Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность, воды аммиака

    Пример 18. Составить материальный баланс производства железооксидного катализатора (Ре20з) на 1 т продукта. Сырьем служат железный купорос Ре504-7Н20 в виде 2 н. раствора с плотностью 1152 кг/м и 25 /о-ная аммиачная вода (в производстве используют 10% раствор аммиака). [c.21]

    Определение меди в концентрате. Содержание меди определяют фотометрически по интенсивности окраски раствора [Си(ЫНз)4]2+ (X макс — 620 нм). Для построения градуировочного графика для определения меди. В мерные колбы вместимостью 50 мл отбирают 2, 3, 4, 5 и 6 мл раствора сульфата меди (И), приливают в каждую колбу 10 мл концентрированного раствора аммиака, доводят до метки дистиллированной водой и тщательно перемешивают. Измеряют оптическую плотность (А) растворов на фотоэлектроколориметре с красным светофильтром (Хмакс = 620 нм) в кюветах с толщиной слоя /=10 мм. В качестве раствора сравнения используют дистиллированную воду. Строят график зависимости А = [(сси-, мг). [c.236]


    Определение железа. Содержание железа определяют фотометрическим методом, основанным на образовании в щелочной среде комплексных анионов трисульфосалицилата железа. Предварительно строят градуировочный график зависимости оптической плотности А от концентрации ионов Ре +. В мерные колбы вместимостью 50 мл вводят 0,10 0,15 0,20 0,25 и 0,30 мг ионов Ре + (отбирают соответственно 1,0 1,5 2,0 2,5 и 3,0 мл раствора соли железа, содержащего Ре + 0,1 мг/мл, в каждую колбу добавляют 5 мл 10%-ного раствора сульфосалициловой кислоты, 5 мл 10%-ного раствора аммиака, разбавляют до метки дистиллированной водой и тщательно перемешивают. Измеряют оптическую плотность растворов на фотоэлектроколориметре с синим светофильтром (Я = 400 нм) в кюветах с толщиной слоя / = 30 мм, используя дистиллированную воду в качестве раствора сравнения. Строят график зависимости Л=/(сре + (в мг). [c.232]

    Аммиак очень хорошо растворим в воде 1 объем воды растворяет прн комнатной температуре около 700 объемов аммиака. Концентрированный раствор содержит 25% (масс.) NHa и имеет плотность 0,91 г/см . Раствор аммиака в воде иногда называют нашатырным спиртом. Обычный медицинский нашатырный спирт содержит 10% NH3. С повышением температуры растворимость аммиака уменьшается, поэтому он выделяется при нагревании из концентрированного раствора, чем иногда пользуются в лабораториях дл з получения небольших количеств газообразного аммиака. [c.399]

    На основании ряс. 9,5 определите предполагаемые температуры плавления и кипения фтористого водорода, воды и аммиака при допущении, что эти соединения не образуют водородных связей. Какие соотношения между плотностью воды и льда следовало бы ожидать, если бы не возникали водородные связи  [c.272]

    Выбор теплоносителей. Исходя из температурного диапазона работы теплообменника производится выбор теплоносителей. Для низкотемпературных термосифонов (от 200 до 550°К) применимы вода, аммиак, метиловый и этиловый спирты, все фреоны, ацетон и др. Низкотемпературные теплоносители характеризуются более высокими плотностями тепловых потоков, подводимых к зоне испарения (до [c.246]

    Прямой коксовый газ представляет собой сложную смесь газообразных и парообразных веществ. Помимо водорода, метана, этилена и других углеводородов, оксида и диоксида углерода, азота, в 1 м газа (при 0°С и 10 Па) содержится 80—130 г смолы, 8—13 г аммиака, 30—40 г бензольных углеводородов, б— 25 г сероводорода и других сернистых соединений, 0,5—1,5 г цианистого водорода, 250—450 г паров воды и твердых частиц. Газ выходит из коксовой печи при 700°С. Процесс разделения прямого коксового газа (см. рис. 16) начинается в газосборнике, в который интенсивно впрыскивается холодная надсмольная вода, и газ охлаждается примерно до 80°С, благодаря чему из него частично конденсируется смола. Одновременно в газосборнике из газа удаляются твердые частицы угля. Для конденсации смолы необходимо охлаждение газа до 20—30°С оно может производиться в холодильниках различной конструкции — трубчатых, оросительных, непосредственного смешения. В схеме, приведенной на рис. 16, используются трубчатые холодильники, в которых происходит конденсация паров воды и смолы. Понижение температуры газа способствует конденсации смолы и паров воды, увеличивает растворимость аммиака в конденсирующейся воде, что приводит к частичному поглощению аммиака с получением надсмольной воды. Смола и надсмольная вода из холодильника 2 стекают в сборник, где разделяются по плотности. В холодильниках не удается полностью сконденсировать смолу, так как она частично превращается в туман. Смоляной туман удаляется из коксового газа электростатическим осаждением в электрофильтрах, работающих при 60 000—70 000 В. [c.44]


    Аммиак (NHз)—бесцветный горючий газ с резким характерным запахом. Молекулярная масса 17,03 плотность в сжиженном состоянии 681,4 кг/м при температуре кипения температура плавления 77,75°С, температура кипения — 33,4°С растворимость в воде 34,27о (масс.). Газообразный аммиак при охлаждении под атмосферным давлением до температуры ниже —33,4°С или при температуре 15 С и давлении выше 0,75 МПа переходит в жидкое состояние. Жидкий аммиак — бесцветная подвижная жидкость. При температуре —77,7°С жидкий аммиак превращается в белые кристаллы. [c.24]

    Однако уменьшение электронной плотности на карбонильном углероде за счет одновременного оттягивания электронов атомами кислорода И галогена повышает реакционную способность галогенангидридов по отношению к нуклеофильным реагентам (воде, аммиаку и др.). [c.323]

    Низкие вязкость (1/4 вязкости воды) и плотность жидкого аммиака обусловливают подвижность ионов в нем и легкость проведения химических реакций, в том числе гетерогенных, в которых ведущую роль играют процессы диффузии растворенных соединений. Высокое значение дипольного момента облегчает химическое взаимодействие между полярными молекулами аммиака и ионами, а также между самими молекулами аммиака. Диэлектрическая проницаемость аммиака значительно меньше, чем диэлектрическая проницаемость воды (е = 78,5), однако она гораздо больше, чем диэлектрическая проницаемость уксусной кислоты ( = 6,4). Поэтому естественно ожидать, что значения растворимости ионных солей [c.167]

    Перегонку с водяным паром (эвапорацию) или другим инертным носителем применяют для удаления легколетучих соединений, содержание которых в сточной воде не более 1000 мг/л. Как показал опыт эксплуатации установок по очистке стоков от аммиака, аминов, фенолов и других соединений перегонкой с водяным паром, расход пара составляет 0,5—1,5 кг/кг стока при плотности орошения 1—2 м (м2-ч), высоте насадки 6,0—12 м и диаметре колонны 0,8—3 м. [c.489]

    Аппарат был испытан на системах аммиак — вода, аммиак — серная кислота, сернистый газ—вода (абсорбция) и двуокись углерода— вода (десорбция). Скорость движения газовой смеси варьировалась от 1 до 4 м/с, плотность орошения от 0,695-10 до 4,16- [c.130]

    Жидкий аммиак хранят и транспортируют в стальных цистернах, рассчитанных на давление 20—30 аг. Плотность газообразного аммиака при нормальных условиях 0,77 /сг/ж . Согласно ГОСТу, жидкий аммиак 1-го сорта должен содержать не менее 99,8% ЫНз и не более 0,2% воды, 2-го сорта —99,0 /о ЫНз и 1,0% воды. [c.282]

    Испытание днища на плотность проводят аммиаком. Предварительно настил кровли проверяют на плотность опрыскиванием всех швов керосином с нижней стороны. Испытание резервуара проводят наливом воды на полную высоту. Налив осуществляют ступенями по поясам с промежутками времени, необходимыми для осмотра конструкции. [c.386]

    Аммиак очищают от следов микроэлементов 25%-ный раствор аммиака наливают на дно большого эксикатора, ставят на фарфоровый вкладыш эксикатора стеклянные чашки, до половины заполненные бидистиллированной водой для улавливания аммиака. Плотно закрывают эксикатор крышкой и оставляют стоять минимум 48 час. Чтобы получить раствор более концентрированный, насыщение воды аммиаком повторяют, затем проверяют плотность полученного аммиака и рассчитывают необходимое количество его для приготовления буферного раствора. [c.374]

    Сепараторная вода, образующаяся при конденсации смеси паров в конденсаторе, играет важную роль в выделении пиридиновых оснований из конденсата. Насыщение сепараторной воды аммиаком до 120 г/л, сероводородом до 50 г/л и двуокисью углерода до 80 г/л настолько увеличивает ее плотность, что быстро и четко происходит разделение слоев пиридиновых оснований и сепараторной воды. [c.71]

    Триэтаноламин К(СН2СН20Н)з — бесцветная, прозрачная (допускается опалесценция), вязкая, гигроскопичная жидкость плотностью 1,100—1,124 при 20 С пол5гчается взаимодействием водного раствора аммиака с окисью этилена. Применяется в качестве антикоррозионной присадки к маслам и смазкам (например, в смазке СП-3). Темп. кип. триэтаноламина 277—279° С (при 150 Л1Л рт. ст.), темп. пл. —21 С. Смешивается с водой и спиртом растворяется в хлороформе мало растворяется в эфире, бензоле и лигроине. Сильное основание. [c.692]

    В табл. 21 сопоставлены свойства жидкого аммиака со свойствами жидкой воды и НР. Более узкая область существования аммиака в виде жидкости по сравнению с Н2О и НР может быть обусловлена тем, что форма молекул аммиака ближе к сферической (узкие области существования в виде жидкостей вообще характерны для неассоциированных сферических молекул). Далее, не только плотность жидкого аммиака значительно меньше, чем у воды, но МНз имеет гораздо более высокий коэффициент теплового расширения, что указывает на отсутствие компенсирующихся эффектов, которые обнаруживаются у воды. [c.115]


    Удаление избытка одного из тяжелых изотопов может быть достигнуто разными способами. Часто применяют вымывание дейтерия длительным пропусканием через анализируемую воду аммиака или сернистого водорода. Обменная изотопная реакция их водорода с дейтерием воды ведет к удалению последнего. После пропускания большого избытка газа содержание дейтерия в воде то же, как и в газе, т. е. близко к природному. Таким же образом может быть удален избыточный тяжелый кислород пропусканием избытка двуокиси углерода или двуокиси серы через анализируемую воду. Удаление избыточного дейтерия может быть достигнуто также тем, что парами анализируемой воды окисляют медные стружки при высокой температуре, а затем восстанавливают пол ченную окись меди водородом нормального изотопного состава. Это дает воду, вся избыточная плотность которой обязана тяжелому кис.лороду первоначальной воды. Возможны разнообразные другие видоизменения этих способов. [c.49]

    В соответствии с ТУ 6-01-166—77 гипан выпускается двух марок ги-пан-1 и гипан-07. Реагенты обеих марок — хорошо растворимые в воде, высоковязкие жидкости цветом от желтого до темно-коричневого с плотностью при t = 2Q °С 1,06—1,07 г/см . Исходная концентрация полимера в реагенте около 10 %. При температуре 100 °С из гипана выкипает вода и выделяется аммиак, остаток густеет и при дальнейшем повышении температуры коксуется. Температура замерзания гипана минус 5—10 °С. Процесс замерзания происходит ступенчато вначале вымораживается вода, затем — нижний более густой слой. Гипан сливают из тары в зимнее время после предварительного оттаивания и тщательного перемешивания. При работе с гипаном необходимо пользоваться защитными средствами (рукавицы, очки и т. д.). При заводнении используется редко. Широко используется в бурении. Реагент пожаро- и взрывобезопасен. [c.110]

    Эффективность естественной десорбции через 5—6 суток составляет 50—60 %. Как правило, для очистки сточных вод естественная десорбция не применяется из-за загрязнения атмосферного воздуха токсичными соединениями, Десорбцию осуществляют в аппаратах различного типа в токе инертного газа и пара при обычных условиях или при повышенной температуре, под давлением иля в вакууме. Расход газа или пара на отдувку примесей зависит от вида десорбируемых соединений, состава воды и условий ведения процесса. Для удаления СОг из сточной воды расходуется 15—20 м воздуха на 1 м воды при плотности орошения в насадочной колонне 60 м /(м2-ч) для колец Рашига и 40 м /(м Х X ч) для хордовой насадки. При отдувке С5г и ПгЗ оптимальный расход воздуха 10 м /м стока при плотности орошения 12 м7(м Х Хч). При десорбции в вакууме расход воздуха может быть снижен до 3 м /м стока с увеличением плотности орошения до 60 м /(м2-ч). Расход воздуха уменьшается также с повышением температуры стока, подвергаемого очистке. Для десорбции аммиака расход воздуха при 95% извлечении составил 3000 мV(м ч). Самостоятельное применение метода, как правило, не обеспечивает требований санитарных норм. [c.485]

    Для определения содержания меди из мерной колбы вместимостью 250 мл отбирают пипеткой 25 мл раствора 2 и переносят в мерную колбу вместимостью 50 мл, приливают 15 мл концентрированного раствора аммиака и разбавляют до метки дистиллированной водой. Измеряют оптическую плотность с красным светофильтром (7.= 620 нм) в кюветах с толщиной слоя /=10 мм. Пользуясь графиком зависимости Л=/( сси +, мг), находят содержание ионов Си -+ в анализируемом растворе. [c.232]

    Колба заполняется сухим аммиаком при 17 и давлении 1 атм. Затем колба опускается в воду при тех же условиях, и вода по мере растворения аммиака полностью заполняет ее. Определить процентную концентрацию NH4OH в полученном растворе (плотность воды при 17° считать равной единице). [c.458]

    Весьма перспективно для химической технологии теплообмен ное устройство, называемое теплопроводом. Оно пред ставляет собой полностью закрытую металлическую трубу с лю быми профилями сечения, футерованную каким-либо пористо капиллярным материалом (фитилем), например, шерстяной тканью, стекловолокном, сетками, пористыми металлами, полимерами, керамикой и т. п. В полость трубы подается теплоноситель в количестве, достаточном для полной пропитки фитиля. Температура кипения теплоносителя должна обеспечивать отвод тепла (путем испарения) из охлаждаемого рабочего пространства химического реактора или другого аппарата интервал зон температуры — от какой угодно низкой до 2000 °С. В качестве теплоносителя используют металлы (Сз, К, На, Ы, РЬ, А и др.), высоко кипящие органические жидкости, расплавы солей, воду, аммиак, жидкий азот и др.). Предпочтительны жидкости с высокой скрытой теплотой испарения, большим поверхностным натяжением, низкими плотностью и вязкостью. Трубка одной своей частью располагается в зоне отвода тепла, а остальной частью — в зоне конденсации паров. Пары теплоносителя, образовавшиеся в первой зоне, конденсируются во второй зоне, а конденсат возвращается в первую зону под действием капиллярных сил фитиля. Благодаря большому количеству центров парообразования резко падает перегрев жидкости при ее кипении и значительно возрастает коэффициент теплоотдачи при испарении (в 5—10 раз). Особенностью теплопровода является очень высокая эффективная теплопроводность вдоль потока пара (на 3—4 порядка больше, чем у серебра, меди и алю.миния), что обусловлено низким температурным градиентом вдоль трубы. Мощность теплопровода определяется капиллярным давлением, компенсирующим потери напора парового и жидкостного потоков. [c.336]

    Как указывалось ранее (см. стр. 93), возможно, что большие ионы, имевэшие электронную оболочку инертного газа с низкой плотностью заряда, как, например, ионы калия или бария, в водном растворе, по-видимому, гидратированы весьма неполно. В противоположность этому ионы лития и кальция, вероятно, способны образовать первую сферу из молекул воды, но эти молекулы воды едва ли связаны направленными силами связи до такой степени, чтобы образовались акво-ионы с химической связью. Однако это, по-видимому, происходит в случае ионов металлов побочных групп и, вероятно, также ионов, имеющих электронную оболочку инертного газа, с наибольшей плотностью заряда. Пока нет точного доказательства этого, но ранее (стр. 80) было отмечено, что ион металла, который образует определенные комплексные ионы с комплексообразующими лигандами, например, с аммиаком, также, вероятно, должен образовывать акво-ионы с химической связью. Случай будет совсем простым, если ион металла имеет постоянное координационное число, например ионы кобальта (П1) и хрома (П1). Более трудная задача возникает в случае иона металла с более чем одним координационным числом. Тогда следует рассмотреть два вопроса, пренебрегая, конечно, любым стериче-ским препятствием со стороны лиганда 1) ведет ли себя ион металла в отношении координационной валентности по-разному относительно различных лигандов 2) является ли способность проявления двух координационных чисел свойством иона металла, обнаруживающимся в присутствии всех лигандов независимо от силы и типа связи В качестве первого примера можно упомянуть ионы кобальта (II) и никеля, которые проявляют исключительно координационное число 6 в соединениях с водой, аммиаком и этилендиамином, но в других случаях (см. стр. 66 и 96), по-видимому, проявляют характеристическое координационное число 4. В качестве второго примера следует указать ионы меди (П), цинка и кадмия, которые, по-видимому, всегда имеют характеристическое координационное число 4, и ионы меди (I), серебра и ртути (И), которые всегда, очевидно, имеют характеристическое координационное число 2. В случае ионов кобальта (II) и никеля, а также ионов железа (II) и марганца (II) (ср. стр. 96) кажется вполне естественным принять, что эти ионы в водном растворе образуют октаэдрически построенные гексакво-ионы. Но что можно сказать о другом классе ионов металлов, особенно интересных [c.106]

    Аммиак, газообразный в обычных условиях, легко сгущается в жидкость, так как критическая температура его равна + 133 С при комнатной температуре для этого достаточно давление в 8—10 атм. Плотность жидкого аммиака равна 0,7. Он хорошо растворим в воде, а при низких температурах дает с ней два мало устойчивых твердых вещества ЫНз НгО или ЫН40Н и 2ЫНз-НгО или ЫН4)гО последнее плавится при —77° С и разлагается при этом. [c.354]

    Электролиз сточных вод проводится с использованием электролитически нерастворимых анодных материалов (графитированного угля, магнетита, двуокиси свинца, марганца или рутения, нанесенных на титановую основу) при относнтельно высоких плотностях тока в безднафрагменных либо диафра-гменных электролизах при обычной или повышенной температуре. Деструктивное окислеиие молекул различных органических веществ на аноде часто сопровождае Тся полным их распадом с образованием углекислого газа, воды, аммиака и некоторых других газообразных продуктов. В некоторых случаях происходит анодное окисление органических или неорганических соединений с образованием более простых по составу, а также нетоксичных или малотоксичных продуктов (например, анодное окисление фенолов до малеиновой кислоты, цианидов до цианатов, сульфидов до сульфатов и др.). [c.95]

    Дителлурид вольфрама, WTe2, по.лучают взаимодействием элементов в вакууме при температуре выше 750° это диамагнитные серые кристаллы с гексагональной структурой решетки и плотностью 9,44 г см . Соединение устойчиво к воде, аммиаку и НС1, [c.357]

    В производстве БНК используется бутадиен того же качества, что и в производстве бутадиен-стирольных каучуков. Акрилонитрил применяется с концешрацией выше 99%. Он получается различными способами, из которых важное значение приобрел синтез его из пропилена, аммиака и кислорода. Акрилонитрил характе-рпзуется следующими свойствами т. кип. 77,3 °С, растворимость в воде 7,3%, растворимость воды в акрилонитриле 3,17о- Не содержащий посторонних примесей акрилонитрил устойчив к окислению на воздухе и нагреванию. Как технический продукт хранится в присутствии гидрохинона, р-нафтола и др. Двойная связь акрилонитрила обладает высокой реакционной способностью, обусловленной ее поляризацией цианогруппой, атом азота которой смещает я-электроны двойной связи и понижает ее электронную плотность. Благодаря поляризующему влиянию цианогруппы акрилонитрил обладает способностью к полимеризации и сополимеризации [7, 8]. [c.358]

    Физические свойства. Бесцветный газ с острым запахом. При нормальных условиях 1 л аммиака зесит 0,77 г. Температура плавления —77,8°, температура кипения —33,4°. Плотность по отношению к воздуху 0,59 (25°). В спирте растворяется 13,2)/о (20°). Хорошо растворяется в воде, образуя гидрат окиси аммония (нашатырный спирт, или аммиачная вода). Коэффициент растворимости в воде- 762,6 (20°) 655,8 (28°). При охлаждении до —33,4° аммиак при обычном давлении превращается в бесцветную прозрачную жидкость. Плотность жидкого аммиака при температуре кипения 0,6814. Упругость аммиачных паров (в ати) при 20° — 8,5 при 40°— 15,3 при 50° — 20. [c.120]

    Взаимодействие различных молекул с цеолитами определяется, с одной стороны, особенностями химического строения каркаса цеолита — большой концентрацией атомов кислорода, сосредоточением пололштель-пого заряда в катионах и рассредоточением отрицательного заряда внутри алюмокислородных тетраэдров, а с другой стороны — геометрической структурой молекулы и характером распределения электронной плотности в ее звеньях. Молекулы со сферически симметричными электронными оболочками или имеющие только а-связи, адсорбируются цеолитами неспецифически. Энергия адсорбции таких молекул, однако, велика главным образом за счет большой концентрации атомов кислорода в каркасе цеолита. Энергия взаимодействия в случае неспецифической адсорбции простейших молекул па различных катионных формах синтетического фожазита может быть вычислена на основе приближенной теории межмолекулярных взаимодействий в удовлетворительном согласии с опытом. Молекулы, обладающие звеньями с периферически сосредоточенной электронной плотностью (я-связи, свободные электронные пары у атомов кислорода и азота воды, аммиака, спиртов, аминов и т. п.), кроме того, взаимодействуют с катионами цеолитов и специфически. Это специфическое молекулярное взаимодействие резко увеличивает энергию адсорбции и изменяет состояние адсорбированных молекул, что отчетливо проявляется в их инфракрасном спектре. [c.24]

    Физические параметры воды, аммиака и раствора на линии насыщения при средней температуре абсорбции Гер = (Гз с + + Т )/2 = (355 + 303,3)/2 = 329,15 К удельная теплоемкость воды Сд, = 4,177 кДжДкг-К) коэффициент теплопроводности Хц, = 0,6548 Вт/(м.К) коэффициент динамической вязкости Ц.О, = 501,5.10 Па.с плотность р , = 985,16 кг/м средняя концентрация раствора ср = (1г "Ь 5а)/2 = (0,3676 + 0,0904)/2 = = 0,229 кг/кг удельная теплоемкость раствора Ср = (1 — 1ср) Сд, + + 1ср [4,19 + (0,494 + 0,0087Иер) ср] = (1 -0,229) 4,177 + + 0,229 [4,19 + (0,494 + 0,00871.56,15) 0,229] = 4,232 кДж/(кг X X К) коэффициент теплопроводности Хр = 0,551 Вт/(м.К) коэффициент динамической вязкости аммиака Ца = 122,59 х X 10" Па-с коэффициент динамической вязкости раствора [Хр = = Нал + [1 (1—х) = 122,59-10- .0,239 + 501,5.10" (1 — [c.372]

    Сероводород (Н25) — бесцветный газ с запахом тухлых яиц. Молекулярная масса 34,08, плотность 1,54 кг/м при 0°С и 760 мм рт. ст., температура плавления минус 85,6°С, температура кипения минус 59,5°С, плотность по воздуху 1,191, хорошо растворяется в воде. В больших концентрациях сероводород сильный яд, по-ражаюший центральную нервную систему. Содержание 0,7 мг/л сероводорода в воздухе вызывает отравление средней тяжести, 0,2 мг/л — легкое отравление, 0,02 мг/л — воспаление слизистой оболочки глаз (при длительном воздействии). Особая опасность заключается в том, что малые концентрации сероводорода ощутимы по запаху, а при больших концентрациях обоняние притупляется и газ можно ие обнаружить. Действие сероводорода на организм человека выражается в нарушении внутритканевого дыхания, в результате чего перестает усваиваться кислород. В качестве индивидуального средства защиты от действия смеси сероводорода и аммиака применяют противогаз марки КД (серая коро бка). [c.21]

    Причиной молекулярной ассоциации в водных растворах и многих жидкостях часто является возникновение водородной связи между соприкасающимися полярными частями молекул, содержащих, например, гидроксильные группы (см. стр. 164). Такая ассоциация проявляется также и при адсорбции на адсорбентах, содержащих на поверхности гидроксильные группы, например при адсорбции воды, спиртов, аммиака, аминов и т. п. на поверхностях гидроокисей, т. е. на гидроксплированных поверхностях силикагелей, алюмогелен, алюмосил икатных катализаторов и т. п. адсорбентов. Поверхность силикагеля покрыта гидроксильными группами, связанными с атомами кремния кремнекислородного остова. Вследствие того что электронная -оболочка атома кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности кремнезема таково, что отрицательный заряд сильно смеш.ен к атому кислорода, так что образуется диполь с центром положительного заряда у атома водорода, размеры которого невелики. Часто молекулы адсорбата, обладающие резко смеш,енной к периферии электронной плотностью или неподеленными электронными парами (например, атомы кислорода в молекулах воды, спиртов или эфиров), образуют дополнительно к рассмотренным выше взаимодействиям водородные [c.496]

    Гипан получают методом статической полимеризации нитрила акриловой кислоты в среде водного конденсата с последующим гидролизом образовавшегося полиакрилнитрила едким натром. По внещнему виду это вязкая жидкость цвета от желтого до темно-коричневого. Относительная плотность 1,0—1,07. Прн температуре более 100 °С происходит выкипание воды и выделение аммиака, а при температуре ниже минус 5—10 °С реагент застывает с предварительным вымораживанием. [c.245]

    Вычисленное количество молибдата аммония отвешивают и раство]эяют в водном аммиаке (берут концентрированный водный аммиак плотностью 0,8—0,9 г/см и разбавляют его дистиллированной водой в отношении 1 1). Этим раствором пропитывают гидро- [c.488]

    Определение титана. Для построения градуировочного графика готовят 5 растворов, содержащих 0,01 0,02 0,03 0,04 и 0,05 мг Ti в 25 мл. В мерные колбы вместимостью 25 мл вводят пипеткой 1, 2, 3, 4 и 5 мл стандартного раствора сульфата 7птана, разбавляют до 15 мл дистиллированной водой, затем в каждую мерную колбу добавляют по каплям концентрированный раствор аммиака до pH = 2—3, 1 мл 2,5%-ного раствора хромотроповой кислоты и доливают до метки дистиллированную воду. Измеряют оптическую плотность на фотоэлектроколориметре с синим светофильтром (1 акс = 470 нм) в кюветах с толщиной слоя /=10 мм. В качестве раствора сравнения используют дистиллированную воду. Строят график зависимости /1=/ ( tiIV, мг). [c.234]

    Из мерной колбы вместимостью 100 мл, содержащей раствор титана в 1 М НС1 (элюат 1), отбирают пипеткой 5 мл раствора, переносят в мерную колбу вместимостью 25 мл, прибавляют по каплям концентрированный раствор аммиака до слабокислой реакции (рН = 2—3), 1 мл 2,5%-ного раствора хромо-гроповой кислоты, доводят объем до метки дистиллированной водой и тщательно перемещивают. Измеряют оптическую плотность на фотоэлектроколориметре с синим светофильтром (Я акс = 470 нм), толщина слоя кюветы /=10 мм. Раствором сравнення служит дистиллированная вода. Пользуясь градуировочным графиком, определяют содержание ионов Ti в анализируемом растворе. [c.234]


Смотреть страницы где упоминается термин Плотность, воды аммиака: [c.425]    [c.307]    [c.258]    [c.392]    [c.24]    [c.195]    [c.45]    [c.36]    [c.232]   
Краткий справочник по химии (1965) -- [ c.544 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак в воде

Плотность аммиака



© 2025 chem21.info Реклама на сайте