Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты свободная энергия

    На рис. 3.8 показана температурная зависимость парциальной сжимаемости сахарозы как пример поведения молекул, содержащих большое число сближенных друг с другом атомных групп [185]. Одиночные полярные группы качественно отличаются от сближенных групп по действию на свойства воды. При этом под одиночной понимается атомная группа, удаленная от других полярных атомных групп на расстояние не менее четырех СНг-групп между ними. Термодинамические эффекты сближения полярных групп известны давно (см., например, [151, 152, 168]). Они учитываются при аддитивных расчетах парциального объема, теплоемкости, свободной энергии и энтальпии гидратации [168]. Наиболее ярко эти различия проявляются при изучении сжимаемости. В работе [161] проведен аддитивный анализ парциальной адиабатической сжимаемости аминокислот и спиртов и показано, что вклад в сжимаемость от одиночной полярной группы, во-первых, положителен и, во-вторых, его температурная зависимость имеет отрицательную первую и положительную вторую производную, — т. е. все названные величины противоположны по знаку тем же величинам для сближенных атомных групп (рис. 3.9). [c.55]


    Количественной мерой гидрофобности аминокислотного звена в полипептидной цепи принята величина изменения свободной энергии Д G, приходящаяся на боковой радикал элементарного звена при переносе 1 моля аминокислоты из этанола или диоксана в воду. Естественно, что абсолютные значения [c.348]

Рис. 4.25. Корреляция между свободной энергией Гиббса и энтальпией комплексообразования -циклодекстрина и 18-краун-б эфира с аминокислотами в воде Рис. 4.25. <a href="/info/1097645">Корреляция между свободной энергией</a> Гиббса и <a href="/info/363836">энтальпией комплексообразования</a> -циклодекстрина и 18-краун-б эфира с аминокислотами в воде
    Проведенный анализ пространственных форм основных цепей амино. кислотных остатков в белках показал, что их конформационные состояния почти полностью определяются ближними взаимодействиями, т.е, взаимодействиями валентно-несвязанных атомов в пределах одного остатка Влияние даже ближайших остатков ни в одном случае не ведет к повышению энергии, а проявляется лишь в характере распределения конформационных точек в пределах низкоэнергетических областей конформационных карт изолированных молекул метиламидов N-ацетил-а-аминокислот. Несмотря на наличие средних и дальних взаимодействий, которые обусловливают образование глобулы, в белках не реализуются состояния остатков с повышенной энергией ближних взаимодействий. О высокой степени соответствия конформационных состояний самым низкоэнергетическим оптимальным конформациям свободных монопептидов свидетельствует, например, отсутствие в белках остатков в формах М и Н, которые проигрывают в условиях водного окружения глобальным оптимальным конформациям не более 3,0 ккал/моль. Распределение конформационных точек (р, 1 остатков в белках на картах метиламидов N-ацетил-а-аминокислот находится в хорошем соответствии со свободной энергией состояний изолированных монопептидов. [c.186]

    Доступная воде поверхность [17] боковой цепи аминокислоты как функция ее гидрофобности [16], т. е. как функция свободной энергии переноса из воды в этанол или диоксан, которые по предположению имитируют условия во внутренней области белка. Доступная воде поверхность определена [c.22]

    Аминокислоты фигурируют в клетке в свободном виде. Их прямая поликонденсация является эндергоническим процессом — она сопровождается увеличением свободной энергии примерно на 12 кДж/моль при образовании пептидной связи. В клетке поликонденсация аминокислот сопряжена с экзергонической реакцией дефосфорилирования АТФ (см. с. 40). Аминокислота вступает в реакцию биосинтеза в активированной форме  [c.263]


    Основная проблема всех процессов брожения — проблема акцептора электронов. В конечном итоге степень окисления и сопряженное с этим количество выделяемой свободной энергии, а также характер образующихся продуктов определяются природой конечных акцепторов электронов. При брожениях конечными акцепторами электронов служат в основном органические соединения метаболиты, образующиеся из исходных субстратов (пировиноградная кислота, ацетальдегид), или вещества, имеющиеся в среде культивирования (некоторые аминокислоты и другие органические соединения, способные восстанавливаться). В ряде брожений акцепторами электронов служат молекулы СО2, а также ионы водорода (Н ). Кроме того, в отдельных случаях дополнительными акцепторами электронов могут быть некоторые достаточно окисленные неорганические соединения, такие как нитрат, молекулярная сера. Если конечным акцептором электронов является ацетальдегид, образуется этанол, если пируват — молочная кислота. Акцептирование электронов молекулами СО2 приводит у разных видов к возникновению формиата или ацетата, если же эту функцию выполняют ионы водорода, образуется молекулярный водород (Н2). [c.209]

    Как образование новых пептидных связей между растущей полипептидной цепью и аминокислотой, так и присоединение нуклеотида к растущей полимерной цепи нуклеиновой кислоты сопровождается увеличением свободной энергии Д<7 > 0. Соответственно биосинтез биополимеров должен обеспечиваться энергией. Получение и потребление энергии также базируется на ряде химических превращений и является второй главной задачей метаболизма. [c.21]

    Подавляющее число реакций, протекающих в живых организмах с потреблением энергии, получают ее за счет расщепления АТФ это главным образом активация кислот, аминокислот, желчных и неорганических кислот. Свободную энергию, накопленную АТФ, организм может использовать не только в биохимических синтезах, но и, например, в качестве механической энергии мышц, электрической энергии специальных органов (электрический уторь) или лучистой энергии (излучающий орган светлячков). [c.565]

    В отличие от биосинтеза белков, для которого необходимо наличие высокоорганизованных клеточных структур и требуется большое количество энергии, распад белков до аминокислот идет при незначительном изменении свободной энергии системы для распада белков не только не требуется энергия извне, но, наоборот, при этом даже выделяется некоторое количество энергии. Для распада не является необходимым и сохранение целостности клеточных структур. Напротив, при нарушении структуры клетки протеолитические ферменты переходят из адсорбированного состояния в растворенное, благодаря чему [c.301]

    Проблема биосинтеза белков в конечном итоге зависит от решения задачи о многократном синтезе пептидной связи из аминокислот при участии ферментов. Свободная энергия образования пептидной связи приблизительно составляет около 3—4 ккал на моль дипептида и 2 ккал на моль пептидных связей в белке. Поэтому совершенно очевидно, что биосинтез пептидной связи должен обеспечиваться энергией за счет других реакций, предшествующих биосинтезу или протекающих сопряженно и параллельно ему. Биосинтез пептидов непосредственно из аминокислот в модельных экспериментах наблюдался только в тех случаях, если в систему добавлялся [c.327]

    Гидролиз пептидной связи протеолитическими ферментными системами доходит обычно почти до конца. Поэтому значения констант равновесия этих реакций велики, и связанные с реакцией изменения свободной энергии отрицательны. Расчет изменений свободной энергии при образовании некоторых пептидов (табл. 25) показывает, что при той концентрации свободных аминокислот, какая существует в большинстве тканей (вероятно, менее 0,01 М), синтез пептидных связей путем обращения гидролиза возможен лишь в крайне незначительном масштабе [469— 471]. Синтезу пептидных связей в таких системах могли бы, [c.260]

    Последовательность аминокислот, или первичная структура фермента, определяет вторичную и третичную (трехмерную) структуры, т. е. свертывание пептидной цепи в макромолекуляр-ную глобулу, имеющую некоторую определенную полость для взаимодействия с субстратом или, если необходимо, с кофермен-том. Ферменты обладают сложной и компактной структурой, в которой боковые цепи полярных аминокислот, находящиеся на поверхности молекулы, направлены к растворителю, а боковые цепи неполярных в общем случае ориентированы внутрь молекулы, от растворителя. Трехмерная структура поддерживается большим количеством внутримолекулярных нековалентных взаимодействий аполярной, или гидрофобной, природы, а также благодаря ионным взаимодействиям, дисульфидным мостикам, водородным связям, иногда солевым мостикам [57]. Гидрофобные взаимодействия имеют наиболее важное значение, поскольку они, вероятно, ответственны за большую величину свободной энергии связывания, которая наблюдается при ферментсубстратных взаимодействиях. [c.202]


    Аминокислоты (за немногими исключениями) хорошо растворяются в воде, аммиаке и других полярных растворителях, в неполярных и слабополярных растворителях (этаиол, метанол, ацетон) растворяются плохо. Причиной такого поведения является легкий переход незаряженной молекулы (I) в цвиттер-ион (II), который связан с выигрышем свободной энергии 44,8 — 51,5 кДж/моль. В равновесии практически существует только цвиттер-ион (II). Например, в водном растворе аланина П 1 = 260 000. Кроме того, растворимость аминокислот зависит от их строения. Более высокую растворимость имеют соедииеиия с гидрофильной боковой цепью. Низкая растворимость большинства аминокислот в их изоэлектрической точке объясняется снижением гидрофильностн амино- и карбоксильных групп. Особенно трудно растворимы ароматические аминокислоты (Туг, Phe, Trp), в спиртах относительно легко растворяются иминокислоты (Pro и Нур). Данные о растворимости аминокислот приведены в табл. 1-6. [c.30]

    Согласно формализму МакМиллана-Майера, энтальпийные коэф-фиценты представляют собой энтальпийные вклады в соответствующие коэффициенты свободной энергии. Коэффициенты свободной энергии являются мерой взаимодействия между парами, триплетами и т.д. и учитывают изменения во взаимодействиях растворенное вещество-растворитель и растворитель-растворитель. На основе величин указанных коэффициентов можно судить о взаимосвязи сольватации молекул растворенного вещества и их способности к взаимодействию с другими молекулами. При исследовании термодинамики взаимодействия между некоторыми амидами и аминокислотами в воде сделан важный вывод чем сильнее сольватированы молекулы растворенного вещества, тем их способность к взаимодействию с другими молекулами меньше, что подтверждают данные термодинамических исследований энтальпий взаимодействия некоторых амидов с мочевиной в воде [8]. Вклады эффектов сольватации и межчастичного взаимодействия в гетеротактические вириальные коэффициенты можно оценить, построив зависимость от энтальпии сольватации амидов (рис. 4.1). [c.187]

    Это дает рибосомному этапу (и, следова гельно, всему процессу) дополнительный выигрыш свободной энергии около 60 кДж (15 ккал) на 1 моль аминокислоты (в стандартных условиях). [c.61]

    Однако в этом расчете была учтена только химическая сторона процесса. Важно посмотреть, насколько данная оценка может измениться, если учесть энтропийный гфоигрыш за счет упорядоченного расположения аминокислотных остатков вдоль цепи синтезируемого белка, а также за счет фиксированной пространственной структуры белка. Оказывается, учет детерминированного расположения аминокислотных остатков в полипептидной цепи вносит сравнительно небольшую поправку — около -1-10 кДж (-f2,5 ккал) на моль аминокислоты. Что касается энтропийного фактора за счет упорядочения пространственной структуры синтезируемого полипептида, то здесь энтропийный проигрыш (понижение энтропии) более существен, но он компенсируется энтальпийным выигрышем в результате нековалентных взаимодействий аминокислотных остатков. Таким образом, в любом случае синтез белка сопровождается диссипацией большого количества свободной энергии. [c.61]

    Свободная энергия регулирует точность. При образовании одной пептидной связи расщепляются четыре связи аденозинтрифосфата (АТР) и гуанозинтрифосфата (GTP) [22] с выделением свободной энергии, 25 ккал на моль аминокислоты [23]. Лишь часть этой энергии расходуется на образование пептидной связи в эндергони-ческой реакции, стандартная свободная энергия которой в воде составляет 5 ккал/моль [24]. Остальное затрачивается на трансляцию информационной РНК к полипептиду и на максимально точное проведение трансляции. Гидролитическому распаду пептидных связей препятствует высокий барьер энергии активации, который, однако, легко преодолевают многочисленные ферменты,, расщепляющие белок (протеазы). [c.26]

    Непродуктивное связывание предотвращает гидролиз пептидов, состоящих из нежелательных о-аминокислот. Пептиды, состоящие из D-аминокислот, также могут прочно связываться химотрипсином. Однако в этом случае образуется сравнительно малореакционноспо-собный фермент-субстратный комплекс, поскольку расщепляющаяся связь не ориентирована должным образом относительно каталитического центра [629] таким путем свободная энергия связывания расходуется на ингибирование реакции с аналогом субстрата, которая могла бы привести к нежелательным продуктам. Непродуктивное связывание, по-видимому, является общим механизмом, обеспечивающим специфичность фермента [630, 631]. [c.248]

    Метод потенциометрического титрования менее пригоден, чем метод КД, для изучения влияния четвертичных аммониевых солей на превращение а-спиральной структуры поли ( -глутаминовой кислоты) [78] в неупорядоченную, тогда как с помощью первого метода возможно определить изменение свободной энергии и энтальпии, происходящие при образовании а-спиральных и (З-конформа-ций поли ( -лизина) [10, 79] дополнительная информация о структуре этой поли (аминокислоты) получена с помощью ДОВ и вискозиметрии. [c.444]

    По современным представлениям, третичная структура белка после завершения его синтеза в рибосомах (см. главу 14) формируется совершенно автоматически, самопроизвольно и полностью предопределяется первичной структурой. Основной движущей силой в возникновении трехмерной структуры является взаимодействие радикалов аминокислот с молекулами воды. При этом неполярные гидрофобные радикалы аминокислот как бы погружаются внутрь белковой молекулы, образуя там сухие зоны, в то время как полярные радикалы оказываются ориентированными в сторону воды. В какой-то момент возникает термодинамически наиболее выгодная стабильная конформация молекулы. В такой форме белковая молекула характеризуется минимальной свободной энергией. Молекулы белков в водных растворах обычно принимают ряд стабильных конформаций, индуцируемых не только изменениями pH и температуры, но и низкомолекулярными соединениями. Различают две основные формы конформаций Т-форму (от англ. tensed—напряженная) и R-форму (от англ. relaxed—рас- [c.66]

    Однако действительность, конечно, гораздо сложнее. Нельзя заменить 20 типов остатков, с их индивидуальными свойствами, всего лишь двумя типами. Следует говорить о степени гидрофобности остатка и ввести ее количественную меру. В качестве таковой Танфорд предложил изменение свободной энергии, AG, приходящееся на боковую группу (радикал R) свободной аминокислоты, при переносе ее из этанола в воду. В табл. 4.5 приведены относительные значения AG, экспериментально определенные Танфордом, причем AG для Гли принято за нуль, так как Гли не содержит бокового привеска. [c.107]

    Разделение аминокислотных остатков на гидрофобные и гидрофильные до некоторой, степени условно. В сущности, следует говорить о степени гидрофобности остатка и ввести ее количественную мер.у. В качестве нее Тенфорд предложил величину изменения свободной энергии AF, приходящуюся на боковую группу свободной аминокислоты, при переносе аминокислоты из С2Н5ОН в воду [105]. В табл. 4.11 приведены значения AF, экс- [c.229]

    Как мы видели (см. стр. 22У), гидрофобиость аминокислотного остатка может быть оценена, согласно Тенфорду, количественно— изменением свободной энергии Af при переносе аминокислоты из С2Н3ОН в воду (см. табл. 4.11). Вычислим среднюю разность величин S.F при произвольном замещении любого остатка на любой — без учета различной встречаемости остатков, пользуясь данными табл. 4.11. По всем 20 аминокислотам AAF = 1280 кал/моль. В пределах условно введенных первого и второго классов — гидрофобных аминокислот (первые 10) и гидрофильных аминокислот (вторые 10) средние разности равны 805 и 392 кал1моль соответственно. [c.590]

    Непосредственное образование пептидной связи из групп СООН и аминогруппы, как показывает термодинамический расчет, должно протекать с увеличением свободной энергии системы. Следовательно, синтез белка из аминокислот может произойти только в том случае, если 6н сопровождается, другими процессами, протекающими с уменьшением свободной энергии.,. В клетках живых организмов такими процессами являются(Ъкисление и гликолиз . нергия,, освобождающаяся при этом, в знач ительной степени концентрируется в виде.пирофосфатных связей молекул аденозилтрифосфорной кислоты (АТФ) О [c.330]

    Биосинтез белка сопровождается уменьшением свободной энергии, несмотря на то, что АР образования пептидной связи нз самих аминокислот больше нуля объясняется это тем, что ппро-фосфатная связь АТФ поставляет недостающую энергию смешанному ангидриду (с. 331) и комплексу АК—т-РНК, являющимся как бы активированными предшественниками синтеза белка. [c.339]

    Биполярные соединения, например низшие гомологи аминокислот, вследствие образования своей системы Н-связей разрушают структуру воды [42], а высшие гомологи оказывают противоположное влияние, так как роль большого углеводородного радикала в этом случае оказывается значительнее, чем роль функциональных групп молекулы [43]. В. М. Вдовенко, Ю. В. Гуриков и Е. К. Легин [41], рассматривая существующее равновесие между плотной и ажурной структурами воды, показали, что при растворении в воде неэлектролита равновесие между этими структурами смещается в сторону той, которая лучше растворяет молекулы неэлектролита. Величина свободной энергии гидратации при этом определяется двумя главными факторами затратами энергии на образование полости, необходимой для внедрения молекулы (эти затраты тем больше, чем больше размеры молекулы растворенного вещества и доля плотной структуры иоды в растворе) уменьшением свободной энергии в результате образования водородных связей между растворенными молекулами и окружающими их молекулами воды. Поскольку в плотной структуре больше ненасыщенных водородных связей, чем в ажурной, то уменьшение свободной энергии при образовании Н-связей с молекулами растворенного вещества в этой структуре тоже больше. Значительное число работ посвящено упрочнению структуры воды при растворении углеводородов [4, 44—47]. [c.17]

    При полном сгорании глюкозы в калориметрической бомбе выделяется количество тепла (—ДН), равное 674 ккал1моль. Изменение энтропии (tAs) (см. том I) составляет 12 ккал, так что общее понижение свободной энергии (—ДО) равно 686 ккал. Из них в биохимическом окислении глюкозы можно регенерировать примерно 67% в форме, пригодной для использования для произведения механической работы- или эндэргонных химических синтезов. Этот энергетический выход значительно превышает коэффициент полезного действия наилучших тепловых двигателей, построенных до настоящего времени. Основной функцией лимонной кислоты, безусловно, является производство энергии кроме того, она служит исходным соединением для получения промежуточных продуктов, необходимых для синтеза аминокислот и жирных кислот. [c.257]

    Как мы уже видели (разд. 29.4), на ферментативное образование каждой ами-ноацил-тРНК из свободной аминокислоты затрачиваются две высокоэнергетические фосфатные группы. Для исправления ошибок, выявленных с помощью гидролитического действия аминоацил-тРНК-синтетазы, на этом этапе могут понадобиться добавочные молекулы АТР. Напомним, что одна молекула GTP расщепляется до GDP и фосфата на первой стадии элонгации и еще одна молекула GTP гидролизуется в процессе транслокации. Следовательно, в итоге для образования каждой пептидной связи необходимы по меньшей мере четыре высокоэнергетические связи. Это означает, что для поддержания процесса синтеза белка необходим большой термодинамический вклад, поскольку на образование пептидной связи затрачивается не менее 7,3 4 = 29,2 ккал энергии фосфатной группы, в то время как стандартная свободная энергия ее гидролиза составляет всего около — 5,0 ккал. Таким образом, чистая затрата энергии на синтез пептидной связи составляет — 24,2 ккал/мол. Хотя столь высокий расход энергии может показаться расточительным, он служит одним из важных факторов, обеспечивающим почти совершенную точность биологического перевода генетической информации мРНК на язык ами- [c.942]

    Ускорение реакций нуклеофильного замещения у ацильной группы благодаря участию соседней гидроксильной группы имеет большое значение с биохимической точки зрения в химии аминоацил-РНК. Эфиры этого класса являются промежуточными соединениями при синтезе белка [284, 285]. Высокая свободная энергия гидролиза эфиров аминокислот растворимой РНК при нейтральных значениях pH [286—288] свойственна ьсем эфирам аминокислот и обусловлена существенными изменениями констант диссоциации образующихся аминокислот по сравнению с их эфирами [289]. Также могут быть рассмотрены амиды аминокислот [290]. [c.170]

    Эфиры аминокислот. Стандартные свободные энергии гидролиза эфиров аминокислот, являющихся важными промежуточными продуктами при биосинтезе белков, сравнимы с энергией гидролиза АТФ. Следует отметить, что, нанример, свободная энергия гидролиза этилового эфира глицина до свободной аминокислоты составляет почти такую же величину, как и АС реакции гидролиза этилацетата. Однако из-за высокой кислотности глицина (р,ЛГ(1 — 2,3) по сравнению с уксусной кислотой (piia = 4,76) стандартная свободная энергия гидролиза эфира аминокислоты при pH 7 и 25° больше соответствующей величины для этилацетата на 298-1,98-2,3-Ар Сд = —3300 кал моль. Хотя такое деление реакции гидролиза эфира ири pH 7 на реакцию гидролиза до свободной аминокислоты и ионизацию кислоты удобно при расчете изменений свободной энергии, было бы неверным считать, что большие изменения свободной энергии, сопровождающие гидролиз сильных кислот, обусловливаются высоким значением АС ионизации. Свободная энергия является функцией состояния, т. е. не зависит от произволь- [c.38]


Смотреть страницы где упоминается термин Аминокислоты свободная энергия: [c.55]    [c.57]    [c.171]    [c.60]    [c.220]    [c.102]    [c.23]    [c.245]    [c.23]    [c.468]    [c.468]    [c.284]    [c.274]    [c.373]    [c.262]   
Механизмы биоорганических реакций (1970) -- [ c.302 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты свободные

Свободная энергия



© 2025 chem21.info Реклама на сайте