10" мол. %. На основе применения импульсных газоразрядных ламп созданы флуоресцентные газоанализаторы для определения диоксида серы и сероводорода до 10" мол. %. [c.921]

    На базе электрохимического метода разработана серия приборов Оникс — для определения кислорода, водорода и паров воды в азоте и инертных газах в диапазоне 210 -5-10 мол. % Циркон — для определения кислорода в инертных газах и азоте в диапазоне от 10 до 100 мол. % Агат — для определения кислорода от 5-10 до ЮОмол. % Топаз — для определения кислорода в диапазоне 15 5 мол. % Лазурит — для оиределения кислорода и водорода в инертных газах и азоте в диапазоне от 10 " до 10 мол. %. Создана серия портативных газосигнализаторов с использованием в качестве датчиков электрохимических сенсоров ИВГ-1 — для измерения микровлажности в азоте, аргоне, воздухе, гелии, кислороде и их смесях до 5-10 г/м (-90 °С), ТГС-3 —для контроля содержания метана (модификация ТГС-З-МИ в диапазоне 0-3 об. %), кислорода (модификация ТГС-З-КИ в диапазоне 28-18 об. %), аммиака (модификация ТГС-З-АИ в диапазоне 2-10 -1 10 мол. %). [c.926]

    При разделении аминов и аммиака на порапаках Р и Р не удается добиться удовлетворительной формы пиков [146]. На полимерах, модифицированных путем нанесения таких жидких фаз, как тетраэтиленпентамин или полиэтиленимин, возможно определение воды. Вытеснение влаги и свободного аммиака из расплавленного нитрита натрия продуванием воздуха и последующий газохроматографический анализ позволяют быстро определить pH и влажность этого материала [37 ]. Обермиллер и Шарлье [218] установили, что на колонках с порапаком Q (50—80 меш) возможен анализ смеси постоянных газов с оксидом углерода и газами, содержащими серу. Эти авторы использовали хроматографическую систему с двумя колонками. На колонке длиной 2 м с внутренним диаметром 1,2 мм при 75 °С разделяли СО , НаЗ, 50а и Н2О ( горячая колонка ), а на колонке длиной 10 м при —65 °С — Аг, Оа, N2 и СО. Полный анализ такой смеси осуществляли с помощью переносного хроматографа с двумя колонками и детектором по теплопроводности на термисторах. Для создания оптимальных условий отделения ЗОа путем соответствующего кондиционирования колонки в газ-носитель (гелий) добавляли ЗОа в концентрации 100 млн . [c.309]

    Определение двуокиси серы в атмосфере с помоп1,ью гелей, изменяющих окраску [2478]. [c.250]

    Метод позволяет определять самые разнообразные количества серы Гордон и Урнер , пользуясь 60%-ным изопропиловым спиртом в качестве фона, определяют от 0,12 до 12 мг сульфата в продуктах переработки нефти, а Е. Е. Крисс, С. И. Якубсон и Б. А. Гел-лерз титруют сумму сульфатов в ваннах вискозного производства при содержании 300 г/л сульфатов разбавляя 5 мл исходного раствора водой до 100 мл, они определяют, следовательно, около 1,5 г сульфат-иона, причем не добавляют органических растворителей. Определение эти авторы ведут также в слабоазотнокислотном растворе ис ходный кислый раствор нейтрализуют 15%-ным раствором едкого натра по метиловому оранжевому и добавляют 1 каплю азотной кислоты (концентрация не указана). Вместо каломельного электрода сравнения авторы этой работы применяют платиновую пластинку, площадью около 1 см , и устанавливают потенциал ртутного капельного электрода —1,9 в относительно этой пластинки. [c.295]

    Выполнение анализа. Перед проведением серии определений проверяется степень чистоты приготовленного угля. Для этого реакционную камеру, наполненную углем, продувают гелием, затем герметически закрывают и отключают от хроматографа переключающим устройством. Реакционную камеру нагревают в течение 3—5 мин. до 1100° С. После этого газ-носитель направляют через реакционную камеру на хроматограф. Отсутствие пиков на хроматограхмме указывает на чистоту угля. со [c.33]

    Схема лабораторного прибора, который может быть применен для определения разнообразных примесей, приведена на рис. 105. Здесь используется сочетание хроматографического разделения с низкотемпературной конденсацией. Анализируемый газ проходит через хроматографическую колонку. Поскольку время выхода каждого компонента известно, то на период выхода определяемого компонента выходящий из колонки газ направляется через сложный многоходовой кран в ампулку, охлаждаемую жидким азотом. Элюепт (гелий) проходит через ампулку свободно, а углеводород или иной компонент задерживается. К крану присоединена серия ампулок в них накапливаются те компоненты, содержание которых требуется определить. [c.300]

    При проведении относительного анализа образцы (объем 1 мкл) вводились путем инъекции через резиновые уплотнения. При абсолютном определении содержания серы анализировались навески величиной 5—10 мг. Система улавливания продуктов состояла из двух ловушек из нерн авеющей стали. Для быстрого ввода продуктов в хроматографическую колонку ловушки нагревали путем пропускания через них электрического тока. Первая ловушка служила для улавливания сероводорода и охлаждалась жидким азотом (для повышения эффективности она была заполнена спиралями из нержавеющей стали). Вторая ловушка д.ля улавливания метана и азота была заполнена молекулярными ситами 5 А (фракция 0,5—0,25 мм) и охлаждалась смесью сухого льда и трихлорэтилена. В этой ловушке улавливались метан и азот. Продукты гидрирования анализировались газохроматографически на двух колонках. Соединения из первой ловушки разделялись при 80° С на колонке с силикагелем (длина 180 м, диаметр 6 мм). Продукты из второй ловушки (азот и метан) анализировались на колонке с молекулярными ситами 4 А (фракция 0,6— 0,5 мм). В качестве газа-носителя в хроматографическом анализе применялся гелий. Для регистрации пиков использовался катарометр. [c.158]

    В настоящее время серу определяют на коммерческих автоматических анализаторах наряду с углеродом, водородом, азотом. Эти методы определения основаны на окислительной деструкции [26—30]. Одно из затруднений, возникающих в этом методе, состоит в том, что при 450—600 °С оксид меди, который всегда присутствует в медном восстановительном реакторе, образует с оксидами серы сульфаты. Дуган [30], подробно изучивший образование нелетучих соединений серы в медном реакторе, показал, что этих трудностей можно избежать, если температуру медного реактора поддерживать около 840 °С [30]. Метод Дугана используется в ряде коммерческих элементных анализаторов. Так, в анализаторе фирмы Геркулес [30] сожжение образца происходит при 1080°С в атмосфере смеси гелия (40%), кислорода (60%), оставшаяся часть которого после окончания окисления вместе с образовавшимся продуктом под действием потока гелия поступает в восстановительную зону, заполненную медью, где при 840 °С оксиды азота восстанавливаются до азота, оксиды серы — до диоксида серы и где удаляется избыток кислорода. Продукты затем разделяются при 130°С на колонке (2 м), заполненной порапаком Q. [c.200]

    При разработке методики анализа строится градуировочная кривая для определения аргона в гелии (см. рис. 78, а). При этом проверяется отсутствие влияния прибавления неона на отношение интенсивностей линий аргон — гелий. Градуировочная кривая построена при следующих условиях съемки в высокочастотном разряде р = 1,4 мм рт. ст., I = 300 на, п = 5 мм рт. ст. Зате.м при тех же условиях строятся градуировочные кривые для определения концентрации неона в газовой смеси аргон— неон — гелий при разных концентрациях аргона (см. рис. 78,б) Сначала определяется концентрация аргона по первой градуировочной кривой и тем самым фиксируется, какой кривой из второй серии градуировочных кривых можно воспользоваться для определения концентрации неона. [c.200]

    Китагава [54] применял также силика- и алюмогели при определении от 0,005 до 15% двуокиси серы в воздухе их смешивают с одним или несколькими из следующих реагентов перманганатом калия, СгдОд, бихроматом калия или хроматом калия. Более чувствительные гели [78] позволяют определять до 0,0005% и даже меньше двуокиси серы в воздухе. Эти гели приготовляют, пропитывая очищенный силикагель ванадатом аммония, йодатом или перйодатом калия или различными другими неорганическими или органическими реагентами. [c.332]

    Описан также емкостной детектор для определения влажности газов кислорода, азота, гелия, двуокиси и окиси углерода, дв5юкиси серы, сероводорода, метана и т. д. [340]. Возможность применения диэлькометрического метода для анализа газов и в этом случае основана на различии ДП газов и паров воды. Зависимость емкости от относительной влажности газов линейна в интервале 0,5—90% и не зависит от скорости потока. Датчик способен давать правильные показания при повышенном давлении и температуре до 300 С. [c.154]

    В серии опытов по разделению смеси воздуха и этилена с сероводородом обычным хроматографическим методом в качестве газа-носителя служил водород. В опытах, проводимых методом вакантохроматографии, заранее составлялась смесь воздуха или этилена с сероводородом известной концентрации, которая затем непрерывно подавалась на хроматограф. При этом смесь предварительно осушалась пятиокисью фосфора, после чего она поступала в сравнительную камеру детектора, затем проходила хроматографическую колонку и измерительную камеру детектора. После установления адсорбционного равновесия на самописце вычерчивалас1> постоянная нулевая лр ния. Для анализа смеси в колонку вводилась порция газа-дозатора. В зтом случае на хроматограмме возникали вакансии определяемых компонентов. Принадлежность вакансии данному компоненту устанавливалась путем исключения компонента из смеси с последующим хроматографированием. В качестве газа-дозатора были испытаны водород, гелий, аргон, азот, воздух, этилен и сероводород. Содержание сероводорода в смеси, служившей для калибровки, определялось поглощением определенного объема газа раствором хлористого кадмия с последующим иодометрическим титрованием. [c.462]

    Наконец, для проведения элементарного анализа сернистых соединений48 49 пробу сжигают над платиновым катализатором з токе очищенного кислорода. После осушки сульфатом кальция смесь образовавшихся двуокиси серы и двуокиси углерода улавливают при температуре жидкого азота, а затем разделяют на колонке длиной 6 м с динонилфталатом (температура 92 °С, газ-носитель — гелий). Площадь пика SO3 является мерой содержания серы в пробе. Общая продолжительность определения составляет около 20 мин, относительная ошибка — порядка 1%. [c.204]

    Для проведения элементного анализа сернистых соединений [73] пробу сжигают над платиновым катализатором в токе очищенного кислорода. Посде осушки сульфатом кальция смесь образовавшихся двуокиси серы и двуокиси углерода улавливают при температуре жидкого азота, а затем разделяют на колонке длиной 6 м с динонил-фталатом (температура 92 °С, газ-носитель — гелий). Площадь пика SO2 является мерой содержания серы в пробе. Общая продолжительность определения составляет около 20 мин, относительная, ошибка — порядка 1 %. В другом варианте метода применяют гидрирование над металлической платиной при 1000 °С с получением сероводорода [75]. [c.202]

    Для исследования были взяты цеолиты типа У, синтезированные различными методами, и цеолит ультрасил (табл. 1). Алюмокремнегели готовили смешением аморфного кремнезема с растворами алюмината и гидроксида натрий (серия I), растворов силиката, алюмината и гидроксида натрия (серия III), растворов силиката, алюмината и серной кислоты (серии II и IV). Алюмогели после смешения продуктов выдерживали 16 ч при комнатной температуре, а затем кристаллизовали при 368 К. Для получения ультрасила алюмокремне-гель готовили смешением алюмината натрия, водного раствора иодида тетра-этиламмония и золя кремнекислоты. Образцы выдерживали 6—144 ч при комнатной температуре (серия V) и нагревали при 438 К от 4 до 20 ч (серия VI). В период выдержки через определенные промежутки времени отбирали пробы, отделяли маточный раствор, отмывали дистиллированной водой от щелочи и сушили при 423 К. Подготовку таблеток и регистрацию ИК-спектров проводили согласно обычной методике на воздухе [111. [c.27]


Смотреть страницы где упоминается термин Гели, определение серы: [c.263]    [c.415]    [c.103]    [c.157]    [c.106]    [c.24]    [c.249]    [c.22]    [c.106]    [c.139]    [c.106]    [c.371]    [c.281]    [c.229]    [c.352]    [c.269]   
Калориметрические (фотометрические) методы определения неметаллов (1963) -- [ c.332 ]




ПОИСК





Смотрите так же термины и статьи:

Сера, определение

Серии определение



© 2025 chem21.info Реклама на сайте