Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

строение теория адсорбции

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]


    Эта книга отличается прежде всего строгим и всесторонним изложением современных представлений о строении границы раздела электрод — раствор. В ней рассмотрены новые важные проблемы (например, термодинамика поверхностных явлений на металлах, адсорбирующих водород и кислород, современное понятие о заряде электрода, теория адсорбции органических соединений на электродах), которые еще не были отражены в учебной литературе. [c.3]

    Из этого неполного перечня видно, как важны исследования химии поверхности неорганических и органических твердых тел и их межмолекулярного взаимодействия с компонентами различных сред. Эти исследования требуют объединения методов неорганического и органического синтеза с самыми современными физическими методами изучения структуры поверхности твердого тела и строения молекул. В кратком курсе лекций невозможно осветить все научные и прикладные аспекты химии поверхности твердых тел, ее модифицирования и влияния на межмолекулярные и химические взаимодействия с различными средами. В пособии рассмотрена хими/ поверхности адсорбентов, применяемых в газовой и молекулярной жидкостной хроматографии, и, соответственно, адсорбция из газовой фазы и жидких растворов при малых концентрациях, лежащая в основе селективности этих видов хроматографии. Эти проблемы исследованы как на макроскопическом уровне с использованием термодинамических характеристик адсорбции, так и на микроскопическом (молекулярном) уровне с привлечением молекулярно-статистической теории адсорбции и теории межмолекулярных взаимодействий. [c.7]

    Таким образом, зная структуру адсорбента (ГТС) и структуру адсорбирующейся молекулы, можно вычислить молекулярно-ста-тистическим путем константы Генри, уточнить параметры атом-атомных потенциалов и проанализировать влияние сделанных при определении этих потенциалов приближений и допущений. Используя этот метод, можно произвести идентификацию на хроматограмме веществ известного строения. На приведенной ниже схеме решению прямой задачи молекулярно-статистической теории адсорбции и удерживания соответствует движение слева направо  [c.184]

    Зная термодинамическое описание поверхностного слоя, его строение, природу действующих сил и динамику процесса, мы можем приступить к изучению собственно теорий адсорбции, имеющих целью нахождение зависимости х (Т, р). [c.136]


    В развитии науки об адсорбции можно выделить два основных этапа. К начальному этапу относится накопление и эмпирическая обработка экспериментальных данных, полученных на адсорбентах с неопределенным химическим составом поверхности и неоднородной пористостью, таких как активированные угли, получавшиеся из природных органических материалов, и многие ксерогели. На этом начальном этапе экспериментальные данные обрабатывались с помощью различных эмпирических уравнений изотермы адсорбции (от уравнения Фрейндлиха [107] до уравнения Дубинина и сотр. [108—110]). Эмпирическое описание экспериментальных данных оставляет однако неясным вопрос о физическом смысле констант, входящих в эти уравнения [6]. Остаются неясными также и вопросы о том, применимы ли эти уравнения только к адсорбции в микропорах или и к адсорбции на поверхностях макропористых и непористых [96, 111, 112] адсорбентов, а также вопросы об интервале заполнений, для описания которых эти уравнения оказываются пригодными или непригодными. Чисто эмпирические уравнения не отвечают на вопросы, связанные с природой адсорбции. Остается неясным, почему один адсорбент адсорбирует одно вещество сильнее, чем другое, а другой адсорбент, наоборот, адсорбирует это вещество слабее, чем другой Как это связано качественно и количественно с химией поверхности и структурой остова адсорбента и со строением молекул адсорбата Почему в одних случаях изотермы имеют, а в других не имеют точки перегиба или разрывы На такие вопросы может дать ответ только молекулярная теория адсорбции. [c.31]

    При рассмотрении экспериментальных данных по адсорбции из растворов и разработке теории адсорбции растворенных веществ необходимо иметь в виду, что при любом соотношении молекул растворенного вещества и растворителя вся поверхность адсорбента полностью покрыта адсорбированными молекулами. Адсорбция одного из компонентов раствора (растворенного вещества) всегда сопровождается вытеснением эквивалентного по площади проекции количества молекул второго компонента раствора. Говоря о моно- или полимолекулярности адсорбции, мы всегда имеем в виду лишь распределение в адсорбционном пространстве молекул одного из компонентов (более сильно адсорбирующегося), концентрация которого в адсорбированном объеме больше, чем в равновесном растворе, строение же адсорбционного слоя второго компонента раствора — воды — при этом не рассматривается и не учитывается. [c.82]

    Развитие теории адсорбции шло, в основном, по двум направлениям. В тех случаях, когда геометрическая и химическая структура поверхности оставалась неопределенной или была заведомо весьма неоднородной, теория ограничивалась установлением эмпирических зависимостей между наблюдаемыми на опыте величинами, как это делается в потенциальной теории адсорбции [2, 3] и в некоторых статистических теориях адсорбции на неоднородных поверхностях [4]. В этом направлении достигнуты некоторые важные в практическом отношении результаты, но выводы этих теорий неоднозначны [3], а их истолкование на молекулярном уровне остается затруднительным или невозможным. В тех же случаях, когда путем соответствующего направленного синтеза и модифицирования удавалось получить весьма однородные адсорбенты с воспроизводимым химическим строением поверхности, оказалось возможным развить теорию адсорбции на основе общей молекулярно-статистической обработки той или иной модели системы адсорбат—адсорбент и приближенного учета потенциала молекулярного взаимодействия (см. обзоры [5-12]). [c.13]

    По мере развития новых химических и физических методов исследования строения поверхности твердых тел и совершенствования методов синтеза и исследования адсорбентов эта молекулярная теория адсорбции сможет охватить все более широкий круг адсорбентов, включая также и все более неоднородные поверхности. Поэтому для развития молекулярной теории адсорбции привлечение новых методов анализа поверхностных соединений и состояния адсорбционных комплексов на поверхности твердых тел, и в особенности спектроскопических методов, совершенно необходимо. [c.13]

    В области интерпретации результатов адсорбционных опытов в настоящее время еще широко распространены формальные эмпирические или полуэмпирические методы, а также некоторые аналогии, не учитывающие достаточно детально строения и состояния поверхности твердого тела и адсорбирующихся молекул. Задача же разработки теории взаимодействия молекул с поверхностью твердого тела на основе детальных сведений о структуре и потенциальном поле поверхности, о природе возникающей связи и характере движений адсорбированных молекул на поверхности, т. е. задача создания молекулярной теории адсорбции на поверхности реальных твердых тел, в сущности, еще только ставится. Ее решение тесно связано с развитием теории твердого тела, поверхностных состояний и теории межмолекулярных взаимодействий. [c.16]


    Эта общая задача молекулярной теории адсорбции выдвигает и новые требования к экспериментальным исследованиям. Термодинамические методы исследования адсорбционного равновесия, устанавливающегося в результате взаимодействия с поверхностью больших коллективов молекул, должны дополняться методами, дающими информацию о строении поверхности и о природе локальных взаимодействий с нею молекул разного строения. Среди таких методов особенно важное значение для развития молекулярной теории адсорбции имеют спектральные методы, по самой своей сущности связанные с взаимодействием излучения с веществом и квантованными переходами внутри молекулярных структур и составляющих их атомов и ядер. Вследствие этого спектральные методы чувствительны, по крайней мере в принципе, ко всем изменениям в молекуле, происходящим вследствие межмолекулярных взаимодействий, в частности вследствие взаимодействий молекул с поверхностью твердого тела при адсорбции, особенно при специфической адсорбции. [c.16]

    В теорию адсорбции прочно вошло представление о неоднородности поверхности реальных адсорбентов. В это понятие вкладывается большой набор всевозможных химических, кристаллохимических, физических, фазовых, геометрических и других разновидностей неоднородности. Чем сложнее смесь таких неоднородностей, тем дальше мы от возможности фундаментального рассмотрения явлений адсорбции в молекулярно-структурном аспекте. Обычно при исследовании свойств индивидуального вещества предъявляются высокие требования к его химической чистоте, к совершенству структуры объемной фазы и т. п. При исследовании свойств поверхности индивидуального вещества также следует предъявлять высокие требования к чистоте поверхности, к совершенству строения поверхностного слоя и скелета адсорбента (текстуры). При соблюдении этих условий адсорбент обычно считается практически однородным. В идеале это должна быть поверхность полубесконечного бездефектного кристалла. В реальных же условиях для исследовательских целей это должно быть высокодисперсное или пористое вещество с достаточно большими размерами частиц или пор одинаковых размеров, чтобы краевые эффекты (в местах контакта частиц) или влияние кривизны поверхности несущественно искажали адсорбционные характеристики свободной поверхности. Практически таким условиям удовлетворяют частицы или поры с размерами 300 нм. Таким образом, поверхность высокодисперсного или пористого твердого индивидуального вещества с размерами частиц или пор не менее 200—300 нм и при высокой степени химической, физической и фазовой чистоты является практически однородной. [c.41]

    В учении о коллоидах в этот период на первый план выступает изучение поверхностно-адсорбционных явлений. Руководящей теорией в этом изучении является химическая теория адсорбции, созданная в 1917 г. Лэнгмюром. На ее основе в более современном виде развиваются мицеллярная теория строения лиофобных золей, адсорбционная теория коагуляции и других явлений в этих золях. [c.18]

    Электродные процессы происходят в пределах тонкого поверхностного слоя на границе электрод — ионная система, где образуется так называемый двойной электрический слой. Поэтому механизм электродных процессов не может быть выяснен без знания структуры этого слоя. Это обстоятельство оправдывает детальное рассмотрение структуры заряженных межфазных границ в курсе кинетики электродных процессов. Построение теории двойного электрического слоя и электрохимической кинетики основывается на достижениях статистической физики, квантовой механики, теории адсорбции, теории твердого тела и других разделов теоретической физики и химии. Поэтому в настоящее время теория электрохимических процессов сделалась одним из наиболее математизированных разделов химической науки. Экспериментальное исследование строения границы раздела электрод—ионная система и возникающих на этой границе явлений во все возрастающем объеме требует использования возможностей современной электронной техники, оптики, электронографии. Впитывая достижения современной науки и техники и сохраняя свои традиционные позиции, электрохимия вместе с тем прокладывает себе путь в области кибернетики, проблем сохранения чистоты окружающей среды, молекулярной биологии. [c.7]

    Построение теории двойного электрического слоя и электрохимической кинетики основывается на достижениях статистической физики, квантовой механики, теории адсорбции, теории твердого тела и других разделов теоретической физики и химии. Поэтому в настоящее время теория электрохимических процессов сделалась одним из наиболее математизированных разделов химической науки. Экспериментальное исследование строения границы раздела электрод — ионная система и возникающих на этой границе явлений во все возрастающем объеме требует использования возможностей современной электронной техники, оптики, электронографии. Впитывая достижения современной науки и техники и сохраняя свои традиционные позиции, электрохимия вместе с тем прокладывает себе путь в области кибернетики, проблем сохранения чистоты окружающей среды, молекулярной биологии. [c.7]

    Многолетний опыт автора привел к заключению о целесообразности двухступенчатой компоновки содержания курса. Вначале читатель знакомится с самими объектами исследования — адсорбентами с разной структурой и химией поверхности, а также с качественными представлениями о межмолекулярных взаимодействиях и о их связи со строением адсорбирующихся молекул и адсорбентов. Это предварительное ознакомление производится. в основном на примере более простого случая адсорбции из газовой фазы и газоадсорбционной хроматографии. После этого делается переход к количественному рассмотрению этих вопросов. Однако количественные расчеты к настоящему времени можно сделать только для адсорбции газов на наиболее однородных адсорбентах. Более сложный случай адсорбции из растворов рассматривается на основе качественных представлений, поскольку теория адсорбции из растворов с количественным учетом межмолекулярных взаимодействий еще не разработана. В соответствии с этим курс лекций разделен на три части. [c.3]

    Однако дальнейшие исследования коллоидных систем, особенно изучение зависимости их устойчивости от наличия и концентрации электролитов в растворе, детальное изучение движения частиц в электрическом поле показали недостаточность представлений дисперсоидологии для понимания свойств коллоидных систем. Экспериментальные данные по осаждению коллоидов электролитами (коагуляция коллоидов) получили Шульце (1882) и Гарди (1900), позднее обширные исследования произвели Фрейндлих и Кройт теорию кинетики коагуляции разработал Смолу-ховский (1916) большое значение имело также развитие работ по теории адсорбции и строению поверхностных и мономолекулярных слоев (1917, Лангмюр 1890, Рэлей и др.). В России в этот период важные работы провел Ду-манский (с 1903 г., измерения электропроводности в коллоидных растворах, в 1913 г. применение центрифуги для определения размеров частиц), который с 1912 г. начал читать первый курс коллоидной химии. Весьма важным явилось открытие хроматографии Цветом (1903), исследования поверхностного натяжения растворов Антоновым (1907) и Шишковским (1908), исследования по адсорбции Титова (1910), Шилова (1912) и Гурвича (1912), создание противогаза Зелинским (1916) и т. д. [c.10]

    Получение и исследование адсорбентов с хорошо воспроизводимыми свойствами и с возможно более однородной поверхностью в последнее десятилетие приобретает все большее значение как для развития молекулярной теории адсорбции [1—34], так и для практических применений в адсорбционной хроматографии [И, 18, 20, 25, 26, 33—49]. Термодинамические адсорбционнце свойства таких адсорбентов могут быть представлены в виде характеризующих систему адсорбат — адсорбент физико-химических констант [7, 11, 21, 24, 33, 44—49]. Только такие константы, неосложненные не-воспроизводимостью строения поверхности адсорбента и влиянием сильной и неконтролируемой ее неоднородности, могут быть использованы для установления основных закономерностей проявления межмолекулярных взаимодействий адсорбат — адсорбент и адсорбат — адсорбат в создаваемом адсорбентом поле межмолекулярных сил. Используя такие физико-химические константы, можно исследовать потенциальные функции межмолекулярного взаимодействия при адсорбции [10, 16, 22, 50, 51], а также исследовать некоторые детали строения молекул [18, 33, 34, 40]. Кроме того, такие характеристики адсорбционных систем позволяют идентифицировать неизвестные вещества методом адсорбционной хроматографии (И, 33, 34]. [c.13]

    Получение из эксперимептальпых данных по адсорбционному равновесию термодинамических характеристик адсорбции для ряда молекул близкого и разного состава и строения необходимо как для практических применений, так и для развития молекулярной теории адсорбции и межмолекулярных взаимодействий вообще. Во-первых, термодинамические характеристики являются опорными для определения соответствующих величин для экспериментально не изученных веществ, что, в частности, помогает идентифицировать неизвестные вещества в адсорбционной хроматографии. Во-вторых, эти данные нужны для определения атом-атомных потенциальных функций межмолекулярного взаимодействия и теоретического расчета термодинамических характеристик адсорбции на основании структуры молекулы адсорбата и строения адсорбента (см. гл. X). Наконец, в-третьих, эти данные нужны для решения обратных задач, т. е. при известных атом-атомных потенциальных функциях межмолекулярного взаимодействия экспериментальные термодинамические характеристики адсорбции позволяют сделать заключение о структуре молекулы адсорбата (подробнее об этом см., например, разд. 4 гл. X). В этой главе рассмотрены полученные из экспериментальных данных термодинамические характеристики адсорбции на графитированной термической саже при малом (нулевом) заполнении поверхности. Основная литература по экспериментальному исследованию адсорбции на графитированных термических сажах была указана в разд. 1 гл. П. Поэтому здесь даются ссылки лишь на те работы, в которых были получены, наиболее точные данные, использованные для определения термодинамических характеристик адсорбции при нулевом заполнении поверхности. [c.180]

    Используя приближение (У1П,2), термодинамические характеристики адсорбции при низких заполнениях поверхности можно связать с химическим и геометрическим строением молекулы адсорбата и решетки адсорбента и, следовательно, произвести обоснованное сопоставление адсорбционных свойств молекул, состоящих из тех же или разных силовых центров, выявить влияние особенностей геометрической и электронной структуры молекулы на ее адсорбцию. Наконец, такие расчеты могут быть использованы для определения или уточнения конформации молекулы на основании адсорбционных и хроматографических данных [32] или для определения ее изменения при адсорбции. Поэтому применение и развитие вышеуказанного подхода в молекулярной теории адсорбции представляет значительный интерес как для самой теории адсорбции, так и для теории меж-ыолекулярных взаимодействий вообще. [c.244]

    Несмотря на то что адсорбция из растворов используется в технологии у ке давно, теория адсорбции растворенных веществ разработана значительно слабее, чем теория адсорбции газов и паров. Одна из основных причин заключается в том, что до сих нор мало разработана теория строения жидкостей, особенно теория строения жидкой воды. Физическая теория водных растворов органических веществ находится в самой начальной стадии развития. Это, естествепно, затрудняет создание строго физической теории адсорбции из растворов. Однако возрастающее значение адсорбции для технологии очистки промышленных сточных вод заставляет уделять особое внимание теории адсорбции органических веществ из водных растворов и особенно анализу условий, определяющих адсорбционное равновесие при адсорбции нескольких компонентов смеси растворенных веществ. [c.3]

    Развитие количественной теории ней-трализационнОй коагуляции — актуальная задача общей проблемы устойчивости ионостабилизированных коллоидных растворов. В принципе она может решаться двумя путями. Первый — строго теоретический, основанный на учете в картине строения двойного электрического слоя размеров ионов, их поляризуемости и сольватации, дискретности зарядов, функции распределения ионов вне пределов применимости уравнения Пуассона — Больцмана. При этом одновременно должна быть развита теория адсорбции ионов и установлены связанные с ней закономерности изменения потенциала частиц. Как легко видеть, этот путь весьма сложный [c.154]

    Наиболее важная, но и наиболее трудная задача в молекулярной теории адсорбции — определение потенциальной функции Ф взаимодействия молекул с поверхностью твердого тола. При однозначном определении этой функции Ф из опытных адсорбционных данных и при строгих ее квантовомеханических расчетах встречаются серьезные трудности. Вместе с тем приближенные, основанные на достижениях полуэмппрической теории межмолекулярных взаимодействий, расчеты потенциальных функций Ф для взаимодействия молекул разного строения с однородной поверхностью многих твердых тел, использующие физико-химические свойства адсорбата и адсорбента, приводят к значениям термодинамических характеристик адсорбции, находящимся в удовлетворительном согласии с опытом. Особенно хорошие результаты получены при взаимодействии различных молекул с поверхностью неполярных твердых тел — неспецифическнх адсорбентов, когда основными силами притяжения являются дисперсионные. В случае сложных молекул, состоящих из нескольких сортов силовых центров, например молекул углеводородов, для повышения точности приближенных расчетов Ф в настоящем этапе, по-видимому, целесообразно производить уточнение параметров потенциальных функций ф взаимодействия силовых центров молекулы с поверхностью, используя опытные адсорбционные данные для небольшого числа молекул, состоящих из тех же силовых центров. Эти уточненные потенциальные функции ф далее могут быть использованы для предсказания энергий и термодинамических характеристик адсорбции других молекул, состоящих из этих же силовых центров на том же адсорбенте. [c.20]

    Изучение химии поверхности и адсорбции представляет удобный путь исследования молекулярных взаимодействий. Регулируя геометрию и химию поверхности и изучая адсорбцию молекул разной геометрической и электронной структуры, можно исследовать взаимодействия молекул с поверхностью во всем их многообразии — от слабых вандерваальсовых до различных химических. Воспроизводимость геометрии и химии поверхности обеспечивает воспроизводимость адсорбционных свойств единицы поверхности (для тонконористых кристаллов — единицы массы). При данной температуре и концентрации объемной фазы адсорбционные свойства таких адсорбентов зависят только от строения их поверхности и скелета. Задачей молекулярной теории адсорбции является установление количественных характеристик системы адсорбент — адсорбат на основании свойств молекулы адсорбата и свойств адсорбента. Эта задача решается методами молекулярной статистики и теории межмолекулярных взаимодействий. Молекулярно-статистическая теория позволяет характеризовать термодинамические свойства адсорбционной системы, выражая потенциальную энергию молекулы адсорбата в поле адсорбента в зависимости от всех ее координат. Однако при этом встречаются затруднения, связанные с отсутствием общего выражения для потенциальной функции в случае сложного межмолекулярного взаимодействия на коротких расстояниях. Поэтому чем сложнее это взаимодействие, тем важнее получить о нем до полнительную информацию с помощью комплекса различных экспери ментальных методов, в частности, спектроскопических. [c.132]

    Электронная теория катализа. Работы Л. Б. Писаржевского. Взгляды Ф. Ф. Волькенштейна. Электронная теория адсорбции на полупроводниках и металлах. Работы Миньоле. Методы определения строения реальных позерхностей. Рентгеноструктурный метод, электронография, электронный микроскоп. Адсорбционные методы. Радиоактивные методы. Методы физико-химического анализа. Строение важнейших носителей. Силикагель. Активированный уголь. Работы Ринеккера. [c.218]

    Шилов и его сотрудники приводят возражения против теории адсорбции Фрейндлиха, как теории исключительно поверхностных явлений, вследствие того, что было обнаружено изменение поверхностного натяжения во времени. Во многих случаях различие в направлении изотерм адсорбции приписывалось ведущей роли капиллярных или молекулярных сил. Адсорбция в чистом виде, по Шилову, является проявлением сил и свойств, главным образом, не диссоциированных молекул но если имеет место диффузия или непрерывный переход из твердой в жидкую фазу, то адсорбция становится простым распределением растворенного вещества и установленная выше точка зрения непркменима. Структура адсорбента пористость или рыхлость, или кристаллическое строение) [c.93]

    Пока что трудно сказать, насколько распространены явления модифицирования, так как до работ Рогинского они не были замечены ввиду условий, определяемых ходом катализа (небольшой интервал изменений температуры и трудность определения количеств захваченных примесей). Однако работы Рогинского и его сотрудников показывают, что имеется основание предполагать возможность широкого распространения явлений с симбатным изменением Е и Ко (см. о модифицировании I и П рода и возможности сведения явлений промотирования к модифицированию И рода с минимальными значениями Е и Ко в точке экстремума [25, стр. 41 91, стр. 465]). Во всяком случае после работ Рогинского вопросы химического строения сложных катализаторов и их активности стали намного яснее. Явления отравления блокировкой поверхности катализаторов стало возможным изучать только в рамках теории адсорбции, а явления промотирования и отравления в старом понимании этих терминов — в рамках повой химической теории активной поверхности. Взаимное влияние двух компонентов катализатора в значительной степени может рассматриваться также в рамках этой теории [91]. При этом оно может относиться как к явлениям модифицирования, так и промотирования с onst и А/Со>0, или / o- onst и А <0. Так, например, взаимное влияние, имеющее характер модификации, наблюдал в 1949 г. Ри-некер [132]. То же, но с антибатным изменением констант Аррениуса наблюдали Купер и Эли [133].  [c.234]

    Однако дальнейшие исследования коллоидных систем, особенно изучение зависимости их устойчивости от наличия и концентрации электролитов в растворе, детальное изучение движения частиц в электрическом поле показали недостаточность представлений дис-персоидологии для понимания свойств коллоидных систем. Экспериментальные данные по осаждению коллоидов электролитами (ко-агуляция коллоидов) получили Шульце (1882) и Гарди (1900), позднее обширные исследования произвели Г. Фрейндлих и Г. Кройт теорию кинетики коагуляции разработал М. Смолухов-ский (1916) большое значение имело также развитие работ по теории адсорбции и строению поверхностных и мономолекулярных слоев (И. Лангмюр, 1917 Ж- Рэлей, 1890 и др.). В России в этот период важные работы провел А. В. Думанский (с 1903 г., измерения [c.9]


Смотреть страницы где упоминается термин строение теория адсорбции: [c.301]    [c.40]    [c.149]    [c.266]    [c.504]    [c.322]    [c.362]    [c.355]   
Физическая химия Том 1 Издание 4 (1935) -- [ c.352 , c.353 , c.364 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция теории



© 2025 chem21.info Реклама на сайте