Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость структура полимера

    Диффузия в массе полимера связана с объемной растворимостью компонентов реакционной смеси в ионите и определяется химической структурой полимера, в частности расстояниями между полимерными цепями и густотой поперечных сшивок. Эти расстояния ограничивают возможность проникновения той или иной молекулы внутрь полимера и тем оказывают важнейшее влияние на избирательность действия ионитов. [c.39]


    Активность ионита, как катализатора, определяется в значительной степени его химическим составом и строением, пористой структурой, адсорбционной способностью по отношению к реагентам [3]. Химическая структура полимера (расстояние между полимерными цепями, густота поперечных сшивок) определяет избирательность действия ионита. Пористая структура органического катализатора влияет на активность через внутреннюю диффузию компонентов. Различают диффузию в порах ионита и диффузию в массе полимера. Последняя связана с объемной растворимостью компонентов реакционной смеси внутри ионита и зависит от химической структуры полимера. [c.175]

    Описанная структура полимера ведет себя подобно коагуляционной структуре. Сходство в поведении этих структур заключается в том, что для них характерны химические связи внутри частиц и на порядок меньше межчастичные взаимодействия. С увеличением полярности макромолекул уменьшается их гибкость, а для межмолекулярных взаимодействий становятся характерными все три типа сил Ван-дер-Ваальса. Наличие таких функциональных групп, как 0Н, —СООН, —ЫНг, обусловливает возникновение более прочных водородных связей. С ростом межмолекулярного притяжения полимер превращается в более твердое, менее эластичное и даже хрупкое вещество, теряющее плавкость и растворимость. Полимеры с химическими связями между макромолекулам (пространственные) нерастворимы и неплавки при нагревании. По свойствам они соответствуют конденсационным структурам. [c.391]

    При дальнейшем течении процесса (в стадии В) структура полимера становится сетчатой. Пока пространственная сетка остается мало развитой, полимер сохраняет способность набухать в спиртах, но растворимость уже им утрачена. Продукт поликонденсации в стадии В называется резитолом. При дальнейшем нагревании резитол превращается в резит (стадия С) — твердый продукт, неплавкий и нерастворимый. Термореактивность резита связана с развитием пространственной структуры. Поэтому поликонденсацию фенол-формальдегидной смолы проводят в два этапа. Вначале получают плавкие и растворимые резолы, а превращение их в резиты совмещают с изготовлением изделий. [c.390]

    В целом следует отметить, что гетероцепные карборансодержащие полимеры обладают характерными чертами, существенно отличающими их от органических полимеров сходного строения [30, 148]. Включение в полигетероарилены о- и ж-карборановых групп улучшает растворимость полимеров, особенно в случае менее симметричных и более полярных о-карборановых групп полимеры же с и-карборановыми группами в цепи растворимы, как правило, хуже. Это объясняется аморфностью большинства полимеров с о- и ж-карборановыми группировками и известной упорядоченностью структуры полимеров с более симметричными и-карборановыми группами. [c.273]


    Для оценки значения коэффициента диффузионной проницаемости необходимо исследовать в отдельности значения коэффициентов диффузии и растворимости и их зависимости от температуры, структуры полимера и природы диффундирующего вещества. [c.12]

    При изготовлении пленок прессованием (например, полиэтиленовые пленки) поверхностный слой может аморфизироваться в результате быстрого охлаждения расплава и, следовательно, отличаться по степени кристалличности и морфологии кристаллических образований от внутренних слоев пленки 2 -2° . Полиэтиленовые пленки 2 , полученные методом пневматического растяжения, и полиэтилентерефталатные пленки характеризуются постоянными значениями коэффициентов газопроницаемости в широком диапазоне толщин. В очень тонких пленках независимо от способа их получения структура полимера существенно изменяется, что соответственно влияет и на изменение коэффициента проницаемости. Так, Вит с сотр. исследуя растворимость газов в ориентированном полиэтилентерефталате, показали, что при толщине пленки в I мкм и менее структура пленки резко изменяется и коэффициент растворимости СОа в таких пленках значительно отличается от [c.239]

    Трехгорлую колбу емкостью 100 мл, снабженную мешалкой и вводом для азота, откачивают и заполняют азотом 3 раза. Приготавливают следующие растворы а) 500 мг олеата натрия (или лаурилсульфата натрия) в 16 мл деаэрированной воды б) 125 мг (0,32 ммоль) Ре(N1 4)2(504)2 и 125 мг пирофосфата натрия в 4 мл деаэрированной воды (для создания буфера). Этот раствор встряхивают в течение 15 мин при 60—70 °С и затем выливают в колбу вместе с раствором, указанным в пункте а . После охлаждения до комнатной температуры в колбу вносят 20 мл (0,2 ммоль) изопрена, перегнанного в атмосфере азота и содержащего 50 мг (0,21 ммоль) перекиси бензоила. Сильное перемешивание способствует образованию стабильной эмульсии, вязкость которой возрастает во времени. После 6-часовой выдержки при комнатной температуре изопрен почти полностью полимеризуется. Полимер высаживается в виде хлопьев из латекса при добавлении эмульсии по каплям к 500 мл метанола, в котором содержится 500 мг М-фенил-Р-нафтиламина, необходимого для стабилизации полиизопрена образование осадка можно усилить добавлением в осадитель нескольких капель соляной кислоты. После фильтрования с отсасыванием и промывки метанолом прочный эластичный образец высушивают в вакуумном сушильном шкафу при 50 °С. Определяют растворимость полученного полимера в различных растворителях, измеряют характеристическую вязкость в растворе толуола при 25 °С, содержание 1,2- и 1,4-звеньев в цепи, а также соотношение цис- и тро яс-структур (см. опыт 3-30). Сопоставьте полученные данные с результатами полимеризации изопрена под действием бутиллития (опыт 3-30). [c.137]

    До сих пор речь шла только о макроскопической вязкости полимера, которая очень велика и обусловлена взаимодействием целых макромолекул при их скольжеНии относительно друг друга. Вместе с тем величина вязкости, найденная по скорости диффузии небольших молекул в полимере и зависящая от движения отдельных сегментов его цепи ( микроскопическая вязкость ), близка к вязкости простой низкомолекулярной жидкости, молекулы которой ведут себя подобно сегментам Микроскопическая вязкость тесно связана с газопроницаемостью полимеров, с диффузией (и растворимостью) газов в них, во многом напоминающей по своему механизму течение жидкостей и имеющей очень большое практическое значение (автомобильные камеры, защитные покрытия, упаковочный материал, мембраны для разделения смесей газов и т. д). Газопроницаемость высокомолекулярных соединений [19] зависит от химической и надмолекулярной структуры полимера (наличие полярных групп, кристалличность или аморфность), формы, гибкости и ориентации макромолекул, характера межмолекулярного взаимодействия и т. д существенное значение также имеют природа газа (полярность, молекулярная масса, форма, непредельность) и температура. [c.405]

    Улучшение растворимости этих сополимеров обусловлено нарушением регулярности структуры полимера (по сравнению с гомополимерами) [c.156]

    Растворимость и другие свойства перхлорвинила зависят от молекулярной массы и степени хлорирования Нарушение регулярности структуры макромолекул поливинилхлорида при введении дополнительных атомов хлора приводит к ослаблению сил межмолекулярного взаимодействия, что способствует увеличению растворимости хлорированного полимера Так, хлорированный поливинилхлорид легко растворяется в сложных эфирах и кетонах [c.158]

    Ясно, что процессы образования и роста частиц полимера при дисперсионной полимеризации сильно зависят от растворимости полимера. Несмотря на то, что полуэмпирическое описание в терминах полярного или неполярного характера полимера и растворителя может служить приблизительны.м качественным руководством, пригодным для экспериментальных целей, представляется желательным характеризовать свойства растворимости полимеров более точно и количественно. Наиболее удобным для этой цели оказался параметр растворимости, связывающий растворимость с химической структурой полимера и растворителя 18]. Последняя, в свою очередь, может быть связана с параметрами взаимодействия, входящими в развитую Флори и Хаггинсом теорию растворов полимеров, которая объясняет зависимость растворимости от молекулярной массы и многие другие аспекты поведения растворов полимера. [c.136]


    Были предложены различные методы измерения растворимости добавок в полимере. Прямой метод включает изучение кинетики растворения химиката-добавки, когда она находится в равновесии со своим насыщенным паром или с добавкой, введенной в поверхностный слой полимерной пленки [7, 14-17]. С этой целью полимерная пленка с добавкой выдерживается в герметичной вакуумной камере или в инертной среде в течение различных периодов времени. Обычно значение растворимости связано с некоторым плато на кривой концентрации добавки в полимере в зависимости от времени. При высоких температурах растворение может сопровождаться изменением структуры полимера и растворимость будет изменяться со временем [8,16,17]. [c.113]

    Согласно уравнению (4.9), кристалл с более высокой теплотой плавления должен быть менее растворимым в полимере, чем кристалл с низкой теплотой плавления. Растворимость добавки в полимере может быть предсказана, исходя из данных по ее растворимости в гомологическом ряду растворителей и экстраполяции этих данных в координатах 1п5 от 1/ 2 к точке 1/Уз = 0. Такой способ не учитывает влияние структуры полимера. [c.114]

    В случае полимеров других а-олефинов растворимость различных фракций изменяется в зависимости от структуры олефина и поэтому для разделения этих продуктов процессы экстракции соответствующим образом видоизменяются. Данные по растворимости различных полимеров в кипящих растворителях представлены в табл. 24. [c.172]

    Потери добавок из полимера в результате поверхностного выпотевания наблюдаются в случае, когда концентрация добавки в полимере превышает равновесную растворимость при данной температуре В простейшем случае задача сводится к расчету потери добавки при постоянной поверхностной концентрации, равной ее растворимости в полимере, т. е. к случаю больших Однако на практике из-за возможного влияния добавки на структуру полимера и неоднородности распределения добавки в объеме полимера потери в результате выпотевания протекают более сложным образом. [c.420]

    Этот подход к оценке растворимости полимеров заключается в следующем. Структура полимеров определяется на молекулярном уровне конформациями, конфигурацией и способами взаимной упаковки макромолекул. Действующий объем атома каждого вида зависит от его окружения, т.е. от природы валентносвязанных с ним атомов и от коэффициентов упаковки молекул вещества, в которые входит данный атом. [c.96]

    Окисление. Изучение реакции окисления ненасыщенных по-. жмеров (иначе называемой реакцией их старения) имеет большое практическое значение, так как позволяет определить длительность и допустимые условия эксплуатации резиновых нзде-,1ий. Поэтому исследованию реакции окисления посвящено большое количество работ. Кинетические характеристики окислительного процесса полимеров во многом зависят от скорости диффузии кислорода в толщу материала. Скорость окисления ненасыщенных полимеров на поверхности или в тонкой пленке графически изображается 5-образной кривой с ясно выраженным индукционным периодом (рис. 75). РГндукционный период тем короче, чем выше температура реакционной среды. В зависимости от структуры полимера изменяются скорость диффузии и растворимость кислорода в полимере. Соответственно изменяются кинетика окисления и степень превращения полимера под влиянием кислорода. При одинаковых условиях константа диффузии кислорода в полибутадиене в 10,5 раз больше константы диффузии кислорода в поли-диметилбутадиене. В полимерах, которым можно придать кристаллическую структуру или ориентировать их макромолекулы, [c.239]

    Пр.именен1ие акрилонитрила в качестве стоппера процесса полимеризации изопрена не вызывает изменений в растворимости, величине молекулярного веса и структуре полимера (табл. 1). [c.91]

    Как показано в [2-49], хорошо ориентированная ламелярная микроструктура (рис. 2-35) с высокой степенью упорадочения кристаллитов при нагревании до 2100 С получается при двухстадийной фильтрации расплавленного каменноугольного пека при 350°С. В первой стадии выделяется г фракция, растворимая в хинолине и нерастворимая в толуоле, а во второй, при прохождении остатка через пористый сепаратор, образуется высокоориентированная структура мезофазы по схеме на рис. 2-37. Из нее при коксовании получается кокс с ламелярной микроструктурой и с резко пониженным содержанием микропор. В [2-50] приведены результаты рентгеноструктурного исследования карбонизации одного из компонентов каменноугольного пека — антрацена. Показано, что образующаяся из антрацена ме зофаза состоит из конденсированных димеров и тримеров, сохраняющихся до образования других ароматических структур выше 450°С. Предполагаемые модели структуры полимера, образующегося при пиролизе антрацена на стадии формирования мезофазы, показаны на рис. 2-23. [c.77]

    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]

    Полимеры с трехмерной структурой не обладают нормальной растворимостью. Такие полимеры могут только набухать в некоюрых растворителях. Факт набухаии.ч сам по себе не является доказательством наличия поперечных связей, так как полимеры с ограниченной растворимостью могут весги себя аналогично. Но если полимер не растворяется в ряде растворителей, типичных для полимеров данного класса, и, кроме того, не плавится, он обычно рассматривается как трехмер, если только нет убедительных доказательств противоположного. [c.70]

    Двенадцатая глава посвящена проблеме повышения предсказания растворимости полимеров в органических жидкостях. Показано, что предсказательная способность критерия растворимости, рассчитываемого по химическому строению полимера и растворителя, резко повышается с учетом типа надмо-ле1 лярной структуры полимера и степени его полимеризации. [c.17]

    Вместе с тем, повышая жесткость основной полимерной цепи, кардовые группировки разрыхляют структуру полимеров и уменьшают тем самым межцепное взаимодействие, что обеспечивает высокую растворимость таких полиарилатов во многих органических растворителях. Большинство аморфных кардовых полиари- [c.111]

    Таким образом, наличие карборансодержащих фрагментов в структуре полимеров снижает температуры размягчения сополиарилатов и перехода в ЖК-расплав, улучшает их термические свойства, а также способствует появлению у них растворимости. [c.187]

    Растворимость постоянных газов в аморфных неполярных линейных полимерах при температурах выше Тс можно рассматривать аналогично растворимости газов в органических жидкостях При этом следует учитывать лишь абсорбционные процессы, так как адсорбцией на поверхности газ — поллмер практически можно пренебречь. Однако услс кнение структуры полимеров по сравнению со"структурой жидкостей приводит к необходимости внесения существенных поправок в само понятие о растворимости. [c.45]

    Растворимость постоянных газов в полимерах довольно мала, чтобы повлиять на деформацию и перестройку структуры полимера Так, растворимость азота в натуральном каучуке составляет всего около 0,01 вес.%, что соответствует концентрации приблизительно в одну молекулу азота на 5500 звеньев цепной молекулы полиизопрена. Действительно, неоднократно экспериментально показывалось, что в пределах подчинимости закону Генри коэффициент растворимости газов и паров сохраняется постоянным независимо от давления Однако при сорбции легко конденсируемых паров коэффициент сорбции может существенно зависеть от концентрации или давления паров сорбируемого вещества. Хорошие растворители могут сорбироваться полимерами в больших количествах, что приводит к искажению структуры полимера, в частности к его пластификации, изменению морфологии кристаллических образований и релаксации напряжений. Для сорбции неполярных паров органических растворителей полиэтиленоми другими неполярными полимерами выведено полуэмпирическое уравнение изотермы абсорбции [c.49]

    Недостаток этих методов - зависимость результатов от структуры полимера. Например, двойное лучепреломление, применяемое при ультрацентрифугировании, чувствительно к типу полимера метод разделения полимера по разности плотностей также зависит от композиционного состава макромолекул. С другой стороны, турбидиметри-ческое титрование и селективная экстракция могут дать ценную информацию о растворимости привитых и блок-сополимеров, а в некоторых случаях позволяют разделить полимер на фракции независимо от его молекулярной массы. [c.334]

    Линейные полиуретаны, полученные из короткоцепных диолов и диизоцианатов, представляют собой высокоплавкие кристаллические термопласты, по свойствам напоминающие полиамиды, что обусловлено сходным строением их основных цепей. Однако обычно полиуретаны плавятся при более низких температурах, а их растворимость оказывается выше, чем полиамидов (например, в хлорированных углеводородах). Термическая стабильность полиуретанов ниже в зависимости от структуры полимера уже при 150— 200 °С начинается заметная диссоциация уретановых групп до исходных функциональных групп расщепление аллофонатных групп начинается даже при 100 °С. Полиуретаны используются для производства волокон. Сшитые полиуретаны применяются в качестве лаков, клеев, покрытий (для тканей и бумаги), эластомеров и пенопластов. [c.226]

    Такегами и сотр. [ 203] получили сополимер типа ABA (ПММА-ПЭГ-ПММА) при полимеризации метилметакрилата (ММА). В качестве инициатора использовали натриевую соль полиэтиленгликоля (ПЭГ), реакция проводилась в присутствии дициклогексил-18-краун-6. Содержание синдиотактических полимеров было намного выше, чем в продукте, полученном в отсутствие краун-эфира. Результаты исследований, посвященных улучшению растворимости щелочных металлов в присутствии краун-эфиров (разд. 3.2.4 и 3.3.2.В), были применены для использования щелочных металлов как инициаторов анионной полимеризации. Используя дициклогексил-18-краун-6, Кемпф и сотр. [ 204] провели гомогенную анионную полимеризацию бутадиена, изопрена и метилметакрилата с растворами Na, К, НЬ и s в ТГФ и бензоле- Во всех случаях полимеризация шла настолько быстро, что превращение мгновенно происходило нацело. Микроструктура полимера, полученного при Ю°С в бензольном растворе, аналогична структуре полимера, полученного в полярном растворителе. Молекулярная масса полимера оказалась намного выше, чем значение, рассчитанное, исходя из отношения (мономер)/ иниЩ1атор). Молекулярно-массовое распределение полимера было широким = 3-4). Полимеры существенно отличались от полученных другими известными методами полимеризации. [c.255]

    Как показано выше, реакции сшивки вызывают увеличение линейных размеров макромолекул. Однако они могут привести и к формированию трехмерной сетчатой структуры полимера, образование которой удалось обнаружить, изучая растворимость лигнина, обработанного кислотой при различных pH и температурах. С этой целью в работах [36, 57—58] ЛМР ели и тополя обрабатывали водными буферными растворами, как описано выше, а затем цосле отделения от маточного раствора определяли их растворимость в водном диоксане или ДМСО [c.271]

    Нельзя не обратить внимания на взаимную зависимость между структурой полимеров и их физическими свойствами. Устансвлено [40], что с увеличением в интермолекулярных соединениях отдельных молекулярных цепей растворимость, в ссобеннссти в ароматических растворителях, уменьшается, в [c.655]

    Переводом в полимерное состояние обычных лекарственных веществ можно добиться суищственного изменения ряда их свойств 1) увеличить длительность де11-ствия (эффект пролонгирования, создания депо ), что обусловлено замедленным поглощением лекарства из места введения и замедленным выведением его из организма 2) расширить диапазон допустимой дозы (умень-пшние токсичности) и улучшить растворимость 3) изменить фармакокинетику (зависит от скорости освобождения активного компонента из иолимерной структуры, мол. массы, структуры полимера и свойств включенных в него сомономеров, путей метаболизма) 4) изменить раснределение в организме, что определяется связыванием с белками, всасыванием, взаимодействием с клеточными мембранами и внутриклеточными элемен- [c.371]

    Влияние надмолекулярной структуры полимера и предыстории полимера на растворимость антиоксидантов изучалось в работах [32-37]. Установлено, что растворимости дифениламина, метилового эфира 3,5-ди-трет-бутил-р-гидрокси-пропионовой кислоты и 2,2 -метиленбис(4-метил-6-третиутилфенола) в полиолефинах, приготовленных быстрым охлаждением расплава полимера (структура с мелкими сферолитами), выше, чем в образцах, приготовленных медленной кристаллизацией вблизи температуры плавления полимера (структура с крупными сферолитами) [32,33]. Различие в растворимости достигает двухкратной величины, тогда как кристалличность, определенная методом ИК-спектроскопии, была практически одинаковой [33]. [c.118]

    Это может оказаться важным в случае больших молекул добавки. В работах [16,17] изучалась растворимость стерически несвободных аминов с молекулярными массами от 1364 до 2758 в ПП. Было показано, что временная зависимость растворимости стабилизаторов в полимере при 100 °С проходит через максимум и зависит от молекулярной массы стабилизатора чем выше молекулярная масса, тем выше его максимальная концентрация в ПП. Предположили, что при высоких температурах молекулы большего размера способны изменять строение полимера в большей степени, чем молекулы меньшего размера, поэтому кажущаяся растворимость может возрастать с молекулярной массой добавки, что и подтвердилось экспериментально. Таким образом, процесс растворения высокомолекулярных добавок ведет к определенной деструкции начальной структуры полимера. Уменьшение растворимости добавки со временем, возможно, связано с изменением кристалличности полимера и концентрации нерегулярных конформаций в аморфных областях полимера [16,17]. [c.123]

    Физические свойства. Полиизобутилены с низким молекулярным весом — вязкие маслоподобные жидкости, а с молекулярным весом больше 50 ООО —каучукоподобные вещества. Натта [171] сравнивает растворимость, температуру плавления и плотность аморфных и кристаллических полиизобутил енов, полученных методами стереоспецифической полимеризации. По всем этим показателям кристаллический полиизобутилен выгодно отличается от аморфного плотность (г/сж ) для кристаллического образца 1,08, температура плавления—220°, в то время как для аморфного—1,04—1,065 и 170° соответственно. Растворимость кристаллического полимера в обычных растворителях значительно меньше, чем аморфного. Указанные различия в свойствах объясняются неодинаковой пространственной структурой цепей кристаллических и аморфных образцов, что подтверждается заметными различиями в их инфракрасных спектрах. Автор считает, что в цепях кристаллических полимеров все группы, связанные с асимметрическими атомами уг- [c.199]


Смотреть страницы где упоминается термин Растворимость структура полимера: [c.308]    [c.289]    [c.56]    [c.524]    [c.24]    [c.138]    [c.233]    [c.56]    [c.292]    [c.98]    [c.14]    [c.143]    [c.257]    [c.406]   
Антиокислительная стабилизация полимеров (1986) -- [ c.37 , c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Полимера растворимости



© 2025 chem21.info Реклама на сайте