Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полистирол физические свойства

    Различия наиболее распространенных синтетических смол в отношении их важнейших физических свойств очень малы. Удельные веса колеблются от близкого к единице для полистирола до 1,8 для фенолоальдегидных смол. Показатели преломления имеют порядок величины от 1,45 до 1,55, сопротивление на разрыв — от 200 до 650 кг/сл4 в тех случаях, когда требуется пластичность, сопротивление на разрыв, разумеется, понижается. Модуль упругости колеблется от 7000 до 35000 кг/сл, но для карбамидных смол достигает 100 ООО. Температура размягчения для формования заключена в узкие пределы если она ниже 60° С, то термопластические смолы оказываются слишком мягкими при обычной температуре, а отверждение термореактивных смол наступает раньше, чем они готовы для формования. При температурах выше 175 °С начинается термический распад. Хорошие смолы дол/кны быть водостойкими. Эфиры целлюлозы иногда поглощают в 24 часа при комнатной температуре до 8% воды, между тем как многие другие смолы в тех же условиях поглощают не более нескольких сотых процента. [c.478]


    Строение полимера определяет его свойства. Скелет (основная цепь) большинства полимерных молекул представляет собой цепочку, состоящую из углеродных атомов, но в отдельных случаях может состоять из других элементов, например, из кремния. В полиолефинах атомы в основной цепи связаны углеродными связями, в других полимерах можно найти амидные, эфирные и другие связи. Некоторые из этих связей, такие, как эфирные или амидные, способны сильно взаимодействовать с соседними молекулами, влияя тем самым на свойства полимеров. В некоторых полимерах, например в поливинилхлориде, основная цепь образована углеродными атомами, но вдоль цепи располагаются полярные атомы хлора, что, в частности, позволяет прочно удерживать молекулы пластификатора. Другие полимерные цепи несут громоздкие боковые группы, например в молекулу полистирола входят крупные бензольные ядра. Они препятствуют плотной упаковке и сильно влияют тем самым на физические свойства полимера. [c.57]

    Ударопрочный полистирол в настоящее время в основном получают методом полимеризации стирольного раствора каучука. Вначале проводят форполимеризацию стирольного раствора в массе при перемешивании до степени конверсии 12—40%. Затем полимеризацию завершают либо в массе без перемешивания, либо в водной суспензии с перемешиванием. Интенсивность перемешивания в процессе форполимеризации оказывает решающее влияние на свойства конечного продукта [5, 6]. Проведение процесса при высокой скорости перемешивания приводит к образованию продукта с низким содержанием гель-фракции и с малыми размерами частиц каучука. При снижении скорости перемешивания возрастает содержание гель-фракции и увеличиваются размеры частиц каучука. Размеры частиц и содержание гель-фракции являются двумя важнейшими структурными параметрами, определяющими физические свойства ударопрочного полистирола. [c.252]

    Следует отметить, что представления о гибкости полимерной цепи, основанные на экспериментальных измерениях различных физических свойств, могут существенно различаться. Например, размеры макромолекул поли- а-метилстирола в 0-условиях заметно меньше, чем размеры молекул полистирола, в то время как температура стеклования Т полистирола значительно ниже Tg поли-а-метилстирола. Сходная ситуация наблюдается и при сопоставлении свойств натурального каучука и г мс-1,4-полибутадиена. Описанные противоречия , очевидно, объясняются тем, что свойства разбавленных растворов характеризуют равновесную гибкость цепи, тогда как измерения Т дают информацию о кинетической гибкости макромолекулы. Поскольку содержание конформаций Т, G ж G в смеси поворотных изомеров при фиксированных концах цепи определяется температурой, то, нагревая, например, пленку, отлитую из раствора при низкой температуре, выше Tg, можно с помощью тепловых [c.159]


    В наше время часто ту или иную новую науку — кибернетику, ядерную физику или молекулярную биологию — называют наукой века . К таким наукам относится и старейшая наука химия, изучающая превращения вещества, результатом развития которой явилось создание новых соединений, открывших дорогу технической революции, таких как неизвестные ранее, но крайне нужные в наше время вещества — красители, антибиотики, каучуки, пластмассы, синтетические волокна, высококалорийное топливо и т. п. Уже давно используются такие природные высокомолекулярные соединения, как целлюлоза, крахмал, белки, кожа, шерсть, шелк, мех, каучук, обладающие многими ценными свойствами. Постепенно ученые научились придавать полимерам нужные механические и физические свойства. Изучив химическую природу полимеров и возможности ее направленного изменения, стали получать новые ценные материалы (например, вискозу) путем модификации природных полимеров. Более того, сложнейшие по структуре природные полимеры, а также и совершенно новые, которые природа не синтезирует (полиэтилен, полипропилен, полистирол, поливинилхлорид, фенолформальдегидные смолы, полисилоксаны и др.), созда- [c.4]

    Физические свойства. Изучению физических свойств полистирола различными методами, включающими спектральные исследования, посвящены многочисленные работы. [c.218]

    Физические свойства полистирола [c.323]

    Физические свойства замещенных полистиролов [c.330]

    Для данной темы программа предусматривает демонстрационный опыт ознакомление со свойствами бензола и следующие лабораторные опыты горение бензола ознакомление с физическими свойствами бензола, стирола и полистирола. [c.62]

    Полистирол с большой степенью полимеризации (мол. вес 250 000—1 000 000) прозрачен, как стекло. Преподаватель отмечает интересное свойство органических соединений, заключающееся в том, что введение новой органической группы меняет физические свойства полимеров. Например  [c.168]

    Физические свойства полистиролов [c.328]

    ФИЗИЧЕСКИЕ СВОЙСТВА РАЗЛИЧНЫХ ВИДОВ ПОЛИСТИРОЛА И ПОЛИМЕТИЛСТИРОЛА [c.139]

    Часто для улучшения стойкости волокон к высоким температурам и свету па заводах-изготовителях сырья в композиции вводят специальные добавки. Это необходимо для полипропилена, считающегося наиболее перспективным материалом для изготовления волокон. Полистирол, предназначенный для производства волокон, не подвергают стабилизации или пластикации, но обычно он имеет очень большой молекулярный вес. Предпочтительнее всего марка с высокой теплостойкостью, так как волокна из такого материала имеют лучшие физические свойства. Для повышения огнестойкости волокон добавляется окись сурьмы или хлорированный парафин либо и то и другое. Такая композиция трудно перерабатывается и имеет более высокую стоимость по сравнению с натуральными волокнами с огнестойким покрытием. Для этих целей применяют также поливинилхлорид и получают хорошие волокна, но переработка и этого материала затруднительна. [c.186]

    Предположим, что tl невелико. Кривая для определения Т) на рис. 139 построена для пластин с такой же толщиной, как и у коробок из полистирола. Считая, что условия охлаждения при литье пластин такие же, как при отливке коробок из полистирола, мы можем оценить величину средней температуры полимера в фо-рме. Зная физические свойства полистирола, среднюю температуру и давление в момент затвердевания полимера во впусковом канале, можно по уравнению (13-9) вычислить значение у. Результаты вычислений также приведены в табл. 13-2. [c.378]

    Физические свойства регулярно построенных и атактических полимеров заметно отличаются [кристалличность, повышенная механическая прочность, более высокая, отчетливая температура плавления и другие свойства у стереорегулярных полимеров, например изотакти-ческий полистирол т. пл. 220°С, атактический т. пл. (размягч.) 80—90 С]. [c.208]

    При одинаковой степени вытяжки физические свойства различных полимеров изменяются неодинаково. Наибольшие изменения характерны для поликарбоната, меньшие — для поливинилхлорида, полиметилметакрилата и полистирола Детальное исследование диаграмм растяжения предварительно ориентированных стеклообразных полимеров показало что их деформационные свойства определяются в основном ориентацией звеньев макромолекул. Последняя характеризуется величиной двойного лучепреломления. [c.157]

    Многие полимерные материалы обладают ценными химическими и физическими свойствами и успешно применяются в различных областях энергетической техники как конструкционные и электротехнические материалы. Для этой цели используются термопластичные и термореактивные полимеры. Из термопластичных полимеров широко применяют полиметилметакрилат (органическое стекло), полистирол, полиэтилен, винипласт (непластифицированный поливинилхлорид), полиизобутилен, капрон, фторопласт-4 (политетрафторэтилен), из термореактивных — фенопласты, получаемые на основе фенолоформаль-дегидной смолы аминопласты, получаемые на основе мочевино-формальдегидной смолы полиэфирные, эпоксидные и кремнийорганические полимеры. [c.337]


    Существенное влияние на физические свойства полимеров оказывают четыре фактора, характеризующие структуру макромолекул (полимерных цепей). Один из факторов - средняя длина цепи, к другим трем факторам относятся сила взаилюдействия между полимерными цепями, регулярность упаковки цепей и жесткость отдельных цепей, a юe сильное меж-молекулярное взаимодействие возникает, когда цепи имеют поперечные. мостики, т.е, образуют друг с другом хи.мические связи. Этот процесс называют сшиванием, он часто происходит при нагревании, Образование поперечных связей замыкает полимерные цепи в трехмерную сетку, поэтому таким поли.мерам при нагреве уже нельзя придать новую форму. Жесткие полимеры такого типа называют термоактивными К ним относятся полиэфирные, эпоксидные, алкидные и другие с.мольг Трехмерная (сшитая) структура позволяет эластомерам (напри.мер, каучук) долго вьщерживать достаточно высокие те.мпературы и циклические нагрузки без остаточной деформации. Многие перспективные полимеры, напротив, термопластичны и размягчаются при нагреве (например, полиолефины, полистирол и др ). [c.48]

    Физические свойства изо- или синдиотактических полимеров существенно отличаются от соответствующих свойств атактических полимеров. Например, атактический полистирол представляет собой аморфный полимер, который не может быть закристаллизован. Изотактиче-ский полистирол является частично кристаллическим по- [c.12]

    Изучение диэлектрических потерь, диэлектрической проницаемости и других физических свойств изотактических, синдио-тактических и атактических полимеров показало, что атактические полимеры весьма близки к синдиотактическим. Изотакти-ческие полистирол [83], поливинилциклогексан, полипропилен, в отличие от атактических полимеров, являются частично кристаллическими полимерами и для них характерны меньшие значения тангенса угла диэлектрических потерь в области максимума дипольно-сегментальных потерь и сдвиг максимума в сторону более высоких температур. Например, при частоте 1000 Гц у атактического полнвипилциклогексана бм акс — 0,004, 7 макс = = 403 К, у изотактического бмакс—0,001, 7макс = 448 К- Эти [c.98]

    ФИЗИЧЕСКИЕ СВОЙСТВА СМЕСЕЙ ПОЛИ-2,6-ДИМЕТИЛОКСИФЕНИЛЕНА С ПОЛИСТИРОЛОМ [c.129]

    Продукты полимеризации можно получить из моно- или полиненасыщен-ных соединений можно также использовать вещества, которые приобретают способность к полимеризации в результате вторичных реакций. Большинство углеводородов и их производных не имеют полярных антиподов среди составляющих их атомов и поэтому гомеополярны, например углеводороды, хлор-производные, сложные и простые эфиры и частично спирты. Другие соотношения существуют в гетерополярных органических соединениях, например истинных кислотах, основаниях и солях. Применение гомео- или гетерополярных органических соединений в процессах полимеризации оказывает большое влияние на физические свойства образующихся полимеров. Натуральные и искусственные продукты полимеризации могут служить примерами значительных различий физических свойств у этих двух класссв соединений как в мономерном, так и в полимерном состоянии. Такие высокомолекулярные гомеополярные соединения, как каучук, ацетат целлюлоза, полистирол и поливинилхлорид, растворяются в органических растворителях, но не растворяются в воде, в то время как гетеро поляр ные высокомолекулярные соединения, например альбумин илиХполиакриловые кислоты, дают с водой растворы. [c.639]

    Каучуки — высокомолекулярные вещества, обладающие высокими эксплуатационными качествами, в частности хорошей эластичностью, водонепроницаемостью, тепло- и морозоустойчивостью, высокой стойкостью к старению. Уже свыще 100 лет каучук используют в битумных композициях для придания им эластичности, а следовательно для повыщения эксплуатационной надежности дорожных и кровельных материалов, герметиков и лаковых покрытий. Модификация битумных материалов каучуками заключается в следующем повыщается температура размягчения, уменьшается з ависи-мость пенетрации от температуры, снижается температура хрупкости, возникает способность к эластическим обр атимым деформациям, повышается жесткость и прочность битумной смеси, значительно улучшаются низкотемпературные характеристики. Для смешивания с битумом применяются чистые (неву 1канизованные) каучуки, так как они наиболее эффективно модифицируют физические свойства битумных материалов. Разнообразие видов каучуков, применяющихся для модификации битума и нашедших практическое применение, невелико. Подробно исследовано использование натурального каучука в качестве добавки к битумам в основном дорожных марок. Из синтетических каучуков наиболее часто применяют дивинилстирольный, бутадиенстирольный, поли-хлоропреновый (неопреновый) [170, 171, 172, 173, 229] и некоторые блок-сополимеы, в частности полистирол-полиизопрен— полистирол и полистирол—полибутадиен—полистирол [174, 175]. Каучукоподобные олефины полиизобутилен, сополимер изобутилена с изопреном (бутилкаучук) и сополимер этилена с пропиленом (СКЭП) также используются для совмещения с битумом [169, 176, 223]. Регенерированный каучук и отходы шин в виде крошки при совмещении с битумом дают грубые смеси, так как мало набухают в компонентах битума. Однако смеси обладают повышенными эластическими и упругими свойствами по сравнению с битумами, и поэтому указанный дешевый материал широко применяется для изготовления битУМНо-полимерных мастик [69,176]. [c.59]

    Заметное влияние введения электроотрицательных групп на склонность ненасыщенных углеводородов к полимеризации можно иллюстрировать на примере стирола. Реакции полимеризации ненасьш енных арилзамещенных углеводородов, в особенности стирола СсНоСН СН , интересны как относительной легкостью полимеризации, так и смолообразным характером многих получаемых полимеров. Поведение арилзамещенных олефинов во всем весьма сходно с поведением простых диолефиновых углеводородов с сопряженной двойной связью Полистирол являющийся продуктом полимеризации стирола под влияние,м нагревания, катализаторов или свста, представляет собой прозрачное стеклообразное вещество с высоки м молекулярным весом, нерастворимое в воде, спирте и нефтяных углеводо1Х>дах. Он растворяется в бензольных углеводородах, хлорированных углеводородах и в сложных эфирах. Физические свойства по.тастирола таковы, что делают его чрезвычайно ценным пластически.м продуктом. С развитием методов получения стирола, например пиролизом этилбензола, приготовляемого конденсацией этил ена с бензолом полистирол без сомнения при.об >е-тет огромное техническое значение [c.670]

    На примере полистирола Енкель и Уберрейтер показали влияние различных длин цепочек на физические свойства. Низкомолекулярные стекла обычно хрупки высокомолекулярные, напротив, упруги и жестки. При термохимических исследованиях эта разница также выражается отчетливо, например в различных значениях теплот сгорания, измеренных Лушинским . Кинетика реакций при образовании цепочек полистирола в процессе его полимеризации подробно рассмотрена Марком . По существу, здесь следует различать три состояния состояние образования зародышей, роста цепочки и окончательного ее разрыва , К другому весьма важному фактору строения органических синтетических пластмасс, подтверждающему их аналогию с силикатными стеклами в отношении протекающих в них процессов, относится размягчающее действие добавок, как это недавно показал Енкель . Эфиры жирных кислот, которые представляют собой высокоактивные умягчители органических пластмасс при сохранении своей летучести, вполне аналогичны по своим действиям щелочам в силикатных скелетах. Последние также относятся к хорошим умягчителям и также легко выносятся или улетучиваются из структуры силиката. [c.213]

    Полипропилен представляет собой высокомолекулярный продукт, подучаемый стереоспецифической полимеризацией пропилена при низком давлении в присутствии катализаторов Циглера-Натта.Этот полимер отличается кристаллической структурой и по своим физическим свойствам намного превосходит существующие аморфные полимеры. В литературе описаны свойства следующих кристаллических полимеров полипропилена, полистирола, поливиниловых эфиров,полимерной окиси пропилена и др. Кристаллическая структура полипропилена (как и других кристаллических полимерных структур) ш-ределяется пространственным расположением ассиметрического атома углерода, входщего в состав мономера. Это дает возможность ассиметричеокому атому углерода при стереоспецифической полимеризации принимать определенное пространственное положение. Этот полимер может иметь изотактическую структуру (все метильные группы расположены по одну сторону от условной плоскости) или син-диотактическую (метильные группы чередуются в строгой последовательности по обе стороны от условной плоскости). [c.70]

    Бирштейн Т. М., Внутреннее вращение в полимерных цепях и их физические свойства. XVI. Средняя оптическая анизотропия молекул изотактических винильных полимеров, ВМС, 1, № 5, 748—757 (1959) см. также Бирштейн Т. М., Соколова Е. А., Внутреннее вращение в полимерных цепях и их физические свойства. XVIII. Средняя оптическая анизотропия молекул изотактического полистирола, ВМС, 1, № 7, 1086-1093 (1959). [c.508]

    Физические свойства высокомолекулярных соединений во многом зависят от степени полимеризации, т. е. от среднего числа молекул мономера, связанных в макромолекуле. С увеличением степени полимеризации повышаются твердость полимерного соединения и химическая стойкость. Это можно продемонстрировать на примере полистирола. При степени полимеризации, равной 2—10, полимер жидкий или твердый частично кристаллизуется, хрупкий растворяется в бензоле быстро без набухания, образуя низковязкий раствор. С увеличением степени полимеризации до 10—100 полимер после осаждения образует порошок, который слабо набухает в бензоле, образует ннзковязкий раствор, используется для приготовления лаков. При степени полимеризации 100—500 полимер получается в виде коротких нитей. Он вязкий, стеклообразный, после набухания в бензоле образует вязкий раствор, используемый в композициях для литья термопластической массы. В случае степени полимеризации, равной 500—15 000, после осаждения образуются длинные нити очень вязкого, аморфного материала. При взаимодействии с бензолом полистирол набухает, растворяется медленно, образуя высоковязкий раствор, который применяется для изготовления пленок и лент. [c.126]

    Некоторые полимеры можно синтезировать в различной стереохимической форме так, например, для полистирола возможны две формы — изотакттеская и атактическая, имеющие различные физические свойства. Изотактический полимер можно получить в кристаллической форме эта форма плавится при 250° С и нерастворима в большинстве обычных растворителей. Атактический полимер аморфен, имеет низкую температуру плавления и легко растворим в большинстве растворителей. Локальная стереохимическая структура изотак-тического полистирола в виде полностью растянутой [c.187]

    Чарльзби [1, 2, 3, 4] объяснил изменение физических свойств некоторых полимеров (полиэтилен, нейлон, полистирол, поливиниловый спирт, поливинилхлорид, природная резина, неопрен и гуттаперча) сшиванием молекул полимера при радиолизе. Сшивание происходит в результате отрыва атома водорода от молекулы полиэтилена и рекомбинации получающихся при этом свободных радикалов с образованием новых связей между молекулами. В пользу такого объяснения, по мнению Чарльзби, говорит тот факт, что основную массу газов, выделяющихся при радиолизе полиэтилена, составляет водород возможности образования двойных связей им не рассматриваются. Кроме того, он обнаружил процессы окисления молекул полимера кислородом воздуха, идущие при облучении на поверхности полиэтилена. Заключения Чарльзби о структурных изменениях в полиэтилене основаны на косвенных данных, а именно, на изменении свойств и физических констант полимера после радиолиза (растворимость, точка плавления, плотность, изменение веса и т. д.). [c.196]

    На основании представлений, развитых в предыдущем разделе, можно установить связь между свойствами многих важных в промышленном отношении тер мо пластиков и эластомеров и их химическим строением. Теперь должно быть понятно, почему простые линейные полимеры типа полиэтилена, полиформальдегида и политетрафторэтилена представляют собой кристаллические вещества, обладающие довольно высокими температурами плавления. Полученные обычным способом поливинилхлорид, поливинилфторид и полистирол обладают гораздо меньшей степенью кристалличности и имеют более низкие температуры плавления у этих полимеров физические свойства сильно зависят от стереохимической конфигурации. Полистирол, полученный методом свободнорадикальной полимеризации в растворе, является атактическим. Этот термин означает, что если ориентировать углеродные атомы полимерной цепи, придав ей правильную зигзагообразную форму, то фенильные боковые группы окажутся распределенными случайным образом по одну и по другую сторону вдоль цепи (как это показано на рис, 29-7). При полимеризации стирола в присутствии катализатора Циглера (разд. 29-5,А) образуется изотактический полистирол, отличающийся от атактического полимера тем, что в его цепях все фенильные группы распо- [c.498]

    Но полистирол может быть получен в стереоизомерной модификации, хорошо щейся (рис. П-17). В кристаллическом состоянии полистирол по физическим свойствам отличается от своей аморфной формы. В изотактической структуре все стереоизомерные группы расположены по одну сторону плоскости основной тхепи. При синдиотактиче-ской структуре имеет место чередующееся расположение групп. При атактической структуре группы расположены нерегулярно. [c.65]

    Основным сырьем для получения полистирола и сополимеров на основе стирола являются стирол, а-метилстирол, га-хлорсти-рол, 2,5-дихлорстирол, К-винилкарбазол, аценафтилен, р-винил-нафталин, акрилоЙ1трил, винилтолуол, метилметакрилат и другие. Основные физические свойства некоторых мономеров приведены в табл. 14. [c.270]

    Все рассмотренные выше структурные особенности в очень большой степени определяют физические свойства полимерного образца. Мы не стремимся дать исчерпывающую картину структурных свойств, а только укажем на некоторые корреляции. Вязкость раствора и вязкость расплава зависят от таких переменных, как химическая структура, гибкость цепи и особенно молекулярный вес. Растворимость полимера в очень высокой степени определяется специфическим взаимодействием полимера и растворителя, но растворимость также может зависеть от геометрии цепи. Например, атактический полистирол очень хорошо растворим в бензоле, в то время как изотактиче-ская форма практически нерастворима в этом растворителе. Механические свойства твердого полимерного образца особенно сильно зависят от геометрического расположения цепных молекул. При соответствующих условиях некоторые полимеры можно растянуть, и в результате цепи молекул необратимо расположатся более или менее параллельно направлению вытягивания. Разрывная прочность такого образца, измеренная в направлении растяжения, может быть в десятки раз больше, чем у неориентирован- [c.9]

    Достаточно полной теории относительно влияния разветвлен-ности на физические свойства полимеров с гибкими макромолекулами еще нет. Качественно можно предсказать, что результатом уменьшения радиуса инерции, рассмотренного в разделе 9м, должно быть сильное влияние разветвленности на вязкость. Частичная компенсация влияния этого уменьшения может происходить за счет небольшого увеличения Е в связи с увеличением плотности внутри частицы. Во всяком случае суммарный результат, по-видимому, должен выражаться в уменьшении т)1. Это предсказание подтверждено исследованиями Турмонда и Зимма на образце полистирола, имеющего небольшое число точек разветвления. [c.463]

    Малинский нашел, что присутствие небольшого количества нитрильных групп в цепи несколько повышает температуру плавления и значительно увеличивает показатели прочностных свойств полистирола. В табл. Х.З приведены данные Хансона и Циммермана о зависимости физических свойств сополимеров стирола и акрилонитрила от содержания нитрила. Следует отметить, что показатели всех указанных в таблице свойств возрастают с увеличением содержания нитрила в сополимере. Установлено что присутствие звеньев нитрила коричной кислоты, бензилиденмало-нитрила и этилбензилиденцианацетата повышает термостойкость полистирола. Фордайс и Хэм нашли, что в системе стирол — акрилонитрил термостойкость сополимеров линейно возрастает с увеличением содержания нитрила по крайней мере до 30 мол. %. Эти авторы предположили, что повышение термостойкости обусловлено образованием межмолекулярных водородных связей между а-во-дородом стирольного звена и азотом нитрильной группы. Они также отметили, что сополимеры стирола с фумаронитрилом, содержащие более 10% фумаронитрила, растворяются в ацетоне, в то время как сополимеры, содержащие менее 10% нитрильного компонента, в ацетоне нерастворимы. Поскольку аналогичная закономерность наблюдается при растворении сополимеров стирола с акрилонитри- [c.291]

    Физические свойства полистирола оказываются лучше, если его полимери-зуют в присутствии 0,1—2% тунгового или до 5% ойтицикового масла. Наоборот, качество штандойля улучшается, если при его изготовлении в реакцию введено 5—10% виниловых соединений, что обычно обеспечивается повышением давления и температуры ". [c.190]

    Промышленная ценность привитых сополимеров (а также блок-сополимеров, рассматриваемых как часть класса привитых сополимеров) зависит в значительной мере от того, имеют ли они преимущества перед механическими смесями полимеров. Между этими двумя типами материалов много общего, что особенно заметно для привитых сополимеров, получаемых в промышленных масштабах механо-химическим способом. Значительная разница проявляется, например, в случае ударопрочного полистирола, потому что привитой сополимер обладает необычной комбинацией физических свойств. [c.113]

    Различия в молекулярном весе полимеров не сказываются существенно на физических свойствах порощков. При нормальной температуре порошки многих низкомолекулярных полимеров (эпоксидные, феноло- и циклогексанон-формальдегидные смолы, производные канифоли, модифицированные полиэфиры, шеллак и др.) так же сыпучи и стабильны, как и порошки полимеров с высокими молекулярными весами, например полистирола, поливинилбутираля и т. д. [c.26]

    Между рассмотренными выше группами находятся полимеры, обладающие каучукоподобной эластичностью и пластичностью (волокнообразующие соединения обладают пластическими свойствами и частично перерабатываются аналогично пластическим массам (см. производные целлюлозы). Следует ваовь указать на связь между молекулярным весом или степенью полимеризации и физическими свойствами высокомолекулярных соединений, приведенных во второй и третьей строках табл. 57. Для нолиизобутилена соответствующие данные приведены в табл. 21 (см. стр. 72), для полистирола— в табл. 63 и для натурального каучука — в табл. 64. [c.211]


Смотреть страницы где упоминается термин Полистирол физические свойства: [c.225]    [c.212]    [c.476]    [c.127]    [c.138]    [c.84]   
Химия и технология синтетических высокомолекулярных соединений Том 9 (1967) -- [ c.323 , c.328 ]




ПОИСК







© 2025 chem21.info Реклама на сайте