Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофильное присоединение к нитрилам

    В этой книге, предназначенной прежде всего для студентов, изучающих органическую химию, предпринята попытка сравнительно доступно изложить современное состояние теории органических химических реакций. При этом автор не стремится охватить абсолютно все типы реакций, так как это является предметом современных учебников органической химии предполагается, что читатель уже знаком с этими учебниками. Казалось более целесообразным осветить в первую очередь влияния и взаимодействия, скрывающиеся за отдельными механизмами, причем рассмотреть вопрос под различными углами зрения (субстрат — реагент — растворитель). Прежде всего такого рода знание помогает правильно подобрать условия реакции и вообще планировать практическую работу. Далее, для учащихся особенно важно, чтобы теория помогала обобщить многообразие материала и рассмотреть его с единой точки зрения на наглядных примерах. Так, реакции азометинов, нитрилов, нитро- и нитрозосоединений обычно не относят к карбонильным реакциям, но в этой книге их рассматривают вместе с карбонильными реакциями (реакциями альдегидов, кетонов, карбоновых кислот и их производных). Кроме того, применяя принцип винилогии, здесь же рассматривают присоединение по Михаэлю и нуклеофильное ароматическое замещение. Электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре также обсуждаются с общей точки зрения. Что касается других глав, то в них сохранена обычная классификация реакций по типа.м нуклеофильное замещение у насыщенного атома углерода, отщепление, секстетные перегруппировки и радикальные реакции. Первые три главы служат введением в них рассматривается проблема химической связи, распределение электронной плотности в молекуле и общие вопросы течения химических реакций органических соединений. [c.9]


    Вследствие некоторой аналогии в свойствах между ароматическими и непредельными соединениями можно было ожидать, что для последних возможны некоторые реакции замещения, типичные для ароматических соединений [72]. И действительно, оказалось, что непредельные соединения могут в определенных условиях сульфироваться [73], нитроваться [74] и ацилироваться (реакция Кондакова) [75] механизм этих реакций, однако, полностью не выяснен. Весьма вероятно, что эти процессы протекают через стадию присоединения и в таком случае являются реакциями электрофильного присоединения к кратной С=С-связи. [c.327]

    Нитрование ацетилнитратом протекает по механизму электрофильного присоединения через стадию а-комплекса (нитрующий [c.556]

    Возможные механизмы реакций электрофильного присоединения к связи С = С были подробно обсуждены в гл. 10. Ниже будут повторно изложены некоторые детали не только для того, чтобы объяснить стереоспецифичность реакций, о которой уже говорилось выше, но и для того, чтобы подчеркнуть тот факт, что различные агенты не обязательно реагируют по одному и тому же механизму. Основные реакции алкенов рассмотрены в следующих разделах 1) реакции электрофильного присоединения 2) свободнорадикальные реакции 3) реакции восстановления и окисления. Известно, что реакции нуклеофильного присоединения к простейшим алкенам также были осуществлены, но они относительно редки и менее важны и поэтому не будут специально рассматриваться. Нуклеофильное присоединение к связи С = С обычно требует, чтобы эта связь была сопряжена с —М, — -группой, такой, как карбонил или нитро (см. также гл. 10, разд. 2,Б), и поэтому этот тип реакций будет рассмотрен вместе со свойствами этих групп (см. гл. 16, 17, 19 и 20). [c.262]

    Электрофильные агенты направляют свою атаку в первую очередь на атом азота. Однако такие реакции часто обратимы, поэтому даже в сильнокислых растворах присутствует небольшое количество свободного основания. Следовательно, пиридин может нитроваться и сульфироваться при высоких температурах, но с трудом (см. стр. 59). Галогенирование пиридина (см. стр. 59) происходит легче, так как продукты присоединения галогенов к пиридину заметно диссоциированы. [c.47]

    В табл. 7.3 приведены условия реакций электрофильного замещения для типичного активированного пиримидина — урацила. Все перечисленные реакции идут по положению 5. Хотя урацил нитруется по механизму электрофильного замещения, бромирование в водном растворе протекает через промежуточное образование продукта присоединения 18 [35]. [c.313]


    Последующие главы позволяют еще глубже понять механизмы реакций благодаря последовательному рассмотрению нуклеофильных, электрофиль-ных или нейтральных реагентов, нуклеофильного и электрофильного замещения или присоединения, электрофильного элиминирования, термических и ионных перегруппировок, реакций с циклическим переносом электронов, радикальных или фотохимических реакций, восстановления или окисления и т. д. Однако наибольший вклад внесен в обсуждение реакций внедрения, в которых атом углерода или гетероатом внедряется между двумя атомами углерода или между атомом углерода и гетероатомом, связанными простой или двойной связью, с образованием а-связей, что приводит затем к образованию либо трехчленного цикла, либо более длинной цепи атомов. Большое внимание уделено реакциям внедрения метиленовой группы, которые считаются стереоспецифическими. Применение замещенных карбенов, нитре-нов, перекисей и карбанионов дозволяет получать новые структуры. [c.9]

    Введение электроноакцепторных заместителей тоже осложняет ориентацию результаты различны в зависимости от того, начинается ли реакция атакой электрофила на углерод или его предравновесным присоединением к сопряженному заместителю. Кажется вероятным, что электрофильная атака по углероду нормально должна начинаться по концевому атому, наиболее удаленному от заместителя. Для того чтобы такая реакция осуществилась, электромерная поляризация (а в структурах VI и VII) под действием реагента должна конкурировать с обратимой поляризацией (б) неконцевые положения не могут быть активированы в сколько-нибудь сравнимой степени, если отсутствуют другие заместители. Так же обстоит дело с производными коричной кислоты, которые нитруются в орто- и пара-положения, и п-нитростиролом, который присоединяет НВг, как указано в гл. 5 (стр. 83). [c.267]

    Генерирование карбена (или карбеноида при использовании катализа металлами) из а-диазокарбонильного соединения в присутствии нитрила приводит к полному циклоприсоединению и образованию оксазола. Используют как а-ди-азокетоны, так и а-диазоэфиры. На примере, приведенном ниже, показано, что в последнем случае получают оксазол с кислородсодержащим заместителем в положении 5 [173]. Точная последовательность происходящих превращений неясна, однако можно предположить, что она включает образование нитрил-илида в результате электрофильного присоединения карбена к атому азота нитрильной группы. [c.529]

    Подобное явление иногда наблюдается при осуществлении электрофильных реакций нитрилов в присутствии галогеноводородов. Получаемый при этом продукт присоединения нитрила и гало-геноводорода имеет связь С—X. Он является промежуточным продуктом и подвергается далее нуклеофильному замещению, напри мер  [c.24]

    В 1952 г. была открыта интересная реакция получения Ы-(2-галогеналкил)-амидов из нитрилов, олефинов и галогенов Эта реакция основана на нуклеофильном присоединении к двойной связи олефина молекулы нитрила и электрофильном присоединении. к ней атома галогена, что приводит к получению Ы-(2-галоген-алкил)-иминогалогенидов. Одновременно протекает параллельная реакция образования 1,2-дигалогеналканов. При проведении реакции с нитрилами, не имеющими а-водородных атомов, и с хлором образующиеся иминохлориды устойчивы и могут быть отделены от дихлоралканов путем ректификации. При наличии же в исходном нитриле а-водородного атома получающийся иминохлорид неустойчив он подвергается термической бимолекулярной конденсации с отщеплением хлористого водорода. При обработке водой Ы-(2-хлор-алкил)-иминохлориды легко переходят в Ы-(2-хлоралкил)-амиды  [c.277]

    Эта книга адресована прежде всего студенту-органику. В ней сделана попытка возможно доступнее изложить современную теорию органических реакций. При этом автор не стремился подробно рассмотреть все множество органических реакций этот материал — неотъемлемая часть современных курсов органической химии, знание которых является предпосылкой для работы с данной книгой. Автор считает целесообразным главное внимание уделить влияниям и взаимодействиям, которые обусловливают существование определенных механизмов, всесторонне обсудить роль субстрата, реагента, растворителя. Именно понимание упомянутых влияний и взаимодействий позволяет правильно выбрать условия реакции и разумно планировать эксперимент. Для учащегося важно также, чтобы теория позволяла обобщить материал, представить его в единой удобообозримой форме. По этой причине в данной книге совместно представлены реакции карбонильных соединений (альдегиды, кетоны, карбоновые кислоты и их производные) и таких веществ, как азометины, нитрилы, нитро- и нитро-зосоединения. С опорой на принцип винилогии в это рассмотрение включено также присоединение по Михаэлю и нуклеофильное замещение в активированных ароматических соединениях. С общей точки зрения обсуждены также электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре. [c.6]


    Есть основания полагать, что нитрование азотистой кислотой протекает с участием гетероароматических катион-радикалов. Действительно, общей чертой всех вступающих в эту реакцию гетероциклов является их высокая я-донорность и способность легко окисляться до стабильных катион-радикалов. Еще более весомым аргументом служат модельные эксперименты с заведомыми катион-радикалами порфирина, фенотиазн-на и карбазола. При действии на них нитритом натрия также получены нитросоединения, т. е. реакция представляет собой как бы нуклеофильное замещение в катион-радикале. Присоединение нитрит-иона идет по месту с наибольшей спиновой плотностью в катион-радикале. Эти положения обычно являются и наиболее электрофильными. Общая схема процесса приведена на схеме (16). [c.173]

    Первая стадия — действие электрофильного реагента Вг — протекает аналогично у этилена и бензола и в каждом случае образуется соответствующий карбокатион. Основное различие между ароматическим замещением и электрофильным присоединением к алкенам заключается в течении второй стадии, о-Комплекс стабилизируется выбросом Н+, так как при этом образуется ароматическое соединение, что дает значительный выигрыш энергии. Карбокатион, образовавшийся из этилена, реагирует с нуклеофильным агентом, так как при этом выброс протона — энергетически менее выгодный процесс. 1235. Фактор парциальной скорости / — относительная активность определенного положения (о-, М-, П-) в замещенном бензоле по сравнению с бензолом. См. [4], П, стр. 143— 145. 1240. При переходе от Н к Вг, С1 и Р возрастает отрицательный индуктивный эффект вследствие этого увеличивается дезактивирующее действие заместителя в орто- и пара-положениях. Это приводит к уменьшению избирательности замещения и увеличению выхода мета-изомера. 1241. С удалением нитрогруппы от ароматического ядра ее дезактивирующее действие падает. Если в нитробензоле нитрогруппа — сильный мета-ориентант, то в 1 -нитро-2-фенилэтане заместитель становится орто-, паря-ориентантом. 1243. В рассматриваемых реакциях возрастает электрофильность замещающего агента, вследствие чего избирательность замещения падает. 1244. Количество орто-изомера падает, так как возрастает объем имеющегося алкильного заместителя (влиянт1е пространственного фактора). 1245. На соотношение орто- и гаара-изомеров влияет объем входящего заместителя. Большой размер атома брома затрудняет орто-замещение. 1246. Благодаря пространственному влиянию метильных групп аминогруппа выводится из сопряжения с ядром —/-эффект ацетаминогруппы дезактивирует ядро. 1247. См. [6], стр. 168. 1248. См. [6], стр. 168. 1257. о-Ксилол и этилбензол. 1258. Циклопентан не изменится, циклогексан превратится в бензол. 1260. Низкотемпературная циклотримеризация ацетиленовых углеводородов проводится в присутствии карбонила никеля [№(С0)2]  [c.206]

    В отличие от таких электроноакцепторных заместителей, как нитро- или сульфогруппа, хлор сравнительно слабо замедляет электрофильное замещение. Поэтому, как и при алкилировании, возможно образование полихлорзамещенных бензолов вплоть до гексахлорбензола. Последовательность присоединения атомов хлора представлена ниже  [c.32]

    Такие гетероциклические соединения, как фуран, тиофен и пиррол, вступают в реакции электрофильного замещения с большей легкостью, чем бензол. Фуран и его производные нитруются смесью азотной кислоты с уксусным ангидридом, образуя продукты присоединения ионов N0 и СНдСОО в положения 2,5 (а,а -нитроацетаты). Нитроацетаты при действии пиридина легко отщепляют уксусную кислоту, превращаясь в а-нитрофуран или его производные. [c.91]

    Будучи устойчивыми в реакциях нуклеофильного присоединения и замещения, пирролы весьма чувствительны к атакам электрофильных агентов, которые почти всегда вступают в реакцию замещения. Однако в этих реакциях многие из обычных электрофильных агентов нельзя использовать, поскольку незамещенный пиррол, Н- и С-моноалкилпирролы и в меньшей степени С-диалкил-пирролы в присутствии сильных кислот нолимеризуются. Полимеризацию предотвращают электроноакцепторные группировки, например карбометоксильная группа. Поэтому в этих случаях вполне допустимо применение сильнокислых нитрующих и сульфирующих агентов. [c.218]

    При проведении электрофильных реакций присоединения — элиминирования с [п,т] парациклофанами проявляется ряд интересных эффектов. Особенно необычным является ориентирующее влияние заместителя в одном из колец на место атаки во втором кольце. Например, бромирование как ацетил-, так и нитро- [2,2] парациклофана приводит исключительно к псевдогеминальному замещенному продукту. Это свидетельствует о псевдогеминальной атаке по наиболее основному положению или заместителю, уже присутствующему в замещенном кольце. На лимитирующей стадии происходит перенос протона к акцептору в уже замещенном кольце (см., например, уравнение 257). Цианогруппа не обладает небходимой геометрией, чтобы функционировать как акцептор протона, и в этом случае псевдогеминальный продукт не образуется. [c.441]

    Электрофильная атака в случае нитрования бензофуроксана (316) приводит к 4-нитро- или 4,6-динитрозамещенным [150] (в концентрированной серной кислоте происходит протонирование). Другие электрофильные реакции протекают с трудом, причем кватернизация бензофуроксана (316) сопровождается перегруппировкой (схема 196) [150]. При реакции соединения (316) с формальдегидом и гидроксидом получается родственный продует (342) [152]. В результате присоединения брома получается тетра-бромаддукт (343) [150]. [c.531]

    Ненасыщенные соединения, содержащие электроноакцепторные заместители (карбоксиалкильные, нитро-, нитрильную, винильную группы), могут полимеризоваться под действием таких анионов, как карбанион ОН или ЫНз [12]. Присоединение аниона в этом случае происходит к ненасыщенному углеродному атому, несущему частичный положительный заряд. Поскольку активный конец растущей цепи представляет собой истинный анион, обрыв может происходить при взаимодействии с катионом. Как и при катионной полимеризации, бимолекулярный обрыв невозможен однако возможна реакция передачи цепи с участием электрофильных соединений. [c.141]

    При рассмотрении реакций ароматического электрофильного замещения следует разделить гетероциклические соединения на две группы к первой группе относятся те, которые проявляют свойства оснований, ко второй — те, которые не проявляют основных свойств. Для представителей первой группы характерно взаимодействие неподеленной пары электронов атома азота с электрофильными реагентами (разд. 2.1), присутствующими в реакционной смеси (протон в случае нитрующей смеси, хлорид алюминия в случае реакции Фриделя — Краф-тса), которое проходит быстрее, чем какое-либо замещение при атоме углерода, И превращает субстрат в положительно заряженный катион, склонность которого к взаимодействию с электрофильной частицей Х+ существенно понижена. Стоит вспомнить понижение скорости реакции электрофильного замещения при переходе от незамещенного бензола к катиону N,N,N-тpимeтилaнилиния (РЬЫ Мез) в 10 раз, хотя в этом случае фрагмент, несущий положительный заряд, лишь присоединен к ароматической системе, а не является ее частью. Таким образом, все гетероциклические соединения, содержащие атом азота пиридинового типа (т. е. фрагмент С=Н), с трудом вступают в реакции электрофильного замещения, если (а) в молекуле отсутствуют заместители, активирующие кольцо к атаке электрофилами, (б) в молекуле нет конденсированного бензольного кольца, в котором могут проходить реакции электрофильного [c.35]

    В то время как пиррол и его производные не склонны к реакциям нуклеофильного присоединения и замещения, они очень чувствительны к электрофильным реагентам, и реакции пирролов с такими реагентами протекают практически исключительно как реакции замещения. Незамещенный пиррол, N- и С-моно-алкилпирролы и в наименьшей степени С,С-диалкилпроизводные полимеризу-ются в сильнокислых средах, поэтому большинство электрофильных реагентов, использующихся в случае производных бензола, не применимы для пиррола и его алкилпроизводных. Однако при наличии в пиррольном цикле электроноакцепторных фупп, препятствующих полимеризации, например, таких, как слож-ноэфирная, становится возможным использование сильнокислых сред, нитрующих и сульфирующих агентов. [c.311]

    Реакции 1,4- и 1,3-циклоприсоединения протекают путем синхронного переноса электронов. Для многих реакций, рассматриваемых в данной главе, такой механизм очевиден. Однако в ряде случаев не исключается возможность ступенчатого механизма, например, когда сначала происходит электрофильная, а затем нуклеофильная атака на нитрил, причем одна из этих стадий может ок-азаться определяющей. Ввиду отсутствия данных о механизме реакций, ряд синтезов на основе нитрилов, приводящих к образованию гетероциклических соединений, в состав циклов которых входят как углерод, так и азот нитрильной группы, включен в данную главу лишь условно. Следует отметить также, что реакции присоединения к атомам углерода и азота нитрильной группы двух функциональных групп одного и того же соединения с образованием гетероциклов, протека1рщие не по механизму циклоприсоединения, обсуждаются в других главах данной книги. [c.300]

    Электрофилы атакуют молекулы оксазола и тиазола в первую очередь по положению S, а затем по положению 4. Оксазолы часто не вступают в реакщ1ю с злектрофилами, если не содержат электронодонорных заместителей. В качестве наиболее распространенных реакций электрофильного замещения в ряду оксазолов можно назвать бромирование и меркурирование [ацетатом ртути(11)]. Для оксазол(ю характерны не только реакции замещения например, при взаимод 1ствш1 4,5-диметил-2-фенилоксазола с хлором образуются продукты присоединения (по положениям 4 и S), а фенилоксазолы нитруются в Бензольное кольцо, а не в гетероцикл. 2,5-Дизамещенные оксазолы реагируют с бромом в метаноле с образованием 2,5-диметокси-2,5-дигидропроизводных, точно таким же образом, как фураны (см. гл. 6, разд. 6.3.3), что подтверждает относительно слабый ароматический характер этой циклической системы. Аналогично, для тиазолов необходимо наличие электронодонорных заместителей для ускорения реакций электрофильного замещения, и в этом случае атака преимущественно идет по положению [c.369]

    НЫ [62] алкилируют индолы в растворе уксусной и фосфорной кислот. Описано алкилирование индола борофторидом этиленими-ния [63], приводящее к триптамину. Олефины, содержащие сопряженные карбонильную, нитро, пиридил-2- и 4-ильные группы достаточно электрофильны, чтобы алкилировать индолы в р-поло-жение, В некоторых случаях для таких сопряженных присоединений требуется кислотный катализ. [c.510]

    Однако некоторые химические свойства ферроцена резко отличают его от ароматических соединений. Так, ферроцен не нитруется, хлорирование и бромирование разрушает ферроцен, в сульфокислотах ферроцена сульфогруппа не подвергается обычным для ароматических соединений реакциям замещения (например, гидроксильной группой). Неспособность ферроцена к реакциям нитрования и галогенирования объясняется окислением ферроцена нитрующими и галогенирующими агентами в феррициний-катнон, инертный к реакциям электрофильного замещения. Не удалось также осуществить ни одной реакции присоединения к ферроцену (гидрирование разрушает молекулы ферроцена). [c.535]

    Сульфокислоты, образующиеся из трех триметилбензолов, устойчивы к серной кислоте из-за того, что у них отсутствуют пространственные затруднения, а сульфокислоты мезитилена—из-за того, что последний не содержит ж-метильной группы, способной к миграции. Полиалкилбензолы, содержащие амино- или метоксигруппы, не претерпевают перегруппировки Якобсена вследствие предпочтительной протонизации функциональных групп, содержащих азот или кислород. Нитро- и карбоксильная группы препятствуют перегруппировке благодаря тому, что их индукционное влияние затрудняет присоединение электрофильных реагентов (протона) к ядру и приводит к еще большему возрастанию положительного заряда в ядре. Отмечены перегруппировки и в случае галоидзамещенных полиалкилбензолов, но при этом обычно образуются сложные смеси продуктов. Одним из практических применений этой перегруппировки является изомеризация 4,6-дибром-ж-ксилола в 2,4-дибром-лг-ксилол, недоступный другим путем  [c.179]

    Комплексные гидриды металлов присоединяются к олефйнам только в тех случаях, если последние активированы вследствие сопряжения с карбонильными или другими группами, обладающими —Л4-эффектом (например, нитрильная или нитрогруппа). Таким образом, в структурах типа С=С—С=0 двойная связь С=С становится электрофильной, благодаря смещению ее л-электронов в направлении карбонильного кислорода. В этих системах крайний углерод реагирует как карбонильный. Такие активированные двойные связи легко насыщаются при действии Ь1А1Н4, особенно если они сопряжены также и с фенильной группой. В то же время восстановление комплексными гидридами бора двойных связей, сопряженных с кето- [776, 821, 971, 972], сложноэфирной [2042, 2218], лактонной [834, 838], нитро- [2594] и нитрильной [2042] группами, успешно происходит только в редких случаях. Присоединение ком-плекснйх гидридов к двойной связи С=С, вследствие относительно низкой электроотрицательности металлов и гидридного характера атома водорода, проходит против правила Марковникова, [c.387]

    В реакциях присоединения нитренов к связям С = С ароматических соединений ряд активности углеводородов [63] бензол < толуол < л/-ксилол отвечает ряду активности в реакциях электрофильного замещения выход азепина при этом также возрастает с увеличением активности углеводорода и нитрена в элек-трофильных реакциях. Так, он повышается в 4,5 раза при переходе от фенил-к п-нитрофенилнитрену [63] [c.110]

    Ацетонитрил и аналогичные соединения дают соли с галогеноводородами, которые, судя по данным инфракрасных спектров [41], имеют строение [СНзС(На1)= =ЫН2] [На1] . Оказывается, 1 моль галогеноводорода присоединяется электрофильно по связи От М. Образо-вание-хлоргидрата иминоэфиров [42] по реакции нитрила со спиртом в сухом эфире под действием хлористого водорода должно проходить через протонирование азота с последующим нуклеофильным присоединением спирто- [c.309]

    Нитро-1-бромалкены благодаря наличию двух заместителей с сильно выраженным электрофильным характером образуют нестойкие продукты присоединения с аминами. Взаимодействие осуществляется при сильном охлаждении в сухом эфире образующиеся аминопроизводные при комнатной температуре или при нагревании отщепляют бромистоводородную соль амина, превращаясь в нитроалкины. [c.146]


Смотреть страницы где упоминается термин Электрофильное присоединение к нитрилам: [c.42]    [c.140]    [c.140]    [c.574]    [c.206]    [c.49]    [c.186]    [c.1091]    [c.181]    [c.480]    [c.97]    [c.134]    [c.12]    [c.144]   
Курс теоретических основ органической химии (1975) -- [ c.2 , c.3 , c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Присоединение электрофильное

Электрофильность



© 2025 chem21.info Реклама на сайте