Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные орбитали симметрия, правила

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]


    Р. Вудвордом и Р. Гоффманом было сформулировано правило сохранения симметрии молекулярных орбиталей симметрия молекулярных орбиталей, образующих разрываемые химические связи в молекулах исходных веществ, должна соответствовать симметрии молекулярных орбиталей продуктов реакции. Это правило распространяется и на химические связи в активном комплексе. [c.293]

    Для количественного рассмотрения энергетических уровней в теории поля лигандов используют математическую теорию групп и теорию симметрии. Для этого вначале необходимо составить групповые орбитали для набора лигандов. Затем их комбинируют на основе правил теории симметрии с атомными орбиталями металла с образованием связывающих и разрыхляющих молекулярных орбиталей. По окончании этой математической операции заполняют последовательно орбитали электронами, начиная с той, которая характеризуется самой низкой энергией. [c.49]

    С момента своего возникновения квантовая химия была связана главным образом с изучением электронного строения молекул, т.е. электронного распределения в стационарных состояниях, а также состава входящих в волновую функцию молекулярных орбиталей, взаимного расположения уровней энергии занятых и виртуальных орбиталей и т.п. Были предприняты многочисленные попытки интерпретировать такие понятия классической теории, как валентность, химическая связь, кратность химической связи и др. Одновременно были введены и многие новые понятия, такие как гибридизация, а- и л-связи, трехцентровые связи и т.д., часть из которых прочно вошла в язык современной химической науки, тогда как другие оказались менее удачными и сейчас уже хорошо забыты. К тому же и содержание большинства понятий, возникающих внутри квантовой химии, заметно трансформировалось с течением времени. В квантовой химии было введено большое число различных корреляций между экспериментально наблюдаемыми для вещества и вычисляемыми для отдельных молекул величинами. Сама по себе химия является в существенной степени корреляционной наукой, базирующейся прежде всего на установлении соответствия между свойствами соединений и их строением и последующем предсказании требуемой информации для других соединений. По этой причине богатейший набор информации о строении, в том числе электронном строении соединений, предоставляемый квантовой химией, оказался как нельзя кстати для дальнейшего активного развития химической науки. Так, на основе квантовохимических представлений была развита качественная теория реакционной способности молекул, были сформулированы правила сохранения орбитальной симметрии, сыгравшие важную роль при исследовании и интерпретации реакций химических соединений. [c.4]


    Для молекулярных орбиталей использованы обозначения двух типов. Левое обозначение указывает атомные орбитали, из которых получена. молекулярная орбиталь, значение л (определяемое буквенным символом а илн я) и связывающий либо разрыхляющий (отмечено звездочкой) характер молекулярной орбитали. Правое обозначение основано на использовании символов неприводимых представлений точечной группы 1>сх>й, первое число в этом обозначении указывает порядковый номер молекулярной орбитали соответствующего типа симметрии. [c.227]

    Обзор квантовохимических расчетов, посвященных исследованию реакционной способности молекул, выходит за рамки настоящей книги. Вместо этого мы остановимся на рассмотрении одной из формулировок правил Вудворда — Хоффмана. Эти правила (впервые предложенные в 1965 г.) сначала были выведены на основе анализа фаз высшей занятой и низшей свободной молекулярных орбиталей реагирующей системы. (Такой подход напоминает некоторые представления, развивавшиеся в ранних работах Фукуи.) В основе предложенного принципа определения реакционной способности лежат кинетические идеи. Реакция может протекать только в том случае, если имеется доступный путь реакции. В противном случае она запрещена, поскольку энергетический барьер слишком велик и непреодолим. Правила Вудворда — Хоффмана позволяют делать простые качественные предсказания о возможности протекания многих типов реакций и об их продуктах. Эти правила особенно просты для применения, когда удается использовать соображения, учитывающие симметрию. Результаты, получаемые с помощью правил Вудворда — Хоффмана, поразительно точны. [c.382]

    В качестве молекулярных орбиталей продукта реакции (циклобутен) целесообразно выбрать две л-орбитали (л и л ) и две а-орбитали (а и а ), образующиеся при процессе реакции. Символы симметрии этих орбита-лей приведены для конротаторного процесса в левой части рис. 43, а для дисротаторного — в его правой части. [c.636]

    Рассмотрим несимметричную молекулу бутадиена, имеющую у первого атома электронодонорный (X), а у четвертого атома электроноакцепторный (У) заместители X—СН=СН—СН=СН—У. Тогда при построении молекулярных орбиталей бутадиена методом линейных комбинаций локализованных кратных связей мы должны учесть более низкую энергию У—СН=СН— фрагмента и более высокую X—СН=СН— фрагмента. В этом случае образующиеся молекулярные орбитали такого несимметричного бутадиена будут иметь другое взаимное расположение (так, как это указано на правой части рис. 58). Важно то, что орбитали Хг и Хз будут более близко расположены друг к другу (см. также рис. 33 и объяснение к нему) и Д уже составит величину не 5 эВ, а значительно меньшую. Энергетический барьер (АЕ ), обусловленный принципом сохранения орбитальной симметрии, будет для такого несимметричного бутадиена в несколько раз меньше и легко сможет быть преодолен при нагревании. В результате процесс может сравнительно легко протекать и по запрещенному дисротаторному пути, особенно если при конротаторной циклизации будут возникать пространственные затруднения. [c.652]

    В гл. 5 для описания многоэлектронных систем использовались мультипликативные функции, которые конструируют в виде произведения одноэлектронных функций — атомных или молекулярных орбиталей. Эти одноэлектронные функции, как правило, являются решением задачи в приближении независимых частиц (см. разд. 5.5) и, согласно теореме 6.1, образуют базис представления группы симметрии гамильтониана. [c.131]

    Рассматривая относительные фазы, а следовательно, и общую симметрию участвующих орбиталей, Вудвард и Гофман смогли сформулировать в 1965 г. ряд правил. Они не только объяснили протекание перициклических реакций, которые были к тому времени известны, но и точно предсказали направление многих предполагаемых реакций. Эти предсказания были связаны с возможностью термического или фотохимического индуцирования реакции и подробной стереохимией, которая должна в этом случае наблюдаться. Их заслуга тем более велика, что некоторые предсказания (после оказавшиеся верными) были сделаны в то время, когда они казались совершенно невероятными. Чтобы сделать такие предсказания, надо было рассмотреть относительные фазы, т. е. симметрию, всех орбиталей, участвующих в процессе превращения реагирующих веществ в продукты. Вместе с тем, оказалось возможным получить достаточное представление о направлении реакций и гораздо более просто, путем применения концепции граничных орбиталей. В рамках этого подхода принимают, что электроны высшей занятой молекулярной орбитали (ВЗМО) реагирующего вещества аналогичны внешним (валентным) электронам атома. Реакция в этом случае включает перекрывание ВЗМО одного реагента (потенциальный донор электронов) с низшей свободной молекулярной орбиталью (НСМО) другого реагента (потенциальный акцептор электронов). В тех случаях, как, например, в электроциклических реакциях, когда в реакции участвует только одна частица, с использованием этого подхода должна быть рассмотрена только НСМО. Ниже анализируется ряд перициклических реакций. [c.386]

    При философском осмыслении молекулярного аспекта строения материи в равной степени приемлемы два подхода. Первый основан на концепции преобладающей электронной конфигурации, второй — на концепции химической формулы, обычно используемой химиками и физиками. Идея преобладающей электронной конфигурации базируется на успешном применении оболочечной модели в атомной спектроскопии и, вероятно, наиболее приемлема при рассмотрении взаимодействия материи и излучения [1]. Концепция электронной конфигурации ведет непосредственно к делокализованным молекулярным орбиталям. Это, в частности, следует из основанных на молекулярной симметрии правил отбора в спектроскопии. Согласно этим правилам, индивидуальные энергетические уровни заполнены электронами, пространственное распределение которых отражает элементы симметрии ядерного остова. Эти электроны оказываются делокализованными между эквивалентными атомами. С другой стороны, уверенное применение химических формул основано на экспериментальных данных, интерпретируемых с точки зрения локализованного описания электронного строения молекул [2], поскольку электроны находятся вблизи ядер, с которыми они участвуют в образовании химических связей. [c.74]


    В отношении молекулярных орбиталей представленного на рис. 28-7 типа следует рассмотреть еще одно важное обстоятельство — способ, которым их свойства симметрии могут быть использованы для предсказания переходов, являющихся выгодными или невыгодными с точки зрения правил отбора. В каждой из диаграмм молекулярных орбиталей бутадиена имеется центр симметрии (его наличие определяется формой орбиталей), но волновые функции и ( )з обладают тем дополнительным свойством, что при переходе через центр симметрии они меняют знак. Так, если точка по одну сторону от центра симметрии находится в положительной области волновой функции, то соответствующая точка по другую сторону от центра располагается в отрицательной области] [c.449]

    При подходе к химической связи в рамках метода валентных связей (ВС) предполагается, что электроны на атомных орбиталях (часто гибридных) перекрываются с образованием связей. Метод молекулярных орбиталей рассматривает ядра всей молекулы как одно полицентрическое ядро и строит систему молекулярных орбиталей, характеризуемых наборами квантовых чисел, подобно тому, как строятся атомные орбитали в атомах. После построения системы МО добавляются электроны, причем соблюдаются условия, накладываемые принципом Паули. При добавлении электронов сперва занимаются орбитали с более низкими энергиями и учитывается правило Гунда. Часто вводят приближенное предположение о том, что молекулярные орбитали могут быть представлены в виде линейных комбинаций атомных орбиталей. Такое приближение обозначается буквами ЛКАО (линейные комбинации атомных орбиталей). Для того чтобы атомные орбитали могли взаимодействовать с образованием молекулярных орбиталей, они должны, во-первых, иметь близкие энергии, во-вторых, перекрываться в заметной степени и, в-третьих, иметь одинаковую симметрию относительно линии связи в молекуле. [c.69]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    В работе (6] дано интересное теоретическое объяснение различий фотохимических и термических реакций. В этой работе были рассмотрены и классифицированы по элементам симметрии предполагаемого переходного состояния корреляционные диаграммы молекулярных орбиталей, принимающих участие в различных реакциях циклического присоединения. Такой подход позволяет в первую очередь предсказывать правила отбора для термического и фотохимического присоединений. Простая схема правильно предсказывает, что термические реакции Дильса — Альдера разрешены (на основе правил отбора по симметрии), тогда как соответствующие фотохимические реакции запрещены. С другой стороны, на основании тех же правил фотохимическое образование циклобутана разрешено, в то время как термическое образование его запрещено. Последнее предсказание также согласуется с большей частью экспериментальных данных [2, 60]. [c.230]

    Метод молекулярных орбиталей (МО). Метод МО исходит из некоторой фиксированной координации атомных ядер и строит систему многоцентровых молекулярных орбиталей, характеризуемых наборами квантовых чисел, подобно тому, как это делается для атомов. После построения системы молекулярных орбиталей добавление электронов осуществляется при соблюдении принципа Паули и правила Хунда. В обычно используемом варианте метода сами молекулярные орбитали строятся как линейные комбинации атомных орбиталей (ЛКАО). Чтобы атомные орбитали могли взаимодействовать с образованием молекулярных орбиталей, они должны 1) быть близки по энергии, 2) заметно перекрываться, 3) обладать одинаковой симметрией относительно образуемой химической связи. С точки зрения используемой терминологии метод ВС можно представить себе как частный вариант метода МО, где используются только двухцентровые МО. [c.184]

    Метод молекулярных орбиталей оказался наиболее плодотворным при трактовке механизмов согласованных реакций. Наиболее широко в настоящее время для оценки возможности протекания согласованной реакции используются правила сохранения орбитальной симметрии Вудворда — Хоффмана [142]. Выводы, во многом совпадающие с полученными на основе использования этих правил, могут быть сделаны с помощью метода граничных орои-талей. [c.273]

    Все возрастающий интерес к принципу сохранения орбитальной симметрии не случаен. Правила Вудварда—Гофмана позволяют хими-кам-экспериментаторам, овладевшим этим несложным и, эффективным аппаратом исследования, анализировать ход химических реакций, не прибегая к сложным расчетам. Авторы этих правил указали на необходимость учета симметрии молекулярных орбиталей реагирующих соединений и продуктов [1—7]. Важность введенных соотношений орбитальной симметрии заключается в том, что они не только объясняют течение многих известных в настоящее время согласованных процессов, но также позволяют высказать предположение относительно еще не изученных реакций. [c.42]

    Следует, указать на два обстоятельства, позволяющие применять для ориентировки правило сохранения орбитальной симметрии. Во-первых, точные волновые функции неизвестны, и приходится использовать вместо них приближенные функции МО ЛКАО. Однако последние правильно отражают наиболее важное здесь свойство точных волновых функций — их симметрию. Во-вторых, для ориентировочных оценок можно в волновой функции (217.1) вместо бесконечной суммы возбужденных состояний ограничиться лишь первым из них, вклад которого наиболее существен. Таким образом, при качественных оценках можно исходить из волновых функций основного и первого возбужденного состояний реагирующей системы. Чтобы энергетический барьер реакции был невысок, первое возбужденное состояние системы должно иметь ту же симметрию, что и основное, н не очень сильно, отличаться от него по энергии. Возбуждение молекулы из основного в первое возбуаденное состояние представляет собой переход электрона с высшей занятой молекулярной орбитали (ВЗМО) на низшую свободную молекулярную орбиталь (НСМО). Поэтому симметрия и разность энергий именно этих двух орбиталей, НСМО и ВЗМО, играют первостепенную роль при качественных оценках возможности протекания реакции через то или иное переходное состояние. ВЗМО и НСМО должны в благоприятном случае иметь одинаковую си (метрию и мало отличаться по энергии. На это впервые указал в 1952 г. Фукуи [43]. [c.143]

    По этому методу правила орбитальной симметрии связываются с правилом Хюккеля относительно ароматичности, которое обсуждалось в гл. 2. Правило Хюккеля, согласно которому циклическая электронная система, содержащая Ап- -2 электронов, является ароматической (а следовательно, стабильной), применимо, конечно, к молекулам в основных состояниях. При использовании принципа орбитальной симметрии мы имеем дело не с основным, а с переходным состоянием. В этом методе рассматриваются не сами молекулярные орбитали, а скорее р-орбитали до их перекрывания, приводящего к образованию молекулярных орбиталей. Такой набор р-орбиталей называется базисным набором (рис. 15.2). При рассмотрении возможности согласованной реакции орбитали базисного набора необходимо расположить в соответствии с положением, которое они займут в переходном состоянии. На рис. 15.3 это изображено для [2 + +2]- и [4-Ь2]-циклоирисоединения, Затем следует обратить внимание на обращение знака. Из рис. 15.3 очевидно, что ни в одном из случаев обращения знака не происходит. Пунктирная линия на этом рисунке соединяет только отрицательные доли орбиталей. Системы без обращения знака или с четным числом таких обращений называются системами Хюккеля. Системы с нечетным числом инверсий знака называются системами Мёбиуса (по аналогии с лентой Мёбиуса, которая представляет собой математическую поверхность, изображенную на рис. 15.4). Мёбиусовские системы не вступают ни в одну из этих реакций, а примеры таких систем приведены в т. 4 (см. описание реакций 18-31 и 18-36). [c.247]

    Основная идея их работ состоит в том, что явления симметрии могут играть такую же важную роль в химических реакциях, как и в построении молекулярных орбиталей или в молекулярной спектроскопии. Становится даже возможным, как это делается для спектральных переходов, сформулировать некоторые основанные на симметрии правила отбора о разрешенности и занрещенности химических реакций. [c.313]

    В качестве базиса для молекулярных орбиталей молекулы АН2 возьмем 25-орбиталь и три 2р-орбитали атома А и 15-орбитали атомов водорода (15, 15 ), Будем рассматривать 15-орбиталь атома А как несвязывающую, относящуюся к внутренней оболочке. Удобрю выбрать оси молекул так, чтобы они согласовывались по симметрии с функциями, приведенными в правой части таблицы характеров. [c.155]

    Электронные B. . многоатомных молекул классифицируют, основываясь на св-вах симметрии их электронных волновых ф-ций или характере молекулярных орбиталей, занятых холостыми электронами, поскольку понятие квантовых чисел электронов для таких молекул теряет простой смысл. Св-ва симметрии электронных волновых ф-ций молекул обозначают в соответствии с теорией групп симметрии. Так, для молекул Hj O, HjO, относящихся к группе симметрии v, существует 4 возможных типа симметрии волновой ф-ции (А , А , и Bj) в зависимости от того, сохраняется или меняется ее знак при операциях симметрии, свойственных данной группе. Помимо обозначения типа симметрии, индексом слева вверху указывают мультиплетность состояния. Буквы g к и ъ правом ниж. индексе показывают, сохраняется или меняется знак волновой ф-ции при операции инверсии. Необходимо отметить, что такая классификация в неявном виде предполагает сохранение в В. с. молекулы геометрии ее основного состояния. Это справедливо в общем виде лишь при рассмотрении спектров поглощения, когда выполняется принцип Франка-Кондона. На самом же деле у мн. молекул равновесная конфигурация ядер в В. с. может сильно отличаться от конфигурации в основном состоянии (примеры см. ниже). [c.408]

    Он привел доводы в пользу того, что синглетные карбены присоединяются путем синхронного образования обоих новых о-связей, давая только (74) и сохраняя таким образом стереохимию исходного алкена, в то время как триплетные карбены присоединяются по радикальному двухстадийному механизму с образованием в первую очередь бнрадикала (75), в котором может происходить вращение вокруг связи до инверсии спина и замыкания кольца, что приводит к обоим диастереомерам (74) и (76). Несмотря на широкое обсуждение справедливости теоретических предпосылок, правило Скелла исключительно успешно объясняет многие экспериментальные данные, полученные для этих реакций присоединения. Однако при использовании правила следует соблюдать определенную осторожность, так как в его основе лежат некоторые предположения об относительных скоростях стадий схемы (48), которые могут соблюдаться не во всех случаях [38]. Таким образом, прежде чем однозначно приписать определенную реакционную способность одному из спиновых состояний карбена, следует выяснить свойства обоих состояний. В ряде случаев, когда это требование было точно соблюдено, например в случае метилена, бисметоксикарбонилкарбена, флуоренилидена и др., результаты всегда соответствовали предсказаниям Скелла. Расчет поверхности потенциальной энергии присоединения синглетного метилена к этилену [40, 70] подтверждает синхронность реакции и свидетельствует, что она осуществляется по принципу наименьшего движения через разрешенный орбитальной симметрией подход (77), при котором вакантная р-орбиталь (НСМО) карбена взаимодействует с занятой я-молекулярной орбиталью алкена, причем карбен расположен так, чтобы перекрывание было максимальным, а пространственные взаимодействия минимальны. Более симметричный подход (78), когда занятая о-орбиталь карбена взаимодействует с я-системой, запрещен орбитальной симметрией и по расчету обладает более высокой энергией, чем (77). Расчеты (77) указывают на наличие я р-переноса заряда в переходном состоянии (79), что согласуется с экспериментально наблюдаемым ускорением присоединения большинства карбенов к алкенам, содержащим электронодонорные заместители, и свидетельствует об электрофильной атаке карбена. Многочисленные исследования относительной реакционной способности карбенов с целью выяснения влияния пространственных и электронных эффектов различных заместителей в алкенах и карбенах критически оценены Моссом [48], который показал недавно, что селективность многих карбенов типа СХУ при реакции с олефинами коррелирует как с резонансными, так и с индуктивными параметрами X и V [71]. Большинство карбенов, в том числе сильно я-стабилизованный Ср2 (49), ведут себя как типичные электрофилы, однако ароматические карбены, такие как (80) и (47), проявляют нуклеофильные свойства, например (80) присоединяется через переходное состояние, поляризованное противоположно (79) [72]. Полагают, что это обусловлено [c.596]

    Каталнзаторы-металлы. Металлы обычно значительно активнее оксидов и обладают более универсальным каталитич. действием, хотя, как правило, менее селективны. Наиб, универсальны металлы VIII гр. периодич. системы, особенно Pt и Pd, катализирующие разл. р-ции окисления, гидрирования, дегидрирования и т.д. при низких т-рах (комнатной и более низких). Каталитич. активность определяется электронной конфигурацией и симметрией d-орбиталей поверхностных атомов. В хим. взаимод. с молекулами реагирующих на пов-сти в-в участвуют только те d-орбитали, к-рые направлены от пов-сти наружу и имеют одинаковую группу симметрии с молекулярными орбиталями реагентов. Участие d-электронов в хим. связи металла с адсорбиров. молекулами подтверждено методами фотоэлектронной и УФ-спектроскопии для Pt-катализатора. [c.540]

    Для описания реакц. способности необходимо знать только вид граничных МО реагирующих молекул, к-рый, как правило, определяется при помощи простейших квантовохим. расчетов (см. Молекулярных орбиталей методы). Так, вид высшей занятой орбитали нафталина и низшей свободной иона нитрония, имеющих макс. плотность в а-положении нафталина и на атоме N иона иитрония соотв., объясняет, почему нитрование нафталина происходит в осн. в а-положение (рис. 1,а). Вид граничных МО бутадиена и этилена, имеющих одинаковую симметрию, объясняет предпочтительность супра-супраповерхностного способа их сближения (см. Вудворда-Хофмана правила) в диеновом синтезе (рис. 1,6). В р-циях 5 ,2 с инверсией тетраэдрич. конфигурации атома С рассматривают перенос заряда с высщей занятой МО нуклеофила (донора) на низшую свободную электрофила (акцептора), представленную двухатомной разрыхляющей МО (рис. 1,в). В этом случае только атака с тыла обеспечивает достаточно благоприятное перекрывание граничных орбиталей. В случае мономолекулярных р-ций рассматриваются граничные орбитали взаимодействующих фрагментов. [c.605]

    В приближении молекулярных орбиталей методов К.с. сопоставляются с мол. орбиталями, к-рые по св-вам симметрии делят на ст-, я- и 5-орбитали. я-Орбитали антисимметричны относительно плоскости, проходящей через связь. В многоатомных молекулах эта плоскость является общей для всей молегулы или для мол. фрагмента, включающего эту связь. 8-Ор>битали антисимметричны относительно двух взаимно перпендикулярных плоскостей, проходящих через связь. При образовании К.с. возшгеает, как правило, одна [c.496]

    В рамках теории валентных связей волновые функции реагентов и продуктов и 1 ) являются локализованными двухцентровыми одноэлектронными орбиталями связей. В наших целях можно использовать даже октетную теорию химической связи Льюиса при условии, что ее структурные формулы адекватно описывают рассматриваемую систему (следует, однако, проводить различие между а- и я-компснентами двойных связей). Из орбиталей связей, преобразующихся друг в друга операциями симметрии, необходимо сконструировать линейные комбинации, отвечающие неприводимым представлениям точечной группы симметрии системы. Соответствующие неприводимые представления полностью эквивалентны представлениям, по которым преобразуются занятые молекулярные орбитали, полученные при молекулярно-орбитальном описании системы. После того как построены такие симметризованные функции, правила отбора для реакций, найденные с их помощью, оказываются совершенно аналогичным описанным выше. Во многих случаях формализм метода валентных связей имеет определенные преимущества по сравнению с методом молекулярных орбиталей, поскольку получить из орбиталей связей правильно симметризованные комбинации часто легче, чем установить симметрию занятых молекулярных орбиталей. [c.389]

    Электроциклические реакции. Правила Вудворда — Хоффмана впервые были применены к электроциклическим реакциям, которые стали классическим объектом для проверки любых выводов правил отбора по симметрии для реакций. Типичными примерами являются реакции изомеризации бутадиена в циклобутен и гексатриена в циклогексадиен. Топологическая симметрия для реагентов или продуктов в этих реакциях соответствует точечной группе Сго. Чтобы установить правила отбора по симметрии для этих реакций, необходимо рассматривать я-орбитали ациклического полиолефина, а также я-орбитали и новую а-связь циклического соединения. В табл. 18.1 показана схема молекулярных орбиталей основного и первого возбужденного состояний для трех первых членов рассматриваемого гомологического ряда. Обозначения орбиталей соответствуют представлениям точечной группы симметрии Сг . Для реакции изомеризации бутадиен — циклобутен (А) в основном состоянии (т. е. для термически активируемой реакции) имеется корреляция между орбиталью 2Я1 бутадиена и орбиталью 2Л1 циклобутена. Вторые орбитали не коррелируют между собой. Таким образом, если эта реакция в основном состоянии (т. е. как термически активируемая) протекает по согласованному механизму, то смещения ядер должны преобразовываться по представлению А2 ХА1 = А2. Этому требованию удовлетворяет конро-таторное движение двух концевых групп СНг ц с-бутадиена (вращение групп в одинаковом направлении), которое преобразуется по неприводимому представлению Лг в точечной группе симметрии С20. В возбужденном состоянии две однократно занятые орбитали реагента и продукта коррелируют между собой (при условии, что спины находящихся на них электронов ориен- [c.390]

    Стрейтвизер А. Теория молекулярных орбит для химиков-органиков. Пер. с англ.— М. Мир, 1965. По своему уровню эта киига находится между уже указанными книгами Дьюара и Либэрлса. Разработаны методы, используемые в теории молекулярных орбиталей Хюккеля, рассмотрено нх применение к органическим системам. Включены также ясные и обширные комментарии к применению этой теории при исследовании органических реакций и корреляций в органической химии. К сожалению, эта книга вышла до развития представлений об орбитальной симметрии (правил Вудворда — Хофмана). [c.569]

    Этот факт приводит авторов к мысли о ступенчатом, а ие одностадийном согласованном циклораспаде. Действительно, если допустить одностадийный согласованный циклораспад, то правило сохранения орбитальной симметрии требует, чтобы в основном состоянии этот процесс распада фуроксаиов до 2R N0 и фуразанов до R N + КСМО имел в обоих рядах соединений одинаковую разрешенную геометрию комбинации молекулярных орбиталей. Тогда скорости распада фуразанов и фуроксаиов под влиянием заместителей должны меняться в одну сторону. Поскольку в эксперименте эти скорости меняются в противоположных направлениях, возникает мысль о ступенчатом механизме. [c.237]

    Так, атомные 28-орбитали разделенных атомов при начале взаимодействия расщепляются согласно принципу ЛКАО на два типа молекулярных орбиталей, различающихся по симметрии Стз, (ё) и ст , (и). Атомные 2р-орбитали аналогично расщепляются на четыре типа МО, различающихся по симметрии ст р (ё), Пзр, = "г ( ). т 2ру = т рЛё) Стгр,(и) индексы соответствуют взаимодействию по оси х. Этим расщеплением и объясняется наличие горизонтальных подуровней в правой части диаграммы на рис. 17. Подобным же образом при начале разъединения атомов системы объединенный атом его атомная орбиталь 2з переходит в Стз, молекулярную орбиталь. [c.610]

    В последние годы появилось большое число обзоров, посвященных квантовомеханической интерпретации химической реа1 цион-ной способности [1—6]. Однако в большинстве этих работ внимание было сосредоточено на старых концепциях индексов реакционной способности [1—4] или на специальном рассмотрении особых подходов, таких, как теория граничных орбиталей [2] или метод возмущений [3]. В других работах [5, 6 детально рассмотрены правила орбитальной симметрии и методы молекулярных орбиталей с включением всех валентных электронов. Во всех обзорах теоретический подход является дополнением к экспериментальному. [c.21]


Библиография для Молекулярные орбитали симметрия, правила: [c.123]   
Смотреть страницы где упоминается термин Молекулярные орбитали симметрия, правила: [c.569]    [c.41]    [c.522]    [c.56]    [c.430]    [c.263]    [c.158]    [c.401]    [c.236]    [c.237]    [c.237]    [c.34]   
Химический энциклопедический словарь (1983) -- [ c.0 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярные орбитали орбитали

Орбиталь молекулярная



© 2025 chem21.info Реклама на сайте