Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические окислителей

    Амины первичные ароматические, окислитель Индамин Фенолы II1.4 [c.335]

    Амины ароматические, окислители [c.343]

    Иод не реагирует непосредственно с простыми ароматическими углеводородами, и иодирование такого типа производят обычно обработкой углеводорода иодом в присутствии таких окислителей, как азотная кислота [98]. Общепризнано представление, что функцией азотной кислоты является окисление иодистого водорода, образующегося в реакции, смещая таким путем неблагоприятное равновесие. Однако с точки зрения современных результатов но реакциям хлорирования и бромирования возможно, что азотная кислота образует ион иодония 1" , а эффективность процесса действительно зависит от высокой активности.этого промежуточного вещества [104]. [c.448]


    Быстрый обрыв цепей по реакции пероксидных радикалов с фенолами и ароматическими аминами, как уже отмечалось, связан с тем, что R02- —активные окислители, а InH — восстановители. Однако в окисляющихся углеводородах ингибиторы приходят в контакт и с другими окислителями, прежде всего с кислородом и гидропероксидами. Реакции ингибитора с этими окислителями могут отразиться на кинетике ингибированного окисления и длительности тормозящего действия ингибитора. [c.111]

    В процессе очистки промышленных сточных вод активированным антрацитом ароматические вещества, содержащиеся в стоках, оседают в порах антрацита, что ухудшает его адсорбционные свойства. Для восстановления активности антрацита его регенерируют нагреванием при 700—750 °С в среде водяного пара или парогазовой смеси. Перегретый пар способствует десорбции органических соединений и, действуя как окислитель, препятствует образованию в парах антрацита смолистых и высокомолекулярных веществ. Длительность процесса регенерации в печи КС составляет 40—60 мин. Потери антрацита рри регенерации равны 10%. [c.241]

    Структура и свойства ароматических углеводородов и их производных всегда представляли большой интерес для исследователей. Под ароматичностью в органической химии понимают [ 204] способность вещества легко вступать в реакции замещения (но не присоединения), устойчивость к действию окислителей и высокую термодинамическую устойчивость. [c.42]

    Изменения эффективности каталитических процессов, осуществляемых при искусственно создаваемом нестационарном состоянии катализатора, можно, по-видимому, ожидать всегда, если эти процессы протекают по раздельному механизму. В частности, по такому пути протекают такие окислительно-восстановительные реакции, как полное окисление водорода, СО, углеводородов и многих других органических веществ при повышенных температурах, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя каким-либо образом взаимодействие окислителя с восстановленным катализатором й затем — взаимодействие исходного вещества (в присутствии окислителя или без него) с вводимым в зону реакции окисленным катализатором, можно часто увеличить активность и (или) избирательность за счет того, что в нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. Примером этого, кроме уже названных процессов, может служить окисление нафталина во фталевый ангидрид на ванадиевом катализаторе [30]. Для этого процесса активность катализатора становится тем большей, чем больше степень окисленности 0, а избирательность процесса практически не зависит от величины 0 нри [c.40]


    При нагревании углеводородного сырья до высоких температур в отсутствие окислителей оно подвергается термическому разложению. При этом происходит разрыв связей С—С и С—Н, а также полимеризация и конденсация. Конечными продуктами термического разложения могут быть углерод, водород, низшие парафины, олефины и диены, а также продукты конденсации и полимеризации низших углеводородов — полициклические ароматические углеводороды и смолы. [c.130]

    Работы Бона, Френсиса и Уилера, Фишера и Шрадера по окислению каменных углей перманганатом калия или кислородом в щелочной среде, озоном, азотной кислотой и другими окислителями легли в основу современных представлений о структуре углей. Из продуктов окисления эти авторы выделили и идентифицировали щавелевую, адипиновую, меллитовую, терефталевую, бензойную, бензолпентакарбоновые и другие подобные кислоты и таким образом доказали ароматический характер углей. [c.167]

    Полиэтилен (-СН2-СНг-)п — карбоцепной термопластичный кристаллический полимер белого цвета со степенью кристалличности при 20°С 0,5—0,9. При нагревании до температуры, близкой к температуре плавления он переходит в аморфное состояние. Макромолекулы полиэтилена (ПЭ) имеют линейное строение с небольшим количеством боковых ответвлений. ПЭ водостоек, не растворяется в органических растворителях, но при температуре выше 70°С набухает и растворяется в ароматических углеводородах и галогенпроизводных углеводородов. Стоек к действию концентрированных кислот и щелочей, однако разрушается при воздействии сильных окислителей. Обладает низкой газо- и паропроницаемостью. Звенья ПЭ неполярны, поэтому он обладает высокими диэлектрическими свойствами и является высокочастотным диэлектриком. Практически безвреден. Может эксплуатироваться при температурах от -70 до 4-бО°С. [c.388]

    Метод очистки нефтяных дистиллятов сульфированием 96—98%-ной серной кислотой и олеумом известен давно. При обработке сернистого дистиллята 5—20% концентрированной серной кислоты или олеума сульфиды, меркаптаны, тиофены и частично ароматические углеводороды сульфируются. Реакция сопровождается выделением тепла. Образуется так называемый кислый гудрон — раствор смол и сульфокислот в концентрированной серной кислоте. Поскольку серная кислота является одновременно окислителем, меркаптаны и сульфиды подвергаются не только сульфированию, но и окислению с последующим растворением продуктов окисления в кислом гудроне. Протекающие реакции окисления можно представить в виде следующих общих схем  [c.96]

    При окислении гомологов бензола различными окислителями или воздухом боковые алкильные цепи превращаются в карбоксильные группы. Таким образом можно получать соответствующие ароматические кислоты. Эта реакция имеет большое практическое значение для синтеза двухосновных фталевых кислот. [c.30]

    Особая склонность ароматических систем и смолистых веществ к взаимодействию с окислителями подтверждена тем же автором методом взаимодействия со слабыми водными растворами перманганата калия. [c.153]

    Химическая стойкость найлона не очень высока. Так, он относительно мало стоек по отношению к многим минеральным кислотам и сильным окислителям, но инертен к щелочам, жирным и ароматическим углеводородам, спиртам, кетонам и сероуглероду. При кипячении с 5% раствором H i он становится хрупким и затем рассыпается. [c.505]

    Ароматические углеводороды очень стойки по отношению к различным окислителям, но кислород воздуха в присутствии УзОв окисляет бензол в малеиновый ангидрид с хорошим выходом  [c.126]

    Как было указано выше, боковые цепи ароматических соединений при действии окислителей превращаются в карбоксильные группы. При наличии нескольких боковых цепей легкость окисления зависит от их взаимного расположения. Так, например, п-изомер окисляется легче л1-изомера. Окисление боковой цепи зависит также и от характера заместителей в ядре. Так, п-нитротолуол легче окисляется в п-нитробензойную кислоту, чем толуол в бензойную кислоту. [c.133]

    Бензол — бесцветная жидкость с характерным запахом температура кипения 80,1 °С, температура плавления 5,5 °С. Ароматические свойства бензола, определяемые особенностями его структуры, выражаются в относительной устойчивости бензольного ядра, несмотря на непредельность бензола по составу. Так, в отличие от непредельных соединений с этиленовыми двойными связями, бензол устойчив к действию окислителей например, подобно предельным углеводородам, он не обесцвечивает раствор перманганата калия. Реакции присоединения для бензола не характерны, наоборот, для него, как и для других ароматических соединений, характерны реакции замещения атомов водорода в бензольном ядре. Ниже приведены важнейшие из таких реакций. [c.567]


    Эта формула объясняла реакции присоединения в ароматических соединениях, однако она не могла объяснить большей склонности бензола к реакциям замещения и устойчивости к действию окислителей. Наличие трех двойных связей в молекуле бензола свидетельствует о высокой непредельности, которой бензол не проявляет. Объяснение всех химических особенностей оказалось возможным лишь с позиций квантовой химии. [c.320]

    Два факта заставляют думать, что упомянутые группировки действительно расположены в ферменте весьма близко. Во-первых, ароматические соединения, являющиеся конкурентными ингибиторами фермента, ингибируют также реакцию с сульфгидрильной группой, играющей существенную роль в катализе. Во-вторых, ароматические окислители (динитрофенильные соединения), обладающие незначительной реакционноспособностью в отношении обычных сульфгидрильных групп, но способные к образованию комплексов с остатками триптофана, окисляют эту сульфгидрильную группу с большой скоростью. Эти факты убедительно свидетельствуют о том, что остаток триптофана и сульфгидрильная группа расположены поблизости друг от друга и что они близки (по меньшей мере) к центру связывания тиосульфата. В настоящее время метод бифункциональных ингибиторов используется достаточно широко. Шоу [16] описал группу специфических реагентов, взаимодействующих с активными центрами химотрипсина и трипсина. Уолд [17] обобщил опыт применения бифункциональных реагентов для поперечной сшивки пептидных цепей с помощью ковалентных связей. [c.225]

    Наряду с жидкими и газообразными окислителями для очистки сточных вод применяются и твердые оксиды и гидроксиды металлов переменной валентности (никеля, кобальта, меди, железа, марганца). Гидроксид никеля высшей валентности легко окисляет тидразингидрат, спирты, альдегиды, алифатические и ароматические амины. Продуктами окисления являются в основном карбонаты, азот и вода. Метод рекомендуется для обезвреживания сточных вод с концентрацией токсичных соединений до 0,5 г/л, что является его недостатком. [c.494]

    В разнообразных нитрующих смесях используется азотная кислота или одно из ее производных. Одна разбавленная азотная кислота обычно применяется только в тех случаях, когда сосдихкише нитруется очень быстро и необходимо избежать образования иолииитросоединений. При нитровании фенола разбавленной азотной кислотой получается моно-нитрофенол, при пспользовании же более концентрированных кислот часто получается тринитропроизводное, т. е. пикриновая кислота. Разбавленная азотная кислота при нагревании действует в первую очередь как окислитель, а не как нитрующий аго[1т. Концентрированная и дымящая азотная кислота иногда применяется 1сри нитровании ароматических соединений с неконденсированными системами колец. [c.544]

    Окисление. Ароматические углеводороды, кроме бензола, весьма чувствительны к окислителям. Разбавленная азотная кислота, хромовая смесь, перманганат калия, железосинеродистый калий окисляют боковые цепи ароматических углеводородов, превращая их в карбоксильные группы. Эта реакция часто применяется для определения расположенпя боковых цепей в ароматическом ядре. Осторожное окисление приводит к целому ряду промежуточных продуктов. [c.40]

    Ряд исследователей [588] проверили возможность применения как окислителя системы избыток твердого КОг/каталитиче-ские количества 18-крауна-6/бензол на примере гидразинов, гидразонов и родственных соединений. В большинстве случаев реакцию ведут при перемешивании в течение 24 ч. Монозамещенные гидразины, особенно арилгидразины, превращались в продукты, не содержащие азот (часто в углеводороды), вероятнее всего, в результате свободнорадикального процесса. 1,2-Ди-арилгидразины дают соответствующие азосоединения окисление 1,1-дизамещенных гидразинов приводит к N-нитpoзo oeди-нениям. Гидразоны ароматических кетонов образуют азины. [c.395]

    Селективность отделения высококипящих сульфидов от ароматических соединений можно повысить, использовав в качестве окислителя озон, скорости реакции которого с компонентами сернисто-ароматических концентратов различаются очень сильно. При 20°С константы скорости окисления сульфидов в сульфоксиды составляют 1500—1900, озонирования полициклоароматических структур — 80, окисления алкилнафталинов и алкилбен-золов — менее 12 л/моль-с (часто ниже 5 л/моль-с [174]). Тиофе-новые циклы разрушаются озоном, превращаясь, как и полицик-лоароматические углеводороды, в кислые продукты. Благодаря этим особенностям насыщенные сульфиды в сульфоксидной и, частично, сульфонной форме удается полностью выделить даже из концентрата, кипящего в пределах 490—510°С [175]. [c.22]

    Skraup реакция Скраупа — получение производных хинолина из ароматических аминов и глицерина в присутствии серной кислоты и окислителя (напр, нитробензола или AsjOg) solvolyti реакция расщепления ионами растворителя [c.397]

    Полиэтилеи устойчив к действию кислот, щело чей, растворов солей и органических растворителей. Он разрушается только под действием сильных окислителей — концентрированных азотной и серной кислот п хромовой кислоты. При комнатной температуре полиэтилен нерастворим в известных растворителях, а при нагревании выше 70°С растворяется в толуоле, ксилоле, хлорированных углеводородах, декалине, тетралипе. Он устойчив к действию воды. Водопоглощение его за 30 суток при 20 °С не превышает 0,04%. Под влиянием кислорода воздуха, света и тепла полиэтилен теряет эластические свойства и пластичность, становится жестким и хрупким (происходит старение). Для замедления процесса старения в полиэтилен добавляют небольшие количества термостабилизаторов (ароматические амины, фенолы, сернистые соединения) и светостабилизаторов (сажа, графит). [c.10]

    Лигнин — сложная смесь органических веществ ароматического характера, содержащая большее количество углерода, чем целлюлоза (61—64%), и придающая стенкам клеток твердость и упругость. По сравнению с другими составными частями древесины лигнин наиболее реакционпоспособен и легко поддается воздействию горячих щелочей, окислителей и пр. Содержание лигнина колеблется от 17 до 30%. [c.201]

    При окислении асфальтенов различными окислителями (азотная кислота, бихромат и перманганат калия, перекись натрия, перекись водорода, озон, кислородо-воздушная смесь и воздух в щелочной среде) происходит образование аренов, кетонов и кислот. Окисление сопровождается уменьлением числа ароматических и алициклических колец и длинньх алкильных цепей и увеличением метильных групп, хотя степень замещения ароматических систем значительно не изменяется. Конверсия исходного вещества при окислеггии составляет 20—40% (масс.). [c.215]

    В отличие от ароматических изоалкановые углеводороды характеризуются достаточно низкими температурами самовоспламенения. Более трудная окисляемость этих углеводородов может быть исправлена добавлением присадок окислителей. [c.84]

    Окисление часто используется как метод изучения свойств и молекулярного строения различных по происхождению твердых топлив. Для этой цели применяются различные окислители — кислород, озон, НЫОз, КМПО4, Н2О2, хромовая и серная кислоты и др. При окислении твердых топлив получаются разнообразные продукты вода, окись и двуокись углерода., низкомолекулярные кислоты (уксусная, щавелевая, пропионовая, масляная), различные фталевые и бензолкарбоновые кислоты и др. Каменные угли дают темно-окрашенные кислоты. В их состав наряду с гуминовыми входят алифатические дикарбоновые, различные бензолкарбоновые и многоядерные ароматические кислоты. [c.166]

    Ароматические углеводороды окисляются как в жидкой, так и в газовой фазе. При этом почти во всех производствах переходят к применению в качестве окислителя кислорода воздуха и реже используют чистый кислород или воздух, обогащенный кислородом. Одновременно резко сокращается иопользование перманганата, хроматов и бихро1матов, азотной кислоты и пероксида водорода, чго значительно удешевляет получаемые продукты окисления и снижает образование вредных выбросов и сточных вод. [c.37]

    Сульфиды количественно выделяются хроматографически из смесей с углеводородами и другими типами гетероатомных соединений после их селективного превращения в сульфоксиды илн сульфоны [184J. Хроматография с предварительным окислением включает стадии обработки фракции или сернисто-ароматического концентрата окислителем, хроматографического выделения сульфоксидов и, наконец, восстановления сульфоксидов в исходные сульфиды. [c.87]

    Тиофены весьма устойчивы к действию окислителей. При хранении тиофено-ароматического концентрата 200—280 °С, выделенного из дизельного топлива Л, в течение 4 мес при 15—20°С на рассеянном свету в стеклянной емкости, а также при нагревании его до 150 °С в контакте с медью практически не происходило окисления тиофенов. Инфракрасный спектр продуктов окисления показал образование лишь незначительного количества карбонильных соединений (тиенилкетонов) [196]. [c.253]

    Действие щелочей на соли ароматических сульфокислот при высокой температуре изучено подробно вследствие большого технического значения и научного интереса, представляемого образующимися при этом фенолами. Хотя сам нол производится в настоящее время в значительной степени по другим методам, большая часть обычных фенольных соединений, включая нафтолы и их производные, все еще получается из сульфокислот. В применении этого метода синтеза фенолов все же встречаются известные ограничения. Присутствие гидроксильных и аминогрупп в орто- или лара-положении к сульфогруппе оказывает на последнюю глубокое влияние в смысле значительного уменьшения ев подвижности, а замещение такой сульфогруппы на гидроксил сопровождается перегруппировкой или полным распадом молекулы. Нитрогрунна тоже мешает образованию фенолов, так как действует в щелочном сплаве как окислитель и приводит к полному распаду нитросульфокислоты на аммиак, щавелевую кислоту и другие продукты [225]. Темпе менее в 2,4-динитробензолсульфо-кислоте активирующее влияние нитрогрупп так велико, что [c.229]

    Сульфохлориды реагируют не только как типичные хлорангидриды, но во многих случаях как хлорирующие агенты и окислители и поэтому число известных их реакций довольно вeJшкo. Они сравнительно устойчивы из ароматических сульфохлоридов лишь антрахинон-1-сульфохлорид разлагается при стоянии с выделением сернистого ангидрида и образованием 1-хлорантра-хинона [58]. [c.279]

    Селективное окисление нефтяных сульфидов. Нефтяные сульфиды окисляют в мягких условиях водными растворами сильных окислителей (перекиси водорода, азотной кислоты), а также органическими гидроперекисями. Целесообразно окислять сульфиды в среде сернистоароматического концентрата, свободного от парафино-нафтеновых углеводородов и смол. Методику, предложенную для окисления перекисью водорода индивидуальных сульфидов [36], применили для окисления нефтяных сульфидов сернисто-ароматических концентратов [37—39]. Условия окисления были такими, при которых углеводороды и другие сернистые соединения окислялись незначительно. Правда, меркаптаны легко окисляются в дисульфиды, однако этот процесс идет с меньшей скоростью, чем окисление сульфидов. [c.113]

    Окисление конденсированных ароматических соединении такими сильными окислителями, как гриоксид хрома или бихромат калия, приводит к образованию циклич а1х дикетопроизводных, известнь1Л под названием хинонов  [c.179]

    По стойкости и ароматическому характеру 1,2,4-триазолы сходны с 1,2,3-триазолами. При действии на них энергичных окислителей происходит лишь разрушение боковых цепей, но гетероциклическое кольцо не разрушается. Они также являются очень слабыми основаниями и если содержат хотя бы одну незамешенную НН-группу, то образуют металлические соли. [c.1010]

    Примером процессов конденсации первичных ароматических аминов с глицерином Е присутствии серной кислоты и[окислителей может служить получение антрахипонового красителя—ализаринового синего из 3-аминоализарина. [c.351]

    Перманганат калия, или марганцевокислый калий (КМПО4), сильный окислитель. Он широко применяется в реакциях органического синтеза, в производстве жирных и ароматических кислот, для отбеливания тканей, протравы дерева, как дезинфицирующее средство в медицине и в быту, в аналитической практике, в фотографии и т. п. [c.203]

    Однако между ароматическими соединениями и алкенами существуют принципиальные различия. Во-первых, ароматические соединения проявляют склонность к замещению атомов водорода на электрофильную группу, а алкены — к присоединению реагентов по кратной связи. Во-вторых, алкены реагируют с большим числом окислителей (КМПО4, 0з04, Н2О2, органические пероксикислоты и др.), которые в ароматических соединениях могут окислять только боковые цепи, оставляя неизменным изоциклическое кольцо. (Пятичленные ароматические гетероциклы значительно менее устойчивы к действию окислителя по сравнению иензолом, а щестичленные — наоборот.) [c.313]

    В качестве окислителей в реакции Скраупа чаще всего используют нитросоединения с теми же заместителями, что н у ароматического амина. В некоторых случаях окислителями служат л-нитробензолсульфокислота, АзгОб, РеСЬ, ЗпС . Кроме серной кислоты в качестве дегидратирующего средства используют фосфорную кислоту. [c.556]

    А. с. почти не вступают в реакции присоединения, стойкие к окислителям, легко замещают атомы водорода, соединенные с ароматическим циклом, на другие атомы или группы. А. с. проявляют высокую энергетическую стойкость по сравнению с ненасыщенными соединениями. Ее характеризуют так называемой энергией сопряжения, равной разности между вычисленной энергией образования гипотетической молекулы с фиксированными связями и экспериментально найденной энергией образования ре-алыюй молекулы. Энергия сопряжения для бензола 40 ккал/моль, нафталина 75 ккал/моль, тиофена 31 ккал/моль и др. А. с. характеризуются некоторыми общими особенностями строения, в частности промежуточным между простым и двойным характером связи в цикле и плоскостным строением цикла. [c.31]

    ЧУК (СКС, Буна-З и др.) — продукт сополимеризации бутадиена и стирола, осуществляющейся эмульсионным методом. Б.-с. к. производят с различным содержанием стирола. Средняя молекулярная масса СКС-30, определенная по вискознметрическому методу, 200— 300 тысяч. Б.-с. к. имеет нерегулярную структуру и потому не кристаллизуется. Получают его холодным и горячим способами (при 5 и 50° С) полимер, образующийся при 5 С, имеет меньшую степень разветвленности и лучшие свойства, его обозначают СКС-ЗОА. Для инициирования реакции полимеризации применяют персульфаты, пербора-ты, пероксид водорода, органические пероксиды и гидропероксиды. Для обеспечения полимеризации при низкой температуре применяют активаторы (сульфиты, сахара) в комбинации с окислителями и восстановителями, из которых создаются так называемые окислительновосстановительные (редокс) системы. Для получения менее разветвленного полимера с желаемой молекулярной массой применяют регуляторы (меркаптаны, дисульфиды и др.). Значительная часть Б.-с. к. вырабатывается в виде маслонаполненного каучука. Минеральное масло, содержащее до 30% ароматических соединений, вводится в полимер (20,— 30% от его массы). Б.-с. к. является универсальным видом каучука, из которого изготовляют автомобильные шины, транспортерные ленты, резиновую обувь, различные резиновые детали и др. СКС-10 отличается высокой морозостойкостью, приближаясь по своим свойствам к натуральному каучуку. [c.49]

    НИТРОБЕНЗОЛ (мононитробензол, мирбановое масло) 5H5NO2 — простейшее ароматическое нитросоединение, маслянистая жидкость с запахом горького миндаля, ядовит раствор И. в воде сладкого вкуса. Получают И. нитрованием бензола смесью концентрированных HNO3 и H2SO4. Н. применяют в больших количествах для получения анилина, бензидина, в производстве красителей, в качестве растворителя, как окислитель, для отдушки мыла. [c.175]

    ТРОПОЛОНЫ — семичленные циклические оксикетоны, по своему строению и химической природе относятся к ароматическим соединениям небензоидного типа Простейший из Т.— 2 окси ци клогептатр иен 2,4,6-он-1 — бесцвет ные игольчатые кри сталлы, т. пл. 50—51 С, растворя ется в воде и в органических растворителях, легко возгоняется синтезируют из пробковой кислоты. Многие природные соединения содержат в основе структуру Т. Т. обладают фунгицидными и бак-териостатическими свойствами. Для них характерны реакции присоединения, они с трудом восстанавливаются, обычными окислителями кольцо не разрушается. Как и фенолы, Т. легко подвергаются электрофильному замещению. По кислотным свойствам Т. занимают промежуточное положение между фенолами и карбоновыми кислотами. При действии щелочей кольцо Т. изомеризуется в бензольное. [c.254]


Смотреть страницы где упоминается термин Ароматические окислителей: [c.373]    [c.407]    [c.121]    [c.12]    [c.258]   
Основные начала органической химии Том 2 1957 (1957) -- [ c.220 ]

Основные начала органической химии Том 2 1958 (1958) -- [ c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Окислитель



© 2025 chem21.info Реклама на сайте