Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этерификация катализаторы

    Получение этиленгликоля из формальдегида организовано в США фирмой Е. I. du Pont de Nemours and o. По этому способу смесь паров формальдегида и воды (объемное соотношение 1 1) абсорбируется водным раствором гликолевой кислоты (мольное соотношение 1 2) с примесью каталитических количеств серной кислоты и затем пропускается через реактор вместе с избытком окиси углерода при 200 "С и 70 МПа (время контакта 5 мин). В результате образуется гликолевая кислота (выход 90—95%), выделяемая перегонкой прн пониженном давлении. После этерификации гликолевой кислоты метиловым спиртом и очистки зфира перегонкой, проводится гидрирование метилового эфира гликолевой кислоты при 200 °С и 3 МПа в присутствии катализатора медь—хромат бария. На стадии восстановления получают этиленгликоль с выходом 90%. Данный метод не получил широкого распространения вследствие многостаднйности и высокой коррозионности среды, но может быть перспективным при снижении стоимости и расщирении производства синтез-газа. [c.274]


    В качестве природных катализаторов для ряда процессов (кре кинг, этерификация, полимеризация, производство серы из серии стых газов и другие) могут быть использованы боксит, кизельгур железная руда, различные глины [200—206]. Природные катализа торы дешевы, технология их производства сравнительно проста Она включает операции размола, формовки гранул, их активацию Применяют различные способы формовки (экструзию, таблетиро ввние, грануляцию на тарельчатом грануляторе), пригодные для получения гранул из порошкообразных материалов, увлажненных связующими. Активация исходного сырья заключается в удалении из него кислых или щелочных включений длительной обработкой растворо м"щелочи йли кислоты при повышенных Температурах. При активации, как правило, увеличивается поверхность контактной массы. Наибольшее применение в промышленном катализе нашли природные глины монтмориллонит, каолинит, бейделлит, бентониты и др. Они представляют собой смеси различных алюмосиликатов и продуктов их изоморфных замещений, а также содержат песок, известняк, окислы железа, слюду, полевые шпаты и другие примеси. Некоторые природные алюмосиликаты, например, каолин, обладают сравнительно высокой каталитической активностью в реакциях кислотно-основного катализа уже в естественном виде, после сушки и прокаливания. Большинство других требует более глубокой предварительной обработки кислотой при соответствующих оптимальных условиях (температура, концентрация кислоты, продолжительность обработки). В активированных глинах возрастает содержание SiOa, а количество КагО, СаО, MgO, AI2O3 уменьшается. Часто для уменьшения потерь алюминия в глинах к активирующему раствору добавляют сол , алю.мниия [46]. [c.168]

    Этерификацию проводят непрерывным методом. В медный котел, в котором находится небольшое количество серной кислоты в качестве катализатора, из расходных баков вводят приблизительно в стехио-метрическом соотношении спирт и ледяную уксусную кислоту. На котле смонтирована фракционирующая колонна, с верха которой непрерывно отгоняется азеотропная смесь амилацетата, амилового спирта и воды. Отгонку уксусной кислоты предотвращают обильным орошением колонны. [c.223]

    В дизельном топливе, содержащем нестабильные фракции вторичного происхождения, при действии растворенного кислорода в условиях хранения и эксплуатации накапливаются низкомолекулярные продукты окисления (гидропероксиды, карбоновые кислоты, альдегиды и т. д.), вступающие в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, часть которых медленно коагулирует в нерастворимые соединения. Катализаторами реакций уплотнения являются кислотные продукты, поэтому введение в топливо веществ основного характера (третичных аминов), нейтрализующих кислоты и способных эффективно ингибировать радикально-цепное окисление, оказывает стабилизирующий эффект [11, 43, 46]. Анализ результатов [83-86, 99] свидетельствует, что этим требованиям отвечает основание Манниха ионола (Агидол-3). [c.183]


    Ацетилирующая смесь различается по количеству катализатора. С третьей порцией вводится наибольшее количество серной кислоты для регулирования скорости процесса этерификации и заданной температуры. Тепло реакции отводится не только путем подачи холодной воды (или рассола) в рубашку аппарата, но и за счет частичного испарения метилеихлорида, пары которого конденсируются в холодильнике 10. Процесс ацетилирования контролируется путем определения вязкости и растворимости продукта в уксусной кислоте. [c.98]

    Этерификация жирных кислот метанолом может осуществляться в присутствии кислых катализаторов, чаще всего сер- [c.100]

    В начале проведения этерификации в аппаратуру вводят стехиомет-рпческую смесь жирных кислот и глицерина с добавкой 0,1% окиси магния как катализатора. В первой зоне смесь, текущая слоем толщиной 5 см., нагревается до 170°, причем из сопел подают столько перегретого водяного пара, чтобы реакционная смесь длительное время находилась в движении. При этом происходит этерификация в основном до моно- и диглицеридов. Затем продукт попадает во вторую зону, где нагревается до 210°. Здёсь добавляют второй катализатор — отмученную глину, в результате чего происходит образование триглицеридов. Смесь попадает в третью зону, где для завершения образования триглицеридов нагревается до 240°. При помощи вводимого одновременно с этим влажного насыщенного водяного пара отгоняют остатки непрореагировавших кислот и глицерина и получают таким образом совершенно нейтральные жиры, которые в заключение обрабатывают отбеливающими глинами. Выход составляет около 95%. [c.475]

    Этернфикация адипиновой кислоты бутиловым спиртом происходит в автоклаве периодического действия. В качестве катализатора применяется азотная кислота (2% по массе в расчете на адипиновую кислоту). Температура этерификации — 130 °С. Отгоняющийся азеотроп бутилового спирта конденсируется и разделяется на водный и спиртовый слои. Последний непрерывно возвращается на этерификацию. По окончании выделения воды отбирается проба. При достижении кислотного числа, равного 10, этернфикация считается законченной. [c.36]

    ВРз, являющийся активной кислотой Льюиса, применяют в ка- честве катализатора многих органических реакций (полимеризация, этерификация и др.). Борогидриды лития и натрия широко используют в органических синтезах как сильные восстановители. [c.335]

    Все реакции этерификации обратимы. Некаталитические процессы проводятся при 150—300 °С, в присутствии же кислотных катализаторов температура процесса не превышает 70—140 С. [c.237]

    При добавлении воды и метанола происходит этерификация серная кислота служит катализатором  [c.227]

    Первая стадия протекает при небольшом нагревании и ускоряется сильными минеральными кислотами. Очевидно, что вторая стадия аналогична этерификации свободными кислотами и тоже требует кислотных катализаторов. Этерификация ангидридами кислот, обыч-H i более дорогими, чем сами кислоты, тоже имеет ограниченное применение, но она становится типичной при использовании доступных циклических ангидридов двухосновных кислот (фталевого, малеинового и др.). [c.204]

    Как и другие реакции этерификации, процесс сульфатирования спиртов, в котором серная кислота одновременно играет роль катализатора и реагента, является обратимым  [c.243]

    Электрофильное присоединение под влиянием катиона Н+ описано [51] на примере прямой этерификации полибутадиена смесью карбоновой и серной кислот полученный полиэфир действием спирта превращают в полигидроксиполибутадиен. Присоединение под влиянием протона из-за доступности катализаторов очень интересно, однако для реализации метода необходимо исследование побочных реакций циклизации, также катализируемых протоном. [c.239]

    Для выяснения влияния набухания и снижения СОЕ катионита на его каталитическую активность набухший в различных реагентах катионит использовали как катализатор этерификации диэтиленгликоля с капроновой, энантовой и пеларгоновой кислотами. Условия реакции температура 139°С мольное соотношение глико-ли кислота 1 2, 1 количество катализатора 5% вес на загрузку компонентов. Реакцию проводили в равновесных условиях в запаянных ампулах в термостате. О ходе реакции судили по изменению кислотного числа реакционной смеси. Пример обработки результатов опыта приведен в табл. 3. [c.113]

    Снижение СОЕ катионита (табл. 2) при обработке различными реагентами можно объяснить сольватацией активных центров катионита. Повышение констант скорости (табл. 4) при этерификации диэтиленгликоля монокарбоновыми кислотами в присутствии набухшего катионита, видимо, объясняется различными эффектами разрыхления пространственной сетки и улучшением условий доступа реагирующих молекул к активным центрам катализатора. [c.115]


    В промышленности нашла широкое применение пока одна группа органических твердых катализаторов — ионообменные смолы ( иониты), катализирующие химические превращения, которые протекают по кислотно-основному механизму этерификация, алкилирование, дегидратация, гидратация, полимеризация и другие [233-235]. [c.174]

    Из рис. 2—4 видно, что в случае применения катализатора КУ-2 лучшая линейность кинетических зависимостей наблюдается для уравнения второго порядка. Незначительное отклонение этих зависимостей от линейности при этерификации низкомолекулярных кислот объясняется, по-видимому, следующими явлениями эте-рификация ТЭГ низкомолекулярными кислотами катализируется лучше, чем высокомолекулярными. Низкомолекулярные кислоты свободно проникают в поры катализатора, и реакция протекает быстро. Из-за накопления внутри пор крупных молекул продуктов реакции диффузия кислот затрудняется по мере протекания реакции, т. е. диффузия частично контролирует кинетику, и часть активных групп внутри пор не проявляет своего действия. Таким бразом, состав катализатора при этерификации этими кислотами как бы меняется к концу реакции, чем и объясняется отклонение от линейности. [c.108]

    Этерификация жирных кислот спиртами может осуществляться при повышенных температурах без катализатора. Эксперименты показали, что оптимальными условиями термической этерификации являются температура 250—320° С и давление 10— ООатга. Процесс должен проводиться с избытком метанола. Гидрирование метиловых эфиров может осуществляться на медпохромовом или медноцинковом катализаторах. Однако эти катализаторы имеют сравнительно короткий период работы без регенерации. Весьма перспективным оказывается применение для восстановления эфи= ров цпнкхромового катализатора. Этот катализатор работает стабильно, однако при гидрировании эфиров образуется значительное количество углеводородов (до 6—10%). Некоторая модификация катализатора, а также тщательное осуществление процесса восстановления катализатора позволяют снизить содержание углеводородов в сырых спиртах до 2—3%. [c.101]

    В качестве катализаторов для генерирования дихлоркарбена были предложены оксиды аминов [85]. Их же использовали при получении бензилацетата из бензилхлорида [86]. В том и в другом случае настоящим катализатором была, очевидно, четвертичная аммониевая соль, образовавшаяся in situ. В случае реакции этерификации предложена следующая последовательность стадий  [c.78]

    Реакция во многом сходна с этернфикацией. Она также обратима, но, по сравнению с этернфикацией, ее равновесие сильнее смещено вправо. Строение кислоты оказывает такое же влияние на термодинамику и скорость амидирования, как при этерификации (разветвление и удлинение углеродной цепи кислоты повышает константу равновесия, но снижает скорость процесса). Аммиак и особенно амины являются более сильными нуклеофильными реагентами, чем спирты, поэтому амидирование может протекать в отсутс вие катализаторов путем нагревания реагентов при 200— 300 °С в жидкой фазе. Удаление воды при использовании избытка аммиа<а (или амина) способствует достижению высокой степени конверсии. В отдельных случаях рекомендовано применять катализаторы кислотного типа, например AI2O3. [c.221]

    Интенсивно разрабатываются методы этерификации в присутствии амфо-терных каталитических систем, представляющих собой осажденные на носитель гидраты окислов алюминия, титана и олова, соли титана, олова, циркония и карбоновых кислот или органические соединения титана. Наибольшую каталитическую активность обнаруживают тетраалкилтитанаты и тетраалкилцирконаты. Амфотерные катализаторы частично или полностью растворимы в реакционной массе и легко удаляются из нее осаждением, гидролизом, обработкой сорбента ш или простой фильтрацией. Этернфикация в их присутствии протекает при более высокой температуре (160—200 °С) и требует большего избытка спирта (40% и выше), чем при использовании кислотного катализатора. [c.238]

    Этерификация—процесс замещения иона водорода в органической кислоте алкильной или арильной группой. Водородный ион действует каталитически на реакцию. Применяются сильные кислоты или соли сильных кислот и слабых оснований. Хлористый цинк усиливает каталитическое действие кислот. Используются и другие катализаторы фториды бора и кремния хлориды алкминия, трехвалентного железа и магния металлы в тонко- [c.328]

    Периодические методы осуществления жидкофазных гетерогеннокаталитических реакций используют в промышленности достаточно широко при производстве относительно малотоннажных продуктов фармацевтических.препаратов, душистых веществ и т. п. Аппараты для периодического проведения гетерогенно-каталитических реакций не отличаются от реакторов периодического действия для проведения пекаталитических реакций. Реакторы должны оснащаться устройствами, обеспечивающими хорошее перемешивание реакционной смеси, — мешалками или выносными циркуляционными контурами. Это особенно важно при проведении газо-жидкостных реакций. Если реакция проводится при кипении жидкости, как, например, этерификация с твердыми катализаторами, то перемешивание осуществляется за счет кипения и специальной мешалки не требуется. Естественно, что реакционные аппараты должны быть снабжены устройствами для подвода или отвода тепла к реакционной массе в виде теплообменников или рубашки. Если процесс проводится под давлением, аппараты представляют собой автоклавы, конструкция которых зависит от величины давления. Для высоких давлений особенно удачны бессальниковые автоклавы с экранированным двигателем и принудительной внутренней циркуляцией, обеспечиваемой винтовым насосом, помещенным внутри аппарата. [c.274]

    Ди-2-этилгексилфталат и диизооктилфталат производятся по непрерывной схеме в присутствии кислотных катализаторов. Процесс включает следующие основные стадии этерификацию, нейтрализацию реакционной массы, промывку ее горячей водой, очистку эфира сорбентами и его ректификацию. [c.241]

    Для этого применяют способ гидрирования в водной суспензии при высоких температуре и давлении, когда примеси переводятся в более растворимые соединения (оксикислоты) и переходят в воду. Предложено вести очистку терефталевой кислоты путем ее этерификации в диметилтерефталат и перекристаллизации последнего. Сообщается о возможности прямого синтеза достаточно чистой терефталевой кислоты (не требующей специальной очистки) благодаря применению кобальт-марганец-бромидного катализатора и оптимальных параметров процесса. [c.404]

    Катализаторы поликонденсации по ходу процесса могут претерпевать химические изменения. Кислые катализаторы (серная кислота, арилсульфокислоты) в процессе полиэтерификации могут сами подвергаться этерификации, что является причиной замедления или прекращения процесса. Например, в присутствии л-толуолсульфокислоты реакция взаимодействия фталевого ангидрида, этиленгликоля и метакриловой кислоты прекращается при 70%-ной конверсии [199]. Установлено [200], что этерифицируются только неионизи-рованные молекулы л-толуолсульфокислоты, о чем свидетельствуют результаты проведения этерификации в присутствии растворителей с различной диэлектрической проницаемостью. Так, при взаимодействии гликолей и метакриловой кислоты в растворителе с высокой диэлектрической проницаемостью-спирте, т. е. при практически полной ионизации л-толуолсульфокислоты, этерификации катализатора не наблюдалось. При увеличении доли неионизированной л-толуолсульфокислоты путем добавления к реакционной массе бензола возрастала скорость этерификации л-толуолсуль-фокислоты. Добавление кислоты (например, НСЮ4) в реак- [c.91]

    Кинетические кривые скорости образования диэтиленгликоле-вых эфиров капроновой, энантовой и пеларгоновой кислот в присутствии катионита КУ-2, предварительно обработанного различными реагентами, показаны на рисунке. Лучшие результаты наблюдаются при этерификации диэтиленгликоля капроновой или энантовой кислотами в присутствии катализатора КУ-2,обработанного в диэтиленгликоле при 125 140°С. [c.115]

    Шидкофазные лабораторные реакторы обладают рядом отличий от газофазных, поэтому их целесообразно рассмотреть особо. Устройство аппаратов мало меняется от того, проводятся ли в них чисто жидкофазные или газо-жидкофазные реакции с твердым катализатором. Последний тип реакций, к которому относятся жидкофазное гидрирование, восстановление водородом, жидкофазное окисление молекулярным кислородом в настоящее время более распространен в технике, чем первый, к которому принадлежат реакции алкили-рования, дегидратации и этерификации. [c.414]

    В качестве противокоррозионных присадок были исследованы эфиры алкенилянтарной кислоты, получаемые этерификацией -алкенилянтарного ангидрида (алкенил Сд — С15) различными спиртами в присутствии катализатора. Эфиры алкенилянтарной кислоты являются эффективными ингибиторами коррозии. Для приготовления защитных присадок предлагается также обра- батывать алкенилянтарный ангидрид (С30 —С200) борной кислотой или оксидом бора и нагревать полученный продукт с полиамином [пат. США 3322670]. [c.185]

    Сложные эфиры, в отличие от простых, с большей или меньшей скоростью расщепляются водой — подвергаются гидролизу с образованием вновь кислоты и спирта. Поэтому, как показано в схемах приведенных выше реакций, процесс этерификации обратим и доходит до состояния динамического равновесия. Ионы водорода, как и всякий катализатор (см. 60), ускоряют протекаиие не только реакции этерификации, но и обратной ей реакции гидролиза таким образом в присутствии минеральной кислоты быстрее достигается равновесие в процессе этерификации. [c.489]

    При взаимодействии метилольных производных дифенилолпропана со спиртами в присутствии кислотных катализаторов получаются эфиры. Так, при взаимодействии дифенилолпропана в щелочной среде с формальдегидом получается тетраметилольное производное, которое при этерификации бутанолом дает продукт, состоящий из смеси три- и тетрабутилпроизводных  [c.31]

    В.1Я6МЫЙ в жидкой фазе, является обычным для синтеза большинства сложных эфиров. Катализаторами могут служить также гетерогенные контакты кислотного типа (AI2O3, алюмосиликаты, фосфаты). В этом случае этерификация проводится в газовой фазе, но такой способ применяется относительно редко. [c.204]

    Механизм сульфатирования спиртов серной кислотой в общем аналогичен рассмотренным ранее процессам этерификации. При этом кислота выполняет одновременно роль и реагента и катализатора, а реакция протекает с разрывом связи S—О, что обусловливает отсутствие изомеризации в алкильной группе  [c.318]

    По второму методу этерификацию проводят при небольшом избытке спирта (не более 20%) в присутствии кислотных катализаторов и третьего компонента — азеотропобразующего агента, предназначенного для отвода реакционной воды. Избыток спирта выделяют из продуктов реакции и после ректификации возвращают на синтез. В периодических процессах (аналогично схеме на рис. 7.10) используются эфиризаторы объемом 2—25 м . [c.241]

    Иониты могут использоваться в качестве катализаторов органических реакций различных типов алкилирования, этерификации, конденсации, цианэтили-рования, гидролиза и др. [c.398]

    Исследование кинетики реакции этерификации проводили в акрытой системе ампульным методом, преимущество которого эстоит в неизменности весового соотношения между катализа-эм и катализатором во время опыта. [c.103]

    Энергия активации незначительно зависит от присутствия катализатора (особенно это характерно для кислот с большим молекулярным весом). Для этерификации ДЭГ индивидуальными кислотами от Са до Сэ энергия активации изменяется от 3,27 до 14,86 ккал/моАЬ и для реакции этих же кислот с ТЭГ от 6,23 до 14,82 ккал1моль. Небольшие изменения энергии активации образования эфиров индивидуальных кислот, например, капроновой и ДЭГ (Е = 10,55 ккалЫоль без катализатора и Е = 8,90 ккалЫоль в присутствии КУ-2), можно объяснить тем, что в отсутствие катализатора протекает каталитическая реакция с участием водородных ионов, образовавшихся за счет диссоциации карбоксильных групп. В присутствии катализатора реакция протекает значительно бысрее за счет повышения концентрации водородных ионов. Более низкие значения энергий активации образования эфиров ТЭГ и высокомолекулярных кислот по сравнению с ДЭГ, видимо, можно объяснить влиянием большей основности триэтиленгликоля. [c.109]


Смотреть страницы где упоминается термин Этерификация катализаторы: [c.532]    [c.532]    [c.209]    [c.362]    [c.101]    [c.133]    [c.135]    [c.694]    [c.242]    [c.243]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.433 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий сульфат как катализатор при этерификации олефинов

Асбест как катализатор при пол ении при этерификации олефинов

Бромиды как катализаторы при этерификации

Висмут как катализатор при получении при этерификации олефинов

Кальций стеарат как катализатор при этерификации хлористых амилов

Катализаторы этерификации окисью этилена

Медь, соединения ее как катализаторы при этерификации амилхлоридов

Серная кис.юта как катализатор при в этерификации вторичного

Серная кис.юта как катализатор при этерификации изопропилового спирта

Серная кислота, катализатор этерификации

Серная кислота, катализатор этерификации этилену

Спирты влияние концентрации катализатора на этерификацию

Сульфаты как катализаторы при этерификации олефинов

Сульфаты как катализаторы при этерификации олефинов в сульфаты

Сульфаты как катализаторы при этерификации олефинов при этерификации олефинов Зоб

Сурьма, галогениды ее как катализаторы этерификации пропилена бромистым

Фосфорная кислота как катализатор при этерификации олефинов

Фосфорная кислота катализатор, для этерификации

Хлористый водород катализатор этерификации

Этерификация

Этерификация аминокислот катализатора

Этерификация аминокислот соляной кислотой в качестве катализатора

Этерификация аминокислот, пептидов катионообменные катализатор

Этерификация аминокислот, пептидов спирты и кислые катализатор



© 2025 chem21.info Реклама на сайте