Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полисахариды образование комплексов

    Гидроксильные группы, расположенные в остатках моноз в цис-положении, легко образуют комплексы со щелочными растворами солей меди и боратами. Образование комплексов гидроксильных групп в положении Сг и Сз остатков моносахаридов глюкоманнанов с боратами делает полисахариды более кислыми и более растворимыми в щелочах. По Фостеру [19], боратные комплексы представляют собой производные от соединения К (ОН) 2, имеющие соответствующие ориентированные группы. Возможны два типа комплексных ионов слабого отрицательного заряда  [c.20]


    Как уже упоминалось, механизм разделения на производных полисахаридов изучен очень слабо. Недавно обнаруженное разделение энантиомеров таких алифатических углеводородов, как цис, транс-1,3-циклооктадиен (1), на триацетилцеллюлозе [55] трудно поддается интерпретации, если не принимать во внимание влияние образования комплексов включения, т. е. стерической дискриминации, вызванной различием в способности энантиомеров проникать в хи- [c.120]

    Хотя вклад в удерживание сорбата, по-видимому, обусловлен образованием водородных связей, механизм дискриминации энантиомеров является довольно сложным. Как и при разделении на сорбентах на основе производных полисахаридов, энантиоселективность предположительно вызывается образованием комплексов включения, т. е. связывающие группы в асимметричных пустотах, в которые, по-видимому, диффундируют энантиомеры сорбата, более благоприятно расположены для одного из антиподов, который и будет предпочтительнее удерживаться. [c.125]

    Ультрафиолетовые спектры поглощения определяются возбуждением электронных уровней атомов и молекул и обладают максимумами, положение которых характерно для определенных атомных группировок, сопряженных двойных связей и др, В белках ультрафиолетовые спектры поглощения в основном определяются ароматическими аминокислотами — фенилаланином /--макс— 260 м х), тирозином и триптофаном 280 жр-), причем спектры поглощения могут быть даже использованы для аналитического определения этих аминокислот. Нуклеиновые кислоты и нуклеопротеиды обладают настолько резким максимумом поглощения при 260—265 лр., что при помощи фотографирования в ультрафиолетовом микроскопе легко определить их содержание в отдельных клетках (Брумберг). Зависимость ультрафиолетовых спектров поглощения от pH, сос- тава среды, от образования комплексов с другими соединениями позволяет исследовать изменения состояния растворенных веществ так, по смещению максимума поглощения с 280 до 260—265 м а было обнаружено образование комплекса между белками и полисахаридами (Розенфельд). Линейные полимеры обычно не имеют интенсивных полос поглощения в видимой и ближней ультрафиолетовой областях спектра. [c.61]

    Образование комплексов крахмала и других полисахаридов с иодом сопровождается появлением окраски, которое было приписано взаимному обмену электронов между компонентами типа переноса заряда [117]. В выяснении структуры окрашенных аддуктов достигнут некоторый успех, хотя необходимо сделать еще весьма многое, чтобы полностью понять эти взаимодействия. Совершенно очевидно, что образование комплексов с крахмалом и другими соединениями приводит к внедрению галогена в спираль полисахаридов. По-видимому, при этих [c.91]


    Для полисахаридов с разветвленными цепями (амилопектина и гликогена) наряду с процессом образования комплексов большое значение имеет процесс адсорбции молекулы иода 2 адсорбируются на поверхности боковых цепей. [c.275]

    Разделение линейных и разветвленных полисахаридов можно осуществить путем осаждения иодом линейного компонента образца из водного раствора хлорида кальция (образование комплекса линейного полисахарида с иодом). Образовавшийся комплекс снова распадается в водной среде. Растворимая часть образца оказывается сильно разветвленной. Две такие фракции отличаются также по величине количественного отношения галак-тоза/арабиноза/ксилоза [33]. [c.303]

    При образовании комплексов с амилозой каждая молекула йода охватывается витком спирали в 6 глюкозных единиц- см. например, обзор [74] по йодной реакции полисахаридов). [c.196]

    Образование глино-белковых комплексов ощутимо сказывается на ферментативной устойчивости глинистых суспензий. Отмечено связывание глиной углеводов, в тем числе сахарозы. По Д. Грин-ленду, она образует с монтмориллонитом комплексы, содержащие один-два слоя молекул в межпакетном промежутке. Аналогично ведут себя производные полисахаридов (целлюлоза, гемицеллюлоза, пектин и др.) [47]. [c.74]

    Примером гетерополисахаридов является гиалуроновая кислота, которая очень важна для высших организмов. Она входит в состав соединительной ткани в качестве основного компонента, заполняет межклеточное пространство тканей в комплексе с белками. Гиалуроновая кислота входит также в состав синовиальной жидкости - вязкого материала, окружающего суставы, который служит и смазкой и амортизатором. Стекловидное тело глаза также богато гиалуроновой кислотой. Поскольку водные растворы этого полисахарида гелеобразны, то гиалуроновую кислоту, как и другие подобные вещества, относят к мукополисахаридам. Гиалуроновая кислота представляет собой линейный полимер, образованный повторяющимися ди-сахаридными звеньями, состоящими из Р-О-глюкуроновой кислоты и Ы-ацетил-О-глюкозамина, соединенными Р-(1->3)-связью, а эти дисахарид-ные звенья соединены Р-( 1- 4)-связью (рис. 29). [c.70]

    Полисахариды играют важную роль в наружных мембранах некоторых клеток, участвуют в образовании клеточных оболочек бактерий многих видов. В мембранах полисахариды находятся в комплексах с белками и липидами — жировыми веществами, неизменно присутствующими в наружных и внутренних мембранах. Мембраны образованы комплексами белков с липидами и в ряде случаев с полисахаридами. [c.92]

    Образование антител стимулируется не только полисахаридом О-специфической боковой цепи и полисахаридом базального ядра, но также и липидом А, находящимся в комплексе, например, с сывороточным альбумином. Антитела к липиду А содержатся в крови не- [c.376]

    Нет никаких данных об образовании соединений включения амилопектинов или гликогенов со спиртами, жирными кислотами или другими органическими соединениями, которые образуют соединения с амилозой. Подобно йодным комплексам , такие соединения включения с разветвленными полисахаридами, по-видимому, должны были бы быть растворимыми, а следовательно, доказательством их образования могли бы быть или повышенная растворимость органического соединения в присутствии полисахаридов (см. главу восьмую, раздел VI) или уменьшение связывания иода полисахаридом. [c.546]

    Нестехиометрические адсорбционные комплексы и комплексы присоединения характерны не только для полисахаридов, но и почти для всех органических высокополимерных соединений, особенно для тех, которые содержат полярные группы. Известным примером служит образование гидратов, В среде водяного пара по мере увеличения его давления природная целлюлоза сорбирует все большее [c.558]

    На схеме 2.1 представлена последовательность операций по выделению глюкуроноксилана из стеблей травы Symphytum, aspe-rum [21]. Она включает извлечение полисахарида раствором щелочи, его осаждение и стадию очистки, основанную на способности этого полисахарида к образованию комплекса с раствором Фелинга. Полученный таким образом продукт гомогенен в условиях гель-фильтрации на сефадексах и электрофореза. Фракциоипрова-мие ГМЦ древесины показано на схеме 2.2. [c.53]

    Мейер указал на зависимость между йодной реакцией полисахарида и его строением чем больше степень ветвления (или чем меньше обратная ей величина — средняя длина цепи), тем более оттенок его окрашивания с иодом сдвигается в красную область. Мейер установил эту зависимость на основных представителях полисахаридов амилозе, амилопектине, гликогене и остаточном р-декстрине. Поскольку к концу 40-х годов XX в. механизм йодной реакции амилозы был рас-дпифрован (как процесс образования комплекса иода с полисахаридной цепью, окружающей его молекулы в виде спирали), было интересно выяснить роль более длинных (сравнительно с внутренними) наруж-лых цепей гликогена в йодной реакции. С этой целью нами фотометрически изучалась йодная реакция исходных гликогенов и продуктов, изолируемых в процессе постепенного р-амилолиза тех же препаратов, на разных стадиях их расщепления [54, 551. Таким образом, сравниваемые препараты имели одинаковое ядро , но наружные ветви гликоге-лов при Р-амилолизе постепенно подрезались . Расщепление гликогена кролика всего на 16,8% приводит в резкому изменению спектра исчезает максимум при 500 А, сдвигаясь в коротковолновую область, одновременно снижается величина поглощения в максимуме кривая поглощения приобретает такой же вид, как и для интактного гликогена лягушки. [c.116]


    Растворимость смешанного полисахарида в медноаммиачном растворе составляет 30—47% (для препаратов с содержанием звеньев альтрозы 42 и 25% соответственно). Причиной неполной растворимости является, по-видимому, невозможность образования комплекса с ионом Си + для звеньев альтропиранозы, так как для обеих возможных конформаций (С1 и 1С) расстояние между атомами кислорода ОН-групп у Сг и Сз превышает величину ЗА, необходимую для комплексообразования (для конформации альтрозы С1 это расстояние составляет 3,71 А, для 1С —3,45 А). [c.437]

    Комплексы GISO3H со слабыми основаниями, такими, как эфиры или амиды, заслуживают специального упоминания. В гл. 6 указывается на применение системы GISO3H—диэтиловый эфир для суль-фатирования спиртов. Цвет и выход продукта в случае лаурилового спирта значительно лучше, чем при применении одной кислоты или любого другого реагента. Этот факт говорит о том, что смесь является более мягким реагентом, чем одна кислота, и объясняется, по-видимому, образованием комплекса или оксониевой соли. Аналогичная система GISO3H—диэтиловый эфир этиленгликоля была применена для сульфатировання полисахаридов. [c.29]

    Как известно, растворение целлюлозы в медноаммиачном растворе, кадоксене, НЖВК и др. связано с образованием комплексов с вторичными ОН-группами элементарного звена. Поэтому превращение глю-копиранозных звеньев в звенья альтрозы, приводящее к увеличению расстояния между атомами кислорода а-гликолевой группировки (или отсутствие этой группировки в звеньях 3,6-ангидроглюкозы), вызывает резкое снижение растворимости смешанных полисахаридов (содержание нерастворимой фракции в зависимости от моносахаридного состава составляет от 55 до 100%). Ухудшение растворимости наблюдается также для сложных эфиров смешанных полисахаридов (нитрата, ацетата) по сравнению с соответствующими эфирами целлюлозы. [c.32]

    Комплексы с анионом тетрабората образуют простые сахара, спирты сахаров, полисахариды, дикетосахара, фенольные соединения (катехол, пирогаллол), кетокислоты. Прочные соединения с бором дает салициловая, молочная и дегидроаскорбиновая кислоты. Прочно связываются с боратом пиридоксин, рибофлавин, рибофлавинфосфат, коэнзим I (никотинамидадениндинуклеотид, НАД) и коэнзим II (никотинамидадениндинуклеотид-фосфат, НАДФ), аденозин-5-фосфат. Образование комплексов с этими соединениями обусловлено наличием в их составе рибо-зы. При образовании комплекса с салициловой кислотой необходимые для реакции гидроксильные группы возникают, вероятно, в результате гидратации карбоксильных групп. Кето- и дикето-кислоты реагируют с боратом, очевидно, благодаря гидратации кетогрупп. [c.47]

    Корневые выделения влияют на миграцию различных элементов. Они содержат хелаты (сидерофоры), способствующие растворению плохо растворимых фосфатов, соединений микроэлементов (железа и других металлов). В результате образования комплексов полисахаридов с тяжелыми металлами подвижность последних может уменьшиться. [c.151]

    В других опытах исследовали способность кроличьих антител класса IgG связывать комплемент после реакции с антигенами в зависимости от размеров антигенов. Антитела получали иммунизацией кроликов пневмококковыми полисахаридами. Антигены представляли собой набор олигосахаридов, выделенных из исходного полисахарида путем ею специальной обработки. В этой системе комплементсвязывающая активность иммунных комплексов проявлялась только тогда, когда размер сахарного олигомера увеличивался до 21-го сахарного остатка или более. Седиментационный анализ показал, что агрегаты, образованные комплексами антиген антитело в этом случае содержат четыре и более молекул антител (Jaton е. а., 1976). В таких агрегатах углы между Fab-субъединицами IgG варьируют от 90 до 180°, в то время как в [c.31]

    Как указывалось выше, полисахариды, не содержащие карбоксильных групп, не осаждаются в растворах, величина pH которых находится в пределах 4—5. Однако если нейтральные полисахариды перевести в полианяоны с образованием боратного комплекса или при очень высоком значении pH (выше 12) с ионизацией гидроксильных групп, полисахариды осаждаются с четвертичными аммониевыми соединениями. Таким образом, нейтральные полисахариды можно осадить или в виде боратных комплексов или в виде алкоголятов, образующихся за счет ионизации гидроксильных групп при высоких значениях pH. [c.45]

    Белки могут специфично взаимэдействэвать с другими макромолекулами, например с нуклеиновыми кислотами и полисахаридами. К макромолекулам относят также липиды, поскольку они образуют в водных растворах крупные агрегаты. В нуклеопротеидах, гликопротеидах или липопротеидах белок может составлять менее 50%, и суммарные свойства комплексов часто определяются небелковы.ми фрагментами. Более того, и образование, и стабильность структуры белков могут зависеть от их партнеров по комплексам. Эго наиболее очевидно для тех мембранных белков, которые соединяют различные углеводородные фрагменты липидного бислоя. [c.266]

    Заслуживает особого внимания применение высокомолекулярных комплексообразователей для выделения полисахаридов. Простейшим примером могут служить комплексы целлюлозы с амилозой или растительными галактоманнанами , образование которых объясняется сходством линейно построенных молекул этих соединений. Некоторые белки образуют нерастворимые комплексы с полисахаридами, например, кон-канавалин-А осаждает гликоген и некоторые другие высокоразветвлен-ные полисахариды . Наиболее избирательным методом осаждения полисахаридов является действие соответствующих антисывороток , применяемое в аналитических и, гораздо реже, в препаративных целях (подробнее об антигенных свойствах полисахаридов и явлении иммунитета см. стр. 518 и 604). [c.485]

    Инфракрасные спектры широко применяются для функционального анализа полисахаридов " , например для определения полноты метилирования (см. стр. 495) или образования других типов производных по гидроксильным группам, для обнаружения сложноэфирных, амидных группировок, сульфатов и т. д. В наиболее простых случаях с помощью инфракрасной спектроскопии можно выяснить конфигурации гликозидных связей в молекуле полисахарида. Метод предложен также для изучения межмолекулярных взаимодействий в полисахаридах например, отношение интенсивностей полос поглощения О—Н и О—В в спектрах образцов целлюлозы, обработанных тяжелой водой для замещения всех доступных атомов водорода гидроксильных групп на дейтерий, может служить мерой кристалличности полисахарида . Наиболее интересные данные о конформациях и ориентации полисахаридных цепей может дать изучение дихроизма в инфракрасных спектрах напряженных пленок полисахарида . Таким способом была подтверждена правильность приведенной выше конформации целлюлозы. Метод применим для исследования сложных природных полисахаридных комплексов с помощью этого метода удалось показать, например, что в растительном материале многие гемицеллюлозы ориентированы вдоль целлюлозных фибрилл - 168  [c.517]

    Полисахариды соединительных тканей (хондроитинсульфаты, гепарин и др., см. стр. 541) образуют с белками этих тканей комплексы, которые долгое время считали комплексами ионного типа, образованными сульфогруппами сульфированных углеводов и основными группами белка. В настоящее время, однако, установлено, что в действительности это белково-углеводные соединения, связанные ковалентной, хотя и довольно лабильной, связью. Комплекс хондроитинсульфата с белком, который был выделен из гиалинового хряща в условиях, исключающих гидролитический разрыв связей , имеет молекулярный вес, достигающий нескольких миллионов. Он содержит, по-видимому, около 20 цепей хондроитинсульфата, присоединенных к белковой цепи , т. е. относится к гликопротеинам типа П1. Результаты мягкого щелочного гидролиза свидетельствуют о наличии 0-гликозидных связей в этом гликопротеине , однако возможно, что они не являются единственным типом связи . После обработки гиалуронидазой, расщепляющей углеводные цепи, и папаином, расщепляющим белковую цепь, выделены гликопептидные фрагменты, содержащие галактозу, ксилозу, а также аминокислоты, в том числе серин . Исследования, проводимые в настоящее время, должны дать окончательный ответ на вопрос о природе связи в комплексе. [c.580]

    Полифункциональность моносахаридных единиц обусловливает большой набор возможных типов связи между мономерными остатками, что приводит к разнообразию в предпочтительных конформациях полисахаридной цепи и, следовательно, к различиям в физических свойствах и биологических функциях полисахаридов. Разнообразие типов связи может возникать не только из-за участия разных гидроксильных групп остатков моносахарида в образовании гликозидной связи, но и из-за различной конфигурации гликозидного гидроксила. Так, целлюлоза (Р-1,4-глюкан) и амилоза (а-1,4-глюкан) существенно отличаются по конформации молекул.и физическим свойствам. Для целлюлозы характерна способность образовывать длинные вытянутые нити, а молекула амилозы существует в растворе в виде свернутого клубка и легко дает комплексы, в которых полисахаридная цепь образует спиральную вторичную структуру. Это, несомненно, обусловливает различие в биологических функциях целлюлозы и амилозы. [c.607]

    Как комплсксообразующие агенты для осаждения полисахаридов ГМЦ применяются соли меди и гидроксид бария. В первом случае осадителем обычно служит реактив Фелинга, реже [124] ацетаты или сульфаты меди. Образование нерастворимых медных комплексов связано, вероятно, с наличием в полисахариде пространственно доступных для ионов меди гидроксильных группировок. Полагают [112],что этому процессу способствует присутствие в структуре полисахарида остатков уроновых кислот и моносахаридов с соседними ( -гидроксильными группами. Разложение медных комплексов полисахаридов ГМЦ осуществляют кислотами (концентрированной хлороводородной кислотой), после чего полисахарид из раствора осаждают спиртом. Следует отметить, что как крепкая щелочь, присутствующая в растворе Фелинга, так и хлороводородная кислота, применяемые для регенерации полисахарида, могут приводить к частичной деградации и деполимеризации полисахарида, в частности к гидролизу сложноэфирных связей. [c.47]

    Структурные особенности веществ, образующихся при действии гидроксидов щелочных и других металлов на гидроксильные группы полисахаридов ГМЦ, изучены еще н.едостаточно. При низких температурах вероятно образование алкоголятов ксиланов, маннанов, галактанов и появление малоустойчивых комплексов. По мере повышения температуры имеют место щелочной гидролиз по гликозидным связям и преобразование концевых восстанавливающих групп остатков моносахаридов. [c.137]

    Для выяснения механизма ФГ полисахаридов ГМЦ, оиреде-ления активности ферментных комплексов или индивидуальных высокоочииденных ферментов псиользуют ГМЦ, выделенные из растительных материалов. В этом случае на ФГ гемнцеллюлоз не влияет экранирующее действие целлюлозы, лигнина или других компонентов клеточной оболочки, т. е. образование промежуточных соединений (ES) между ферментом (Е) и субстратом (S) происходит без препятствий и кинетические параметры реакции зависят от свойств и концентрации реагирующих компонентов, значения pH, температуры, ионной силы среды и т. д. ФГ не тормозится диффузией фермента к субстрату через клеточные стенки или слой другого полимера, диффузией и удалением продуктов реакции от места их образования в среде. На гидролиз определенной связи в полисахаридах может влиять надмолекулярное строение ГМЦ, ио эта проблема почти ие исследовалась. [c.226]

    Наряду с классическим существует и так называемый альтернативный путь, или путь вктивации комплемента, происходящей без участия антител, обнаруженный Л. Пилемером. Этот путь является, по-видимому, основным иа ранних этапах борьбы организма с бактериальной инфекцией, когда антитела еще не образова-лисЕ>, представляя собой первую лнн>1Ю защиты. Альтернативный путь также заканчивается образованием С5-конвертазы, однако ее формирование происходит без участия С1, С2 и С4 компонентов за счет взаимодействия СЗ компонента с другими факторами (рнс. 12.5). Реакция активируется полисахаридами клеточных стенок микроорганизмов и начинается с создания на мембране комплекса активированного СЗ компонента (СЗЬ) с фактором В. По- [c.222]

    Макромолекулы, такие, как белки, полисахариды и нуклеиновые кислоты, внутри своих индивидуальных групп отличаются по физико-химическим свойствам лишь незначительно поэтому их выделение, основанное на различиях в этих свойствах, например, с помошью ионообменной хроматографии, гель-фильтрации или электрофореза сопряжено с известными трудностями и требует много времени. Вследствие этого в ходе выделения существенно падает их активность из-за денатурации, расщепления, ферментативного гидролиза и т. п. Одним из наиболее характерных свойств этих биологических макромолекул является их способность обратимо связывать другие вещества. Например, ферменты образуют комплексы с субстратами или ингибиторами, антитела— с антигенами (против которых получены), а нуклеиновые кислоты, такие, как информационная РНК, гибридизуются с комплементарными ДНК и т. д. Образование специфических диссоциирующих комплексов биологических макромолекул служит основой метода их очистки, известного как аффинная хроматография. [c.9]

    Рве. 17-51. Сравнительная схема образования СЗ-конвертазы и С5-юнвергазы классическим и альтернативным путями. В отличие от классического пути, запускаемого комплексами антиген-антитело, альтернативный путь приводится в действие субкомпонентом СЗЬ, полисахаридами клеточных оболочек и другими активаторами. Активированные компоненты юмплемента часто обозначают с помощью верхней черты (например, активированный С1 - как UT) ТОбы упростить текст, мы не "ользовались этим обозначением. [c.47]

    Соединения включения амилозы с органическими веществами не обладают свойствами, которые позволили бы наблюдать поста-дийно за их образованием в растворе. В противоположность этому образование соединений включения амилозы с иодом сопровождается интенсивным окрашиванием раствора в голубой цвет кроме того, изменение активности иода, находящегося в равновесии с комплексом в процессе его образования, может определяться электрометрически, т. е. по изменению потенциала электрода, опущенного в раствор, содержащий иод и иодид-ионы. Оба свойства этого комплекса можно уловить при очень низких концентрациях амилозы (0,01% и ниже), при которых комплекс остается в-растворе. Поэтому многие исследователи применяли спектрофотометрические и потенциометрические методы для определения состава комплекса, оценки константы равновесия и термодйнамических величин реакций образования, а также для изучения влияния на реакцию таких факторов, как структура и длина цепи полисахаридов, разветвленность цепи, концентрация соли и тепмература. [c.535]


Смотреть страницы где упоминается термин Полисахариды образование комплексов: [c.36]    [c.56]    [c.110]    [c.203]    [c.110]    [c.334]    [c.334]    [c.278]    [c.251]    [c.275]    [c.186]    [c.485]    [c.305]    [c.27]    [c.162]   
Нестехиометрические соединения (1971) -- [ c.558 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы образование

Полисахариды

Полисахариды образование



© 2024 chem21.info Реклама на сайте