Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий, определение в присутствии ниоб т и тантал

    В I М растворе соляной кислоты определению ниобия не мешают W, А1 (по 40 мг), Fe, Ti (по 1 мг). Допустим 100-кратный по отношению к ниобию избыток циркония (в присутствии комплексона III), 10-кратный избыток молибдена (в присутствии восстановителя гидроксиламина) и 5-кратный избыток тантала. [c.152]

    При определении в аммиачной среде в присутствии винной кислоты и фторида калия титан, ниобий, тантал, вольфрам, алюминий, лантан анализу не мешают. При определении в кислой среде анализу не мешают алюминий, магний, цинк, кадмий, кобальт, свинец, РЗЭ при отношении их количеств к количеству молибдена не более 1 1. Ионы железа (III), циркония и гафния, образующие устойчивые комплексонаты в кислой среде, определению содержания молибдена мешают. [c.175]


    В присутствии ниобия и железа результаты оказываются слегка завышенными, необходимо вводить поправку. Молибден даже в небольших количествах мешает анализу и должен быть отделен. Медь, алюминий и никель при содержании каждого из этих элементов до 5%, ванадий — до 0,5% и вольфрам — до 0,2% не оказывают заметного влияния на определение 2—7% тантала. Цирконий также не-мешает анализу, но титан в количествах, превышающих 0,01 %, влияет на результаты анализа. [c.151]

    Обработка фильтрата. Фильтрат, полученный после осаждения по п. а , может быть сразу применен для определения кальция и магния. Фильтрат, полеченный после обработки по п. б , может содержать некоторые металлы, которые должны быть предварительно выделены. Для этого нужно сначала разрушить тартраты. Раствор выпаривают в большой платиновой чашке с 10—12 мл серной кислоты и осторожно нагревают до тех пор, пока не начнется ясное обугливание. Слегка -охлаждают, покрывают часовым стеклом и осторожно приливают 5 мл азотной кислоты (лучше дымящей) когда бурная реакция прекратится, постепенно нагревают до гех пор, пока органические вещества полностью не окислятся обработку азотной кислотой, если нужно, повторяют Чашку охлаждают, растворяют остаток в воде и прибавляют раствор аммиака, чтобы осадить алюминий, титан, цирконий, бериллий, ниобий, тантал и уран, а также фосфор и ванадий, если количество этих двух элементов не превышает того, которое может соединиться с основаниями в виде фосфатов и ванадатов. В присутствии алюминия избытка аммиака надо избегать. Если фосфор и ванадий присутствуют в количестве большем, чем то, какое может быть связано алюминием, титаном и др., то в осадке можно ожидать присутствия щелочноземельных металлов. После растворения осадка в горячей разбавленной (1 1) соляной кислоте дальнейшее разделение идет обычным путем. [c.92]

    Ниобий и тантал всегда сопровождают кремнекислоту и иногда они переходят в осадок почти количественно . Оба эти элемента остаются в виде пятиокисей в остатке после обработки фтористоводородной и серной кислотами. Если эти элементы первоначально присутствовали в значительных количествах, остается большой нелетучий остаток, что является некоторым указанием на возможное присутствие в анализируемом материале тантала и ниобия. Определение кремния в присутствии ниобия и тантала см. гл. Ниобий и тантал (стр. 679). Титан и цирконий не сопровождают кремнекислоту в заметной степени, если при обработке раствора не создаются условия, благоприятные для гидролиза их солей, и в растворе не содержатся значительные количества фосфатов. При. выпаривании со смесью фтористоводородной и серной кислот потерь титана и циркония не наблюдается [c.756]


    Определению циркония описанным методом не мешают медь, хром, титан, ниобий, тантал, небольшие количества железа, а также значительные количества сульфатов. Возможность титрования в присутствии сульфат-ионов имеет практический интерес, так как ионы сульфата всегда вводят при разложении [c.357]

    IV), ниобий, тантал, титан, цирконий, а в больших количествах — вольфрам и даже ванадий (V) осадки увлекают с собой некоторое количество фосфат-ионов. Висмут, торий, мышьяк (V), хлорид-и фторнд-ионы замедляют образование окрашенного соединения. Если присутствуют фторид-ионы, прибавляют в избытке борную кислоту. Медь и никель мешают окраской своих ионов, если измерение проводят при К — 460 ммк. Восстановители должны быть предварительно окисленными. Хром (VI) мешает определению. Мышьяк (V) образует окрашенное соединение, окраска которого в 100 раз слабее окраски соединения фосфора (V). Пирофосфат-ионы не мешают анализу, что дает возможность определять этим способом фосфаты в присутствии пирофосфатов, надо только прибавить реактив в достаточном избытке. Цитрат-ионы мешают определению. [c.1091]

    Широкое использование нашел И. о. в гидрометаллургии извлечение благородных, цветных и редких металлов (серебро, медь, никель, хром и др.) из сбросных р-ров на катионитных или анионитных колоннах, а также хроматографич. разделение близких по свойствам элементов (редкоземельные элементы, гафний и цирконий, ниобий, тантал и др.). Ионообменные сорбенты используют также для очистки отбросных р-ров от химически вредных (фенолы и др. ионогенные органич. соединения) и радиоактивных веществ. Удаление ионов кальция методом И. о. позволяет на 5—10% уменьшить потери при нроиз-ве сахара из сахарной свеклы, получать хорошо сохраняющуюся консервированную кровь и приготовлять грудное молоко из коровьего. И. о. применяют в аналитич. химии для удаления мешающих определению ионов (напр., при определении сульфатов или фосфатов в присутствии ка- [c.155]

    Важно отметить, что во всех этих методах анализа определению ванадия не мешает присутствие ниобия и тантала (а в весовых методах — элементов четвертой группы —титана, циркония, а также железа) суммарному [c.197]

    Определение тория. Арсеназо 111 является специфическим реагентом для тория в растворах примерно 3 М соляной кислоты и в присутствии оксалата в качестве маскирующего реагента. Алюминий, ниобий, тантал, титан, вольфрам, хром, никель, свинец и кобальт не мещают определению даже при соотношении тория к этим металлам 1 5000. Щавелевая кислота также устраняет мешающее действие циркония. Комплекс тория окрашен в зеленый цвет. При спектрофотометрических определениях измеряют экстинкцию комплекса при длине волны 665 нм, где находится максимум поглощения [403]. [c.160]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]


    Методом изотопного разбавления можно осуществлять анализ смесей некоторых близких по свойствам элементов (тантал, ниобий и титан, цирконий и гафний, молибден и вольфрам, рубидий и цезий), что крайне затруднительно при использовании других аналитических методов. Определение гафния в присутствии циркония методом изотопного разбавления выполнимо при условии [c.118]

    Определение земельных кислот (ниобия и тантала) в присутствии легкогидролизующихся в слабокислой среде титана и циркония представляет значительные затруднения. [c.271]

    Остаток, выделенный из минералов. Можно сказать вполне определенно, что примеси в кремнекислоте, выделенной при анализе минералов, сильно отличаются от примесей в кремнекислоте, выделенной из силикатных горных пород. Это различие находится, конечно, в зависимости от состава анализируемых минералов и иногда оно очень незначительно или совсем отсутствует, но в большинстве случаев оно велико, особенно при анализе минералов, содержащих титан, цирконий, олово, вольфрам, сурьму, ниобий и тантал. При анализе таких минералов нужно применять особые методы выделения кремнекислоты перед окончательным ее определением например, в случае присутствия сурьмы обезвоживание кремнекислоты надо проводить с серной кислотой, а не с соляной. [c.866]

    Описано прямое титрование циркония комплексоном III в присутствии ксиленолового оранжевого [354—359], пирокатехинового фиолетового [360], эриохромчерногоТ1[361], стильбазогалла-2 [362], а также обратное титрование избытка комплексона III солями висмута [363, 364] и цинка [365]. Возможно определение циркония в присутствии ниобия и тантала [358, 364], алюминия и железа [359, 361], тория и тантала [356]. [c.301]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Тантал с 9-(п-диметиламинофенил)-2,3,7-триокри-6-флуороном (называемым диметилфлуороном) в умереннокислом растворе образует ярко-красный осадок, остающийся при малом содержании тантала в коллоидном состоянии [211]. Эти коллоидные растворы легко стабилизируются желатиной. В отсутствие тантала раствор имеет желтый цвет. Обнаруживаемый минимум — 3 мкг в 10 жл раствора. В присутствии оксалата ниобий не реагирует с диметилфлуороном, а прибавление перекиси водорода разрушает комплекс титана, не затрагивая танталовый комплекс. 0,5 мг Zr в 10 мл раствора не мешают определению тантала. Большие количества циркония мешают. Для отделения от циркония экстрагируют фторидный комплекс тантала смесью ацетона и изобутанола. [c.199]

    Полное осаждение одного из элементов-аналогов сопровождается захватом другого (иод в присутствии брома, тантал в присутствии ниобия), что делает невозможным их совместное определение. Для разделения таких смесей применили > етод изотопного разбавления. Например, при повторном, но неполном осаждении тантала бензоплселениновой кислотой достигается практически полное отделение тантала от ниобия и циркония. Использование в этом случае метода изотопного разбавления позволяет определить тантал при содержании циркония в 100 раз большем, чем тантал, с точностью в 5%, а при равном содержании с точностью— 1%. [c.216]

    Даже в присутствии комплексона и цианида определению мешает присутствие титана, ванадия, ниобия, тантала и урана, которые можно замаскировать перекисью водорода. Мешают также цирконий, галлий, сурьма и висмут, которые следует выделить купферроном непосредственно перед определением алюминия. Индий экстрагируют в виде диэтилдитиокарбамата, а бериллий — в виде оксихинолята при pH 5. [c.214]

    АЛ. г.2, Фтористоводородная кислота. Для определения металлов, соли которых легко гидролизуются, применяют анионный обмен в присутствии плавиковой кислоты. К легко гидролизуемым относятся многозарядные ионы таких металлов, как титан, цирконий, гафний, ниобий, тантал, протактиний и олово(1У). Эти металлы даже в 1 М растворах соляной кислоты образуют продукты гидролиза высокого молекулярного веса, которые осаждаются на стенках стеклянной посуды. Однако через колонки с ионообменными смолами они проходят не сорбируясь. Поскольку эти продукты гидролиза полимерны, их образование не так заметно при работе с индикаторными количествами, однако при применении этих данных к растворам высокой концентрации могут быть допущены серьезные ошибки. Гидролиза и полимеризации можно избежать при добавлении к исследуемому раствору плавиковой кислоты, поскольку фторкомплексы более устойчивы, чем оксикомплексы. Отрицательно заряженные фторкомплексы можно сорбировать и десорбировать на анионитах без потерь. [c.208]

    В настоящее время все более широко применяются органические реагенты для выделения и определения этих элементов. До сих пор сохраняет значение танниновый метод Шеллера, особенно его разнообразные варианты [12]. Выбирая тот или иной комплексообразователь, варьируя pH раствора, можно значительно расширить возможности разделения элементов [13]. Нанример, используются методы, основанные на выделении ниобия и тантала таннином в солянокислом растворе. Имеются два варианта таннинового метода хлоридно-танниновый и фторидно-танниновый, в присутствий борной кислоты позволяющие отделять ниобий и тантал от титана [14]. В слабокислом оксалатном растворе (pH 4,5) таннин полностью осаждает тантал, титан, ниобий, но не осаждает цирконий. В присутствии трилона Б метод позволяет провести отделение от многих элементов, в том числе от значительных количеств вольфрама [15]. Применение аскорбиновой кислоты для связывания в комплекс титана позволило определять ниобий в присутствии больншх количеств титана в неровскитах и титанистых шлаках [16]. [c.488]

    Наилучшим способом разделения тантала и ниобия является, по всей вероятности, метод, основанный на различном поведении оксалатотанта-ловой и оксалатониобиевой кислот в разбавленных кислых растворах таннина . Оксалатотанталовая кислота не разлагается только в присутствии определенного количества свободной щавелевой кислоты. Ниобие-вое ко.мплексное соединение значительно более устойчиво. Танниновый осадок тантала окрашен в серно-желтый цвет. Ниобиевый осадок имеет яркую киноварно-красную окраску, которая достаточно интенсивна, чтобы обнаружить присутствие ниобия в осадке тантала. Титан , вольфрам и сурьма , но не цирконий , частично осаждаются и препятствуют разделению тантала и ниобия. Титан в количествах, не превышающих 2% по отношению к содержанию окиси тантала, не вызывает затруднений при проведении этой операции .  [c.622]

    Бибер и Вечержа [373] и независимо от них Маджумдар и Чоудху-ри [728] предложили весовой метод определения шестивалентного урана осаждением с помощью купферона. Количественное осаждение имеет место при pH в пределах 4—9. Вследствие более высоких значений pH осаждения мешающее влияние других элементов в данном случае оказалось значительно большим, чем при осаждении четырехвалентного урана. Однако теми же авторами [373, 728] было показано, что применение комплексона III позволяет устранить мешающее влияние подавляющего большинства элементов. В этих условиях полностью остаются в растворе щелочные и щелочноземельные элементы, Mg, Ag, Hg, РЬ, Си, Сё, Мп, Zn, Со, Ni, В1, Ре, Ое, 5п, ТЬ, Ьа, Се и редкоземельные элементы. Определению также не мешают небольшие количества титана (IV) и циркония. Мешающее влияние алюминия, сурьмы (III), олова (IV), ниобия и тантала устраняют прибавлением винной кислоты. Присутствие [c.71]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Собственно, реакция Фриделя — Крафтса [45] заключается в алкилировании или ацилировании ароматического кольца в присутствии кислот Льюиса типа хлористого алюминия. Кроме того, эта реакция может быть распространена на алкилирование и ацили-рование алифатических углеводородов, как насыщенных, так и ненасыщенных [46, 47]. Основная реакция часто сопровождается вторичными реакциями типа полимеризации или изомеризации субстрата или алкилирующего агента. Далее реакция осложняется образованием комплекса между реагирующими веществами, катализаторами и продуктами, как уже указывалось в гл. I некоторые из этих комплексов могут образовывать отдельные фазы [48]. Хотя основная схема механизма реакции твердо установлена, количественное рассмотрение кинетических закономерностей наталкивается на трудности, поэтому количественный анализ проведен только для нескольких реакций, осуществленных в благоприятных условиях. К числу используемых катализаторов относятся галоидные соединения бора, алюминия, галлия, железа, циркония, титана, олова, цинка, ниобия и тантала. Все эти соединения являются акцепторами электронов и, по определению Льюиса, общими кислотами. Их функция, по-видимому, состоит в облегчении образования ионов карбония из олефинов, галоидалкилов или спиртов, из хлорангидридов алкил- или арилкарбоновых кислот, ангидридов кислот или сложных эфиров [49]. Ионы карбония легко реагируют с ароматическими углеводородами, и эти реакции открывают важные пути синтеза производных ароматических углеводородов. [c.79]

    При наличии титана фосфат осаждают в присутствии перекиси водорода последнюю также прибавляют и к промывной жидкости. Торий не мешает, если фосфат циркония осаждать из 20%-ного (по объему) сернокислого раствора. Ниобий не осаждается, если при выделении 8-оксихинолината циркония прибавлять большой избыток аммиака. В этих условиях тантал образует белый осадок, нерастворимый в соляной кислоте, и поэтому не мешает дальнейшему определению циркония. Другие элементы (за исключением гафния) не осаждаются в виде фс атов из сильно сернокислых растворов. [c.109]

    III солью висмута в присутствии тиомочевины прибавлением винной кислоты устраняют влияние небольших количеств ниобия и тантала [462]. Влияние тория и титана несколько уменьшается введением ионов sor после прибавления избытка комплексона III к соли.циркония. Ионы Fe восстанавливают до Fe " аскорбиновой кислотой. При титровании солью висмута в присутствии иодида калия мешающее действие ионов F устраняют прибавлением соли бериллия. Для отделения циркония от ряда элементов, мешающих его определению (Fe , Ti, Nb, Мо и др.), Милнер и Бейкон [6311 предложили осаждать цирконий в виде фтороцирконата бария. [c.122]

    И. П. Алимарин и Е. И. Степанкэк [443] предложили осаждать ниобий я тантал селенистой кислотой, что позволяет отде-лять их от ряда других элементов Гримальди и Шнепфе [444] применили этот прием для селективного определения микроколичеств тантала в присутствии скандия, церия, иттрия, титана, циркония, тория и даже ниобия, поскольку последний почти не осаждается селенистой кислотой из сильно солянокислых растворов 1В присутствии винной и особенно щавелевой кислоты. Методика отделения ниобия и тантала от титана и ниобия от циркония при помощи селенистой кислоты приведена в сборнике [325]. [c.164]

    Таким образом, впервые к определению ниобия и тантала и определению от циркония применен новый органический реактив — бензолселениновая кислота. Показано, что при по-МОШ.И бензолселениновой кислоты можно из лимоннокислой среды при добавлении НС1 разделять ниобий и тантал, а также определять малые количества этих элементов в присутствии ютносительно больших количеств циркония. [c.224]

    Отмечены флуоресцентные реакции ниобия с кошенилью (красное свечение при pH 5—6) [245] и какотелином [191]. Недавно предложено количественное определение при номощ,и люмогаллиона ИРЕА [77]. Он дает с ниобием розовое соединение с красной флуоресценцией, развивающейся за 20—30 мин и устойчивой в течение суток. Тридцатикратные по отношению к ниобию количества тантала, а также цирконий, гафний и фтор не мешают определению от 0,1 до 2,5 мкг/мл ниобия, но железо и титан ослабляют яркость свечения комплекса (см. табл. IV-12). Этот реактив использован и для спектрофотометрического определения ниобия в присутствии тантала и циркония, от которых его комплекс отделяют путем экстракции бута-нолом из 4 н. серной кислоты, содержащей тартрат и трилон Б [3]. При замораживании водного раствора комплекса ниобия с люмогаллионом ИРЕА жидким азотом яркость его флуоресценции возрастает на два порядка [34]. [c.168]

    Фторидный комплекс тантала экстрагируется бензолом из кислых растворов в присутствии метилового фиолетового , родамина 6Ж , бутилродамина и других органических соединений, способных в кислых растворах давать катионы. Экстракцию проводят из растворов, содержащих H2F2. Но величине оптической плотности окрашенных экстрактов находят количество тантала. Фотометрическому определению тантала не мешают небольшие количества ионов ниобия, а также титана, циркония и гафния. [c.194]

    В. А. Ошман предложил метод определения суммы земельных кислот в присутствии больших количеств титана (и небольших количеств циркония), сущность которого состоит в предварительном восстапоЕленпи титана до трехвалентного и последующем гидролизе ниобия и тантала в 0,5 н. растворе соляной кислоты . В указанных условиях гидролиза земельных кислот трехвалентный титан более устойчив, чем четырехвалентный, что позволяет количественно выделить земельные кислоты в осадок в достаточно чистом виде. [c.271]

    Танпип.под названием настойка чернильных орешков применявшийся более ста лет тому назад как реактив для качественною анализа, постепенно вышел из употребления и в начале XX века применялся в металлургическом анализе только в качестве индикатора в молибдат-ном методе определения свинца, по Александеру. Предложенный нами метод отделения тантала от ниобия, опубликованный в 1925 г. [7], положил начало серии исследований, которые показали, что таннин является важнейшим реагентом для количествслного разделения и определения ряда редких и обычных элементов, в особенности элементов группы аммиака, не осаждающихся аммиаком и сернистым аммонием из вич-но кислого раствора. Водный раствор таннина, будучи коллоидальной суспензией отрицательно заряженных частиц, осаждает положительно заряженные частицы гидроокисей металлов полученные адсорбционные комплексы очень хорошо коагулируют и совершенно нерастворимы. Несмотря на большой объем, они легко фильтруются и промываются (особенно при смешивании с бумажной массой) при прокаливании переходят в окислы, удобные для взвешивания. Танниновые комплексы некоторых элементов бесцветны, другие имеют яркие и характерные окраски, что является фактором огромного значения для качественного и количественного анализов. Самым замечательным свойством этих реакций является то, что осаждению не препятствует присутствие органических гидроксикислот винной, лимонной и т, д. В то время как теория взаимодействия таннина с растворами тартратных (и других) комплексов металлов до сих пор неясна, его практическое применение имеет большую ценность в аналитической химии таких редких элементов, как германий, тантал, ниобий, титан, цирконий, торий, ванадий, уран и др. [c.13]

    Выло найдено также, что в угольной дуге постоянного и переменного тока интенсивность дуговых линий ниобия и тантала значительно возрастаете присутствии добавок солей щелочных металлов и двуокиси кремния, что позволяет увеличить чувствительность прямого спектрального определения этих элементов на один порядок [116J. Недавно опубликована методика непосредственного спектрографического определения ниобия в минералах титана и циркония с воспроизводимостью от 10 до 20—25% [117]. Пз более точных количественных методов спектрального определения ниобия и тантала в рудах следует отметить методы, основанные на предварительном концентрировании этих элементов химическим путем [118]. Обычно для обогащения применяются различные химические методы 1) фениларсоновая кислота, 2) танниновое осаждение на носителе, 3) осаждение аммиаком (гидратный способ). В зависимости от степени химического обогащения достигается в некоторых случаях чувствительность определения порядка [c.493]

    Осаждение аммиаком—одна из самых обычных операций, применяемых в анализе. Опа проводится либо для определения осажденного соединения весовым путем, либо для совместного отделения двух или нескольких металлов от других металлов. Если эта операция выполняется для количественного весового определения, то ей должно предшествовать выделение кремнекислоты и отделение элементов грунны сероводорода некоторые из этих элементов также более или менее полно осаждаются аммиаком. Вследствие того, что предварительно удалить всю кремнекислоту обычным методом невозможно, оставшееся небольшое количество ее увлекается осадком гидроокисей, и эту кремнекислоту следует выделить и определить, как указано в разделе Кремний (стр. 874). Число металлов, осаждаемых аммиаком, очень велико. Сюда входят алюминий, железо (П1), хром, таллий, галлий, индий, редкоземельные металлы, уран, титан, цирконий, бериллий, ниобии и тантал (стр. 104). К ним надо прибавить пятивалентные фосфор, мышьяк и ванадий, которые осаждаются в виде фосфатов, арсенатов и ванадатов одного или нескольких из перечисленных металлов. При большом содержании этих трех элеме] Тов осаждение их не будет полным фосфор и мышьяк в большем или меньшем количестве осаждаются в виде фосфатов и арсенатов щелочноземельных металлов и магния, если последние присутствуют . Поэтому в таких случаях осанедение аммиаком недопустимо. Неудовлетворительные результаты получаются также, когда раствор содержит большое количество цинка, особенно в присутствии хрома плохо удается разделение и в присутствии кобальта или меди. Бор мешает осаждению, и поэтому должен быть предварительно удален методом, описанным на стр. 763. [c.95]


Смотреть страницы где упоминается термин Цирконий, определение в присутствии ниоб т и тантал: [c.681]    [c.90]    [c.315]    [c.85]    [c.220]    [c.59]    [c.493]   
Колориметрическое определение следов металлов (1949) -- [ c.530 ]




ПОИСК





Смотрите так же термины и статьи:

Ниобий и тантал циркония

Ниобий определение

Ниобий тантале

Ниобий циркония

Тантал

Тантал циркония

Цирконий, определение в присутствии



© 2025 chem21.info Реклама на сайте