Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектр исследование структуры методами

    В данной главе рассматриваются наиболее важные и широка применяемые методы исследования структуры силикатов дифференциальный термический анализ, рентгеноструктурный и рентгенофазовый анализ, электронная микроскопия, инфракрасная спектроскопия, спектры комбинационного рассеяния и электронный парамагнитный резонанс. [c.150]


    Поразительная специфичность действия ферментов привела к созданию теории замка и ключа, согласно которой для протекания реакции необходимо точное структурное соответствие между субстратом и активным центром фермента. Проведенные эксперименты убедительно доказали адекватность этой идеи, однако сама теория претерпела существенное изменение. Считается, что если фермент — это замок , а субстрат — ключ , то введение ключа в замок часто индуцирует конформационные изменения в молекуле белка. Имеется множество работ, в которых показано, что фермент укладывается вокруг субстрата, обеспечивая более точное соответствие подгоняемых структур. В пользу этого говорят данные по изменению спектров кругового дихроизма, спектров поглощения в УФ-области и констант седиментации, а также результаты исследования структуры комплексов ферментов с ингибиторами методом рентгеноструктурного анализа. Как мы уже видели ранее (гл. 4, разд. Д, I), идея индуцированного соответствия оказывается весьма плодотворной и при обсуждении взаимодействий субъединиц. [c.42]

    Нерастворимая в хлороформе часть продукта озонолиза — порошок красно-бурого цвета, дающий сигнал ЭПР. В ИК-спектрах наблюдается характерное для систем полисопряжения фоновое поглощение, понижена интенсивность алкильных групп, резко возросла интенсивность полосы карбонильных групп при 1710 см . На основании результатов элементного анализа и исследований физическими методами продуктов окисления озоном первичных нефтяных асфальтенов удалось установить, что при этом процессе происходит отщепление углеводородного обрамления полисо-пряженного ядра в структуре асфальтена. Полидисперсность алифатической части незначительна, так как в основном присутствуют радикалы с длиной углеводородной цепи Сг— s. Полученные данные свидетельствуют о том, что асфальтены построены из полисопряженных фрагментов, представляющих собой устойчивые к окислению поликонденсированные ароматические структуры, обеспечивающие специфику свойств асфальтенов, характерных для полисопрянсенных систем. Азот в основном содержится в конденсированных структурах (увеличение отношения N/ в 5 раз) сера в основном находится в мостиковых связях (уменьшение отношения S/ в 7 раз), соединяющих структурные элементы в молекуле асфальтенов. Увеличение отношения О/С почти в 40 раз в нерастворимом продукте озонолиза свидетельствует о том, что значительная часть его подверглась окислению. [c.141]

    Инфракрасная спектроскопия — один из прямых и точных методов исследования структуры вещества. Изучая положение и интенсивность линий инфракрасного спектра данного вещества, можно получить сведения о строении основных структурных группировок его, наличии в структуре вещества тех или иных функциональных групп. [c.157]


    Наличие таких характеристик, как химический сдвиг и константа спин-спинового взаимодействия, тесно связанных со строением молекулы и очень чувствительных к малым изменениям в ее структуре, объясняют большие возможности спектроскопии ядерного магнитного резонанса в исследовании структуры вещества в идентификации сложных соединений. Высокая разрешающая способность и чувствительность спектров к изменению структуры обеспечивает большие аналитические возможности метода, так как практически всегда позволяет найти аналитические линии даже для очень сложных смесей или соединений, близких по своему строению. Очень важным для аналитических целей является то обстоятельство, что взаимное влияние различных соединений в смеси обычно очень мало или вовсе отсутствует. Интегральная интенсивность сигнала данной группы зависит только от числа протонов в ней, что, конечно, широко используется как при исследовании структуры веществ, так и в аналитических целях. Все современные спектрометры ЯМР снабжены интеграторами, позволяющими быстро измерять интегральную интенсивность любого сигнала, даже сложного мульти- [c.344]

    Метод Лауэ применяют для исследования структуры монокристаллов. Монокристаллический образец помещается на пути рентгеновского луча, обладающего сплошным спектром (рис. 5 6, а). Этот немонохроматический луч, падая на кристалл, взаимодейству- [c.118]

    Очень важное значение для изучения химических свойств элементов, исследования структуры внешних электронных слоев атомов имеют излучения, отражаюш,ие изменения энергии валентных электронов. Им соответствуют длины волн в основном видимого (500 нм) и ультрафиолетового диапазона (100 нм). Спектральные исследования в этой области длин волн электромагнитного излучения получили название оптической электронной спектроскопии. Оптические спектры атомов могут быть получены, когда возбужденные тем или иным методом (электронного удара, поглощения кванта света, в результате столкновения при нагревании с другим атомом и т. п.) внешние (валентные) электроны атомов переходят из состояний с большей энергией в состояния с меньшей энергией. При этом излучается квант света, частота которого (см. 3.3) определяется соотношением —Е1=к и характеризует линию спектра. [c.67]

    Применимость методов структурного анализа обусловливается чистотой или, вернее, индивидуальностью пробы. Любому структурному анализу должно предшествовать отделение анализируемого вещества в наиболее чистом состоянии от возможных сопутствующих веществ химическим или физическим методом. В исключительных случаях (например, в случае спектроскопии ядерного резонанса высокого разрешения) допускается небольшое содержание примесей в анализируемом образце. Но в любом случае примеси усложняют расшифровку спектра анализируемого вещества. Для спектральных методов структурного анализа необходима небольшая проба анализируемого вещества (табл. 8.15). В случае раман-спектроскопии иногда необходимо брать пробу анализируемого вещества до 10 г. Применяя специальную технику (например, лазеры, микрокюветы, используя методы накопления), можно и для небольших проб веществ получить достаточно отчетливые спектры. Особенным преимуществом спектроскопических методов исследования структуры веществ является возможность получения спектров без разрушения образца (за исключением метода молекулярной масс-спектрометрии). [c.408]

    Большие возможности для анализа полимеров представляют методы молекулярной спектроскопии. Ведущее положение среди них занимает ИК-спектроскопия. Этим методом можно проводить исследование структуры как растворов, так и твердых полимеров. В спектре аддитивно проявляются характеристики элементарных звеньев, а не ЗЛ/ — 6N колебаний всей молекулы. Механические и электрические взаимодействия, происходящие в некоторых мономерных звеньях, расширяют полосы полимера. На спектрах полимеров с чередующимся расположением звеньев или со статистическим их распределением часто видны характеристические полосы, отражающие структуру участков их соединений это позволяет отличить сополимер от смеси гомополимеров. Так, волновое число СНа-спинового колебания зависит от окружения СНа-группы [c.417]

    Соответствующее эталонное вещество дает спектр ЯМР с одной или несколькими четкими линиями. При исследовании структур органических соединений в качестве эталонов обычно используют воду, бензол, толуол, хлороформ, трет-бутиловый спирт, трет-бутиламин, тетраметилсилан и другие вещества. Применявшийся ранее метод калибрования состоял в замене исследуемого образца на эталонный образец до и после снятия спектра или в один из этих моментов, но это сопряжено с возможностью появления большой ошибки из-за дрейфа- поля в течение времен , требуемого для калибрования. Другой метод заключается в использовании расщепленной радиочастотной катушки, в которую одновременно помещаются исследуемый и эталонный образцы [3]. Внутренним эталоном служит вещество, оДну-две капли которого непосредственно вводят в раствор, содержащий исследуемый образец. Внешний эталон не смешивают с исследуемым образцом, а запаивают в небольшой капилляр, который помещают внутри трубки, содержащей жидкость или раствор, подлежащие исследованию. При работе с внешним эталоном спектр ЯМР удается наблюдать без наложения на него пиков эталона, если перед тем как поместить трубку с образцом в пробник, ее встряхивают так, что капилляр оказывается в верхней части ампулы. Для проведения точных измерений следует применять специальные устройства, в которых эталонная жидкость находится в кольцевом объеме, охватывающем концентрически ампулы с образцом [20, 49]. [c.265]


    Читая работы классиков органической химии, невольно обращаешь внимание на то, с какой тщательностью и любовью описывают они полученные органические вещества, сколько внимания уделяют в этих описаниях очистке и характеристике веществ. В современных работах эта часть выглядит суше и лаконичнее для каждого вновь полученного вещества принято приводить данные его элементного анализа, брутто-формулу приводят также точки плавления и кипения, для жидкостей — показатель преломления. На основании данных, получаемых с помощью современных физико-химических методов исследования (оптических спектров, ядерного магнитного резонанса, масс-спектрометрии и др.), обычно удается составить представление о структуре вещества, не прибегая к классическим химическим методам установления строения, т. е. к постепенной деградации сложного вещества и исследованию получающихся при этом осколков. Такое описание создает зачастую у начинающего химика ложное представление, что современные методы исследования избавляют его от необходимости тщательной химической работы (прежде всего имеется в виду чистота препарата), чго эти новые методы якобы сами по себе способны дать правильный ответ. Изучающему химию важно внушить с самого начала, что современные методы исследования не исключили тщательности в его работе, а, наоборот, подняли требования к чистоте, индивидуальности органического вещества. Многие препараты, полученные по старым методикам и в свое время описанные как индивидуальные — при исследовании, например, методами хроматографии,— оказываются смесями. Между тем правильный анализ, точная температура плавления, правильная спектральная характеристика — все это может быть получено только при работе с хими- [c.354]

    Конечно, оба эти метода — исключительно мощные инструменты исследования. Однако это отнюдь не черные ящики , где на входе — вещество, а на выходе готовая структура. На выходе — всего лишь спектр, а структура появляется в результате интерпретации спектра. Последняя же совсем не трафаретна и требует от исследователя (именно от самого исследователя, а не от того, кто управляет прибором и выдает спектры) больших знаний, опыта, интуиции . Помимо спектроскопии, современная химия углеводов располагает целым комплексом точных и тонких методов структурного анализа, которые, хотя и не опираются на новейшие приборы, позволяют делать не менее надежные заключения о структуре. Бывает так, что самыми примитивными, известными с прошлого века пробирочными пробами можно узнать о структуре моносахарида не меньше, чем используя самую совершенную аппаратуру. Мы, конечно, далеки от того, чтобы пропагандировать идею возврата к эпохе жаровен и реторт, но хотим подчеркнуть широту и многообразие накопленного к настоящему времени арсенала методов структурных исследований. И в оценке той или иной работы самую последнюю роль должны играть соображения новизны примененных методов или, тем более, их модности. [c.85]

    При исследовании структуры широко использованы физико-хи-мические методы ( ПМР- и С -ЯМР-спектры), данные которых приведены в таблицах 24 и 25. [c.149]

    Книга представляет собой перевод третьего, переработанного и дополненного издания известного руководства и справочного пособия по четырем наиболее широко распространенным физическим методам идентификации и исследования структуры органических соединений. Главная цель книги—научить химика ис--пользовать информацию, получаемую из масс-, ИК-, УФ- и ЯМР-спектров, для полной идентификации органических соединений. [c.4]

    Из большого арсенала разработанных к настоящему моменту методов наиболее адекватную информацию о состоянии НДС тяжелого состава можно получить лишь при помощи неразрушающих методов, не связанных с добавлением растворителей или наложением интенсивных механических нагрузок на исследуемые нефтяные системы. Методы типа гель-нроникающей хроматографии, фотоколориметрии, седиментационные, реологические и другие методы являются малопригодньп и для точного измерения сфуктурных характеристик НДС и определения точек фазовых переходов. Они частично разрушают надмолекулярную структуру исследуемых систем, изменяют толщину и химический состав сольватных оболочек, а также приводят к диссоциации, либо рекомбинации части соединений, существенно искажая характеристики исследуемых нефтяных систем. Использование разрушающих методов, по словам некоторых исследователей, является лишь первым пробным шагом в изучении структурных превращений в НДС. Наиболее приемлемыми в этом отношении являются некоторые спектральные методы, а также различные виды микроскопии, которые, конечно же, не могут удовлетворить весь спектр исследований в области нефтяных дисперсных систем, но вполне достаточны для целей данной работы. [c.9]

    Существует еще много других физических методов исследования структуры молекул. Теснейшим партнером ИК-спектроскопии является спектроскопия комбинационного рассеяния света (КР). Структурную информацию получают также из микроволновых (МВ) спектров. В последние годы быстро развивается фотоэлектронная спектроскопия (ФЭС), основанная на анализе электронов, выбитых из вещества под действием излучения. Спектроскопия электронного парамагнитного резонанса (ЭПР) в некотором смысле сходна с методом ЯМР, но основана на переориентации неспаренных электронов в молекуле. Помимо дифракции рентгеновских лучей используется дифракция электронов и нейтронов (электронография и нейтронография). Современные влектронные микроскопы позволяют увидеть> отдельные атомы. Каждый год появляются новые методы или модификации известных методов исследования структуры химических соединений. Наконец, в последние годы все шире применяются теоретические расчеты молекул методами квантовой химии. — Прим. перев. [c.27]

    Применение импульсных спектрометров ЯКР позволяет обнаруживать сигналы большой ширины ( 2% от значения частоты против - 0,02% при стационарных методах). Это сделало возможным исследование структур с неустранимыми элементами беспорядка. К таким системам относятся, в частности, кристаллические полимеры. Данные спектроскопии ЯКР позволяют судить о структуре, характере расположения и подвижности полимерных молекул в кристалле. Изучены спектры ряда хлорсодержащих полимеров. У поливинилхлорида, например, в спектре найдено восемь компонентов сигнала, которым должно соответствовать восемь типов кристаллографически неэквивалентных атомов хлора. Частотный диапазон сигнала от 36,56 до 38,18 МГц свидетельствует о наличии химической неэквивалентности (различном химическом окружении) атомов С1 в полимере. Изучались и неорганические полимеры с малой степенью беспорядка и достаточно уакими линиями, например, на основе (МГал2) и (МГалз)п, где М —металл, а Гал —галоген. [c.104]

    Дальнейшее развитие метод получил в работах [И], [12], где учитывается поляризация излучения сверхтонких компонент мес-сбауоровского спектра. Исследование электрических квадрупольных взаимодействий в монокристаллическом поглотителе было проведено в работе [13]. Теллур по своим электрическим свойствам относится к полупроводникам. Его гексагональная структура образована параллельно расположенными спиральными цепочками атомов Те, в которых каждый атом теллура находится на расстоянии 2,86 А от следуюш,его (рис. XI.9). Валентный угол равен в цепочке 102,6°, атомы теллура в цепочке связаны ковалентно. [c.209]

    Интересным примером предсказательных возможностей теоретических методов является определение структуры метилена, наименьшего многоатомного радикала, существующего в триплетном состоянии. По экспериментальным данным Герцберга метилен в триплетном состоянии должен обладать линейной конфигурацией. Расчеты, проведенные Поплом методом N00/2, привели к угловой структуре с валентным углом НСН 141,4°. Это расхождение с экспериментом заставило Попла усомниться в применимости метода для изучения геометрии триплетных состояний. Проведенные несколькими годами позже неэмпирические расчеты геометрии метилена в триплетном состоянии также указывали на угловую структуру с валентным углом 135°, причем улучшения базиса качественно не меняли ситуацию. Эти факты привели Герцберга к необходимости повторных экспериментальных исследований структуры метилена. Данные, полученные в повторных предельно прецизионных экспериментах по изучению микроволнового спектра и спектра ЭПР метилена, согласовывались с предсказаниями теории. [c.348]

    В последние годы при исследованиях структуры полипроии-лена и в особенности соотношения различных структур начинают применять метод инфракрасной спектроскопии. Сущность метода заключается в том, что при нагревании полимера возникают изменения в спектре, выражающиеся в ослаблении одних полос поглощения и в усилении других. Интенсивность полос инфракрасного спектра поглощения изменяется также при термической обработке и изменении содержания атактической фазы. Отсюда напращи-вается вывод, что изменения в спектре поглощения тесно связаны с изменениями степени кристалличности полимера. Полосы поглощения, интенсивность которых с повышением температуры уменьшается до минимума, можно рассматривать как полосы кристалличности, а полосы поглощения, интенсивность которых с повышением температуры увеличивается, — отнести к аморфной фазе полимера. В инфракрасном спектре поглощения имеются также и так называемые нечувствительные (неактивные) полосы, интенсивность которых с повышением температуры не меняется. [c.71]

    М.-с. электронного удара - высокочувствит. метод анализа, позволяет анализировать пнкомольные кол-ва в-ва, ее предпочитают для исследования структуры соединений. Существуют библиотеки масс-спектров, содержащие спектры более 70000 орг, соед., по к-рым можно проводить их идентификацию с применением ЭВМ. Недостатки метода мол. ионы образуются лишь у 20% орг. соед, метод применим только для определения легколетучих термически стабильных соед. в значениях полного ионного тока на ионы с большими значениями т/2, дающие информацию о мол. массе и иаличии функц, групп, приходится меньшая часть отрицательно заряженные ионы, имеющие большое значение в структурном анализе, образуются в очень небольшом кол-ве и ограниченным числом орг. соединений. [c.659]

    Для исследования структуры X, а. используют спектральные методы. По значению максимумов поглощения в ИК и УФ спектрах и характеру их смещения в зависимости от pH среды различают не только группы X. а., но и иногда положения заместителей. Масс-спектрометрия позволяет установить принадлежность алкаловда к определенной группе и различать такие близкие изомеры, как V и VII УШ и IX, По положению и интефальной интенсивности полосы поглощения в области 1610-1665 см" ИК спектра можно различить [c.269]

    Дальний ИК-диапазон также важен для исследований структуры хелатов металлов и других соединений, содержащих тяжелые или слабосвязанные атомы. В отличие от рентгеноструктуриого анализа, методом колебательной спектроскопии можно изучать не только твердые (кристаллические), но и жидкие образцы. Значит, можно исследовать реальную молекулярную структуру в различных растворителях ие искаженную взаимодействиями в решетке и эффектами кристаллического поля. На рис. 9.2-22 приведено сравнение спектров образца хелата металла в твердом состоянии (в виде суспензии в нуйоле между полиэтиленовыми пластинами) и в растворе дихлорметана. Можно четко видеть, что более высокая (тетраэдрическая) симметрия комплекса устойчива только в растворе. Расщепление полос метал-лиганд в спектре твердого образца свидетельствует об искажении этой симметрии в кристаллическом состоянии. [c.196]

    Рассмотрим оценки, сделанные опытным проявлениям молекулярных свойств ангиотензина II и попытаемся составить общее представление о характерных особенностях структурной организации гормона, а затем qpasHHTb его с представлением, следующим из теоретического анализа. Противоречивыми оказались первые же исследования структуры ангиотензина II методом диализа на тонких пленках. В одних работах [33, 34] сделан вывод о том, что молекула гормона в растворе имеет одну компактную форму, а в другой [8] предположено наличие конформационного равновесия двух форм. Не менее противоречивы выводы разных авторов из кинетических данных по изотопному замещению протона в водородных связях ангиотензина II. Г. Шерага и соавт. [15] отмечают одинаковую скорость обмена всех амидных протонов и делают вывод о том, что конформационное состояние гормона отвечает статистическому клубку. Р. Ленкинский и соавт. [35] отмечают аномально низкую скорость обмена амидного протона His , а М. Принтц и соавт. [24, 36] выделяют по этой же причине остатка VaP и VaP. В работе [25] амидные протоны разделены по скорости обмена на три группы, причем к группе с наибольшими скоростями отнесены протоны Asp и Arg . В классификации, предложенной Г. Маршаллом [37], все обменивающиеся протоны разделены на четыре группы. К одной группе отнесены амидные протоны всех остатков ангиотензина II, за исключением Asp и Phe , имеющие, согласно сообщению [37], одинаковую скорость обмена. По значениям констант диссоциации ионогенных групп гормона, полученных потенциометрическим титрованием [9] и с помощью спектров ЯМР и КД [38], сделан вывод о сближенности N- и С-концевых групп пептидной цепи, допускающей их взаимодействие. Расстояние между группами значительно меньше соответствующего расстояния в случае пребывания ангиотензина в состоянии статистического клубка. В работе [38], кроме того, предположено, что все ионогенные группы доступны растворителю, а имидазольное кольцо остатка [c.279]

    Новые перспективы в исследовании структуры радикалов, в том числе в полимерах, открывает ЭПР-спектроскопия высокого разрешения, преимуществами которой являются повышенная чувствительность, особенно при исследовании малых образцов. Сущность метода состоит в следующем g-фaктopы большинства органических радикалов имеют значения вблизи go 2,00 и различаются между собой на малую величину порядка 10 10 . Расстояние между центрами спектров ЭПР таких радикалов АН ЛgHo/go, и для обычных спектрометров ЭПР, работающих в X -диапазоне, (Но около 3000 Э, длина волны высокочастотного поля 3 см) составляет 1 Э. Собственная ши- [c.286]

    Другой особенностью изменения диэлектрической проницае- мости и потерь в полимерах является их чувствительность не только к изменениям сегментальной подвижности, но и к проявлениям под- вижности боковых и концевых групп, а также отдельных звеньев макромолекулы. Поэтому исследование температурной зависимости tg позволяет получить полный спектр времен релаксации полимера. Благодаря высокой чувствительности и возможности проводить исследования в широком диапазоне частот, изучение диэлектрических свойств является прекрасным способом исследования структуры полимеров, недостаточно еще распространенным применительно к эла--стомерам. Однако метод не лишен и недостатков. Высокая проводимость эластомеров, наполненных техническим углеродом, приводит к высоким значениям и искажению вида частотной и температурной зависимостей и tg 3. Кроме того, исследование неполярных эластомеров требует, как правило, введения полярных добавок, при выборе которых следует учитывать возможность изменения в их присутствии подвижности полимерных молекул. [c.552]

    Наиболее мощным методом для исследования структур карбениевых ионов в растворах является спектроскопия ядерного магнитного резонанса (ЯМР) на ядрах Н, С и в меньшей степени на [33]. Для снятия спектра обычно приготовляют растворы карбениевого иона в суперкислой среде и при возможно более низкой температуре с тем, чтобы максимально уменьшить возможность протекания каких-либо реакций с образующимся ионом, осо- [c.530]

    Рамановские спектры алмаза первого и второго порядков, полученные на ориентированных образцах при лазерном возбуждении, также описаны. Были уточнены однофононные дисперсионные кривые для алмаза, полученные ранее по данным нейтронной спектроскопии, приведены энергетические значения для фононов. На рис. 154, б показан спектр поглощения алмаза в области 1332 см . Вертикальными линиями обозначены значения волновых чисел, которые соответствуют по энергии двухфононным переходам, разрешенным правилами отбора для решетки типа алмаза. Значения энергий фононов в критических точках зоны Бриллюэна в сравнении с приведенными данными показывают, что на основании имеющихся в настоящее время сведений о динамике решетки алмаза детальное объяснение всех особенностей двухфононного участка спектра не представляется возможным. По-видимому, динамика решетки алмаза, возмущенной примесями и другими структурными дефектами, способными вызвать изменения в фононном спектре и привести к нарушению правил отбора, изучена недостаточно. физическая классификация алмазов, основанная на особенностях проявления реальной структуры кристаллов алмаза, при их исследовании различными методами непрерывно детализируется. В настоящее время известно более 50 различных дефектных центров в алмазной решетке, и лишь для некоторых из них удалось установить конкретную природу. [c.416]

    При ионизации полевой десорбцией масс-спектры пептидов состоят практически из одних молекулярных ионов. На этой основе Я. Шимониши был разработан метод исследования структуры белка путем непосредственного анализа смеси пептидов, получаемых после ферментативного гидролиза. Смесь пептидов подвергается деградации по методу Эдмана, и после каждого этапа, наряду с идентификацией отщепленных аминокислот, масс-спектрометрически по молекулярным ионам определяются молекулярные массы [c.73]

    Эмпирические методы неоднократно предлагались для получения обы чных статистических характеристик пористых систем, причем исследования этого направления относились к выяснению факторов формы частиц эти работы принциниального интереса Не представляют и на них мы не останавливаемся. Более последовательной в этом направлении является попытка Шейдеггера с учениками [7] применить для описания структуры методы теории случайных функций. Вводя для пористых сред некоторую случайную функцию отрезков линии, авторы получают статистические моменты, функцию автокорреляции и находят спектр системы с введением ортогональной функции. Далее будет подробно описан этот метод и дана его критика. [c.275]


Смотреть страницы где упоминается термин спектр исследование структуры методами: [c.271]    [c.271]    [c.40]    [c.124]    [c.227]    [c.408]    [c.726]    [c.31]    [c.219]    [c.286]    [c.288]    [c.29]    [c.21]    [c.79]    [c.210]    [c.219]    [c.210]    [c.29]    [c.14]    [c.454]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Метод структур

спектр исследование методом ЯМР



© 2024 chem21.info Реклама на сайте