Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонильные кислоты, водородные

    Образование внутримолекулярных водородных связей. Водородные связи, возникающие между группой, обусловливающей кислотные свойства, и другими заместителями в молекуле кислоты, могут существенно изменить ее силу. Так, образование в молекуле салициловой кислоты водородной связи между карбоксильной и гидроксильной группами, находящихся в орго-положении, делает салициловую кислоту значительно сильнее бензойной. Водородный атом гидроксильной группы, образуя водородную связь с кислородом карбонильной группы, вызывает дополнительную [c.38]


    Строение карбоксильной группы и свойства карбоновых кислот Карбоксильная группа может быть представлена как карбонильная группа альдегидов и кетонов, атом углерода которой связан с гидроксильной группой. Наличие двух электроотрицательных атомов кислорода в этой группе обуславливает сильную поляризацию, За счет этого атом углерода имеет частичный положительный заряд, а атом всдорсда приобретает кислотные свойства. В карбоновых кислотах есть водородные связи, поэтому в жидком и твердом состоянии они существуют в виде димеров. [c.350]

    Водородные связи в карбоновых кислотах прочнее, чем в спиртах, поэтому летучесть кислот существенно ниже. Это связано с большей степенью поляризации связей, а также возможностью образования эффективных водородных связей как карбонильной, так и гидроксильной группой карбоксила. Так, уксусный альдегид с молекулярной массой 44 кипит прл 21 °С, этанол с массой 46 - при 79 °С, а уксусная кисло га с массой 60 кипит уже при ] 18 °С. [c.99]

    Реакция может быть катализирована и недиссоциированной кислотой или кислотой Льюиса. В этих случаях положительный заряд на углеродном атоме карбонильной группы увеличивается в результате образования водородной связи или координации с катализатором. [c.125]

    Муравьиная кислота представляет собой смешивающуюся с водой бесцветную жидкость (т. пл. 8, т. кип. 101 С) с высоким значением диэлектрической проницаемости (е = 56 при 25°С) и очень резким запахом. Ее собственная электролитическая диссоциация характеризуется ионным произведением [НСООН+] [НСОО"] = 5 10- , а растворенная в ней НСЮ редет себя, как сильная кислота (/С = 5-10- ). В парах муравьиной кислоты имеет место димеризация по схеме 2НС00Н (НСООН)г + 14 ккал за счет образования водородных связей (между гидроксильными водородами и карбонильными кислородами). Присутствие в молекуле муравьиной кислоты (К = = 2- 10- ) при одном и том же атоме углерода связей С—Н и С = 0 ведет к тому, что она (подобно альдегидам) является сильным восстановителем. Соли ее (м у-равьинокислые, или формиаты), как правило, легкорастворимы. Интересно, что Сг(НСОО)г способен, по-видимому, существовать в двух формах — синей мономолекулярной и красной бимолекулярной. Разбавленный (1—1,5%) водный раствор НСООН под названием муравьиный спирт употребляется для втираний при лечении ревматизма. [c.562]


    Наряду с уже рассмотренными нуклеофильными реагентами, имеются и другие вещества, которые способны присоединяться к карбонильной группе. Эти вещества обладают С—Н-кислотностью к ним относятся альдегиды, кетоны, кислоты, сложные эфиры, нитрилы и нитросоединения, имеющие в а-положении к функциональной группе водородный атом, а также синильная кислота, ацетилен. Эти соединения сами по себе не обладают основными свойствами, однако могут в присутствии сильных оснований равновесно переходить в реакционноспособную форму, обладающую достаточной нуклеофильной активностью, чтобы присоединяться к карбонильному соединению. [c.127]

    В настоящее время экспериментально установлено, что истинные водородные мостики или хелатпые связи образуются только тогда, когда акцептор водорода (в данном случае атом О карбонильной группы) является очень слабо основным, а донор водорода (в данном случае гидроксильная группа) лишь слабо диссоциирован. Прн этом проводимость увеличивается лишь очень незначительно. Если же основ-т ость акцептора или способность донора к диссоциации слишком велики, то происходит полный переход протона и образуется истинный ион (с локализацией зарядов), примером чего является антраниловая кислота. Водородная связь, как правило, обладает довольно большог прочностью. Ее энергия иногда достигает 10 ккал и, таким образом, превышает энергию большинства других межмолекулярных связей, но значительно уступает истинным ковалентным связям (энергия обычной связи С—С составляет около 83 ккал). [c.642]

    Мы уже встречались с реакциями (гл. 27), возможность осуществления которых обусловлена кислотностью атомов водорода, находящихся в а-положении в карбонильной группе альдегидов, кетонов, ангидридов и сложных эфиров. Мы считали, что эта кислотность является следствием резонансной стабилизации карбаниона за счет структур, в которых кислород карбонильной группы несет отрицательный заряд. а-Водородные атомы малонового эфира расположены в а-положении к двум карбонильным группам, и поэтому ионизация дает особенно устойчивый карбанион, в котором два кислорода карбонильных групп способствуют размещению заряда. Вследствие этого малоновый эфир — гораздо более сильная кислота, чем обычные сложные эфиры или соединения, содержащие одну карбонильную группу он значительно более сильная кислота, чем этиловый спирт. [c.871]

    За счет образования водородных связей в веществе могут возникать межмолекулярные и внутримолекулярные циклические структуры. Например, молекулы органических кислот типа муравьиной (в) соединяются попарно своими полярными концами, так как в их карбоксильных группах атом водорода и карбонильный атом кислорода направлены в одну сторону, что приводит к образованию из двух таких групп замкнутого цикла. Димеры этих кислот существует даже в их парах  [c.95]

    Во-первых, смещение электронов двойной связи карбонильной группы к атому кислорода приводит к образованию частичного положительного заряда на атоме углерода, что вызывает индуктивный сдвиг электронной плотности от атома водорода в связях С—ОН и О—Н. Вследствие этого водородный атом легко можно удалить из молекулы под действием основания. Действительно, ионизация карбоновых кислот становится ощутимой только в присутствии подходящего акцептора протонов (например, Н2О) и вообще может не приниматься в [c.144]

    Восстановление карбонильных соединений неблагородными металлами, например (амальгамированным) магнием или алюмини- ем, железом, цинком и др., может приводить как к продуктам реакции, отвечающим схеме (Г, 7.89а), так и к веществам, соответствующим другому направлению этой реакции [схема (Г. 7.896)]. Направление, по которому происходит реакция, зависит от природы карбонильного соединения, а также от условий реакции (металл, растворитель и т. д.). Альдегиды и кетоны восстанавливаются обсуждаемыми металлами в растворителях, содержащих активные водородные атомы (например, в воде, раз- бавленных кислотах и щелочах, спиртах), преимущественно до соответствующих карбинолов азометины в этих условиях восстанавливаются до аминов С помощью амальгам магния или алюминия кетоны в растворителях, не имеющих подвижного водорода (например, в бензоле), превращаются главным образом в гликоли (пинаконы). Напишите схему образования пинакона из ацетона согласно схеме (Г. 7.89 II в данном случае пинаколят магния) и объясните указанную выше зависимость продукта реакции от растворителя,. [c.120]

    Этот метод синтеза рассмотрен довольно подробно в гл. 13 Карбоновые кислоты , разд. Ж-1. Приводимая здесь реакция отличается от этого метода только тем, что на последней стадии применяют преимущественно спирт, а не воду. Для этой стадии применяют практически те же реагенты, что и при получении кислот, хотя при получении сложных эфиров некоторые успехи были достигнуты при облучении (пример 6.2), при применении иодида меди(1) в ацетонитриле 114] и бензоата серебра в триэтиламине [15] (пример 6.1). При применении последнего было показано, что для успешного проведения реакции необходимо наличие водородного атома в а-положении как к карбонильной, так и к диазогруппе. [c.312]


    Физические свойства Карбоновые кислоты — сильно ассоциированные жидкости за счет водородных связей, имеют высокие температуры кипения (табл 16 18) Химические свойства В отличие от альдегидов и кето нов, карбонильная группа в карбоксиле неактивна, но повышает кислотность гидроксильной группы, сдвигая на связи О—Н электронную плотность в сторону атома кислорода При этом протон может отщепиться — кисло та диссоциирует [c.291]

    В случае кислот мы впервые встречаемся с поглощением, связанным с валентными колебаниями карбонильной группы. Эта интенсивная полоса появляется в области, которая обычно не содержит других сильных полос поглощения, и точное значение частоты полосы поглощения карбонильной группы может дать много сведений о структуре вещества. Для связанных водородной связью молекул кислот полоса С=0 проявляется примерно при 1700 см . [c.580]

    Присоединение к бензо- и нафтохиншам происходит также при действии ряда других реагентов типа НА, в том числе цианистого водорода, меркаптанов, бензолсульфиновой кислоты, бензола в при-сутствйи хлористого алюминия, малонового, циануксусного и ацетоук сусного эфиров. Реактивы Гриньяра реагируют с замещенными и незамещенными хинонами с образованием смеси продуктов 1,4-присоеди-иения, присоединения по карбонильной группе и продуктов восстановления. Особый случай представляет реакция с азотистоводородной кислотой Н№ здесь первоначальное присоединение сопровождается внутримолекулярным окислением—восстановлением с миграцией водородных атомов гидрохинона к азидной группе, которая претерпевает восста-но1Вительное расщепление  [c.422]

    Полярность карбонильной группы делает полярными альдегиды и кетоны, поэтому они имеют более высокие температуры кипения, чем неполярные соединения сравнимого молекулярного веса. Сами по себе они не способны образовывать межмолекулярные водородные связи, поскольку содержат атомы водорода, связанные только с атомом углерода вследствие этого их температуры кипения ниже, чем у соответствующих спиртов или карбоновых кислот. Для примера можно сравнить н-масляный альдегид (т. кип. 76 °С) и метилэтилкетон (т. кип. 80°) с н-пентаном (т. кип. 36 °С) и диэтиловым эфиром (т. кип. 35°), с одной стороны, и с н-бутиловым спиртом (т. кип. 118 °С) и пропионовой кислотой (т. кип. 141 °С) — с другой. [c.589]

    При УФ-экспонировании слоя ЦПИ, содержащего соединение (II) в том же соотношении оказалось, что уже через 15 мин наблюдалась дифференциация растворимости в спирте облученных и необлученных участков пленки, обусловленная фотоструктурированием ЦПИ в местах экспонирования. Следует отметить резкие различия в наклоне интегральных сенситометрических кривых для слоев ЦПИ с соединениями (I) и (И). В слоях, содержащих бис-лактонное производное (И), фотопроцесс протекает с меньшей скоростью. Известно [8], что эфиры лактонов под действием света или термически в присутствии кислот Льюиса, подвергаются внутримолекулярной перегруппировке Фриса. Для соединения (II) можно предположить тот же радикальный механизм фотопревращения. Возбуждение светом приводит к гомолитическому расщеплению связи о-карбонил с последующей миграцией ацила в ядро. Первоначально оба радикала (фенок-си- и карбонильный) остаются в клетке растворителя или полимера. Внутриклеточное взаимодействие, эффективно реализуемое в жесткой полимерной клетке, ведет к получению оксикетонов [9,10]. Образование о-оксиарилкетонной группы при фотохимической перегруппировке Фриса свидетельствует о возникновении "эффекта самостабилизации" [11] за счет образования сильной водородной связи С=0 - Н0. Вследствие этого производное (II) играет роль УФ-абсорбера, однако 8 ор для слоя композиции (ЦПИ) (П) составляет Т370 см /мДж, т.е. (II) играет роль слабого фотосенсибилизатора. [c.148]

    КМНз. Было показано, что в случае слабых нуклеофилов может потребоваться некоторая помощь кислотных катализаторов, тогда как активные нуклеофилы обычно не нуждаются в такой помощи. Положительный характер карбонильного углерода в кислой среде повышается не только вследствие собственно протонирования, но также, хотя и в меньшей степени, в результате образования за счет водородных связей комплекса между кислотой и карбонильным кислородом и даже за счет водородной связи, возникающей между карбонильным кислородом и. гидроксилсодержащим растворителем [c.199]

    Водородная связь, образованная с карбонильным кислородом, уменьшает его электроотрицательный характер благодаря оттягиванию электронов к водороду в водородной связи, а это приводит к увеличению силы карбоновых кислот в гидроксилсодержащпх растворителях по сравнению с фенолами. Этими же причинами объясняется изменение относительной силы кислот других химических групп ири переходе от растворителей, являющихся донорами и акцепторами протона, к растворителям, которые являются только акцепторами. [c.292]

    Дикетоциклобутендиол представляет собой белое твердое вещество (разл. около 293°С) и является двухосновной кислотой, почти такой же сильной, как и серная кислота с хлорным железом он дает интенсивное пурпурное окрашивалие и не реагирует с фенилгидразином, так как его карбонильные грунты имеют характер карбоксильных карбонилов. ИК-спе,ктр комплекса с железом указывает на наличие прочных водородных к хелатных связей. Аниону дикетоциклобутендиола отвечает формула IV, в которой все четыре атома кислорода эквивалентны вследствие резонанса, поскольку в инфракрасном спектре дикалиевой соли вместо карбонильного поглощения свободной кислоты при 5,5 мк имеется интенсивная полосе при 6,5—6,75 мк, характерная для коле баний связи С—О в солях карбоновых кислот. [c.510]

    Алюминий в алкоголяте алюминия [п, схема (Г. 7.154)], являясь кислотой Льюиса, повышает электрофильную активность карбонильной группы. Одновременно негативированный, комплексно связанный атом алюминия вызывает сдвиг электронов в исходящих от него связях. Вследствие этого а-водородный атом алкоголята (криптооснование) отталкивается и притягивается к позити-вированному карбонильному атому углерода [III, схема (Г. 7.154)]. Электроны перераспределяются в направлениях, указанных изогнутыми стрелками, и образуется соединение IV  [c.180]

    Флуоренонкарбоновая-1 кислота легко присоединяет НСЫ, в то время как сам флуоренон в эту реакцию не вступает. Считают, что легкость реакции в случае кетокислоты объясняется повышенной поляризацией карбонильной группы в результате образования водородной связи  [c.65]

    В специальных кальций-связывающих белках, или парвальбуми-нах , ион Са + связан как с амидной группой, так и с кластером карбок-силат-ионов. Установлена трехмерная структура такого белка из мышцы карпа (рис. 4-5). В этом белке имеется два центра связывания для кальция. В одном из них (рис. 4-5, Л, слева) ион Са + связан с четырьмя карбоксильными группами боковых цепей остатков аспарагиновой и глутаминовой кислот, с гидроксильной группой остатка серина, а также с карбонильным кислородом 57-го остатка пептидной цепи. Заметим, что эта Же самая пептидная группа связана водородной связью с карбонильной группой другого сегмента полипептидной цепи, расположенного рядом со вторым центром связывания иона Са + (рис. 4-5, Л справа). Этот центр содержит четыре карбоксилат-иона (один из которых осуществляет координационное связывание иона a + обоими ато-мами кислорода) и карбонильную пептидную группу. Значение данной [c.268]

    Образующийся водород, по мнению Л. Баха и А. Генерозова, происходит только из воды, участвующей в реакции. Молекула формальдегида сама по себе не способна за счет воды окисляться до муравьиной кислоты с выделением водорода, но если какой-либо окислитель будет отнимать от нее один из ее водородных атомов, то такая реакция становится возможной. Тот удивительный факт, что выделяющийся водород не восстанавливает перекиси водорода, может быть объяснен комплексообразован ием между формальдегидом и перекисью водорода, благодаря чему активный кислород защищается от воздействия яодорода. Окисление формальдегида можно рассматривать, как присоединение перекиси водорода в виде Н и ООН к карбонильной группе таким же образом следует рассматривать и окисление кетокислот, которые очень быстро сгорают до углекислоты и низшей кетокислоты. В качестве примера можно при-Г ести окисление пировиноградной кислоты  [c.73]

    Для получения оксиранов прежде всего используют эпоксидирование олефинов надкислотами (например,. и-хлорнадбензойной кислотой) [За]. Эпоксидирование может протекать стереоселективно, если надкислота фиксируется водородными мостиками с имеющимися ОН-группами (Г-4). Эпоксидирование по С=С-связи в а,р-ненасыщенных карбонильных соединениях можно осуществить пероксидом водорода в щелочной среде (Г-3). Больщое синтетическое значение имеет энантиоселективное эпоксидирование аллиловых спиртов греш-бутилгидропероксидом в присутствии тетраизопропилата титана и диэтилового эфира (-Ь)- или [c.83]

    Реакция Канниццаро. Катализируемая основаниями реакция диспропорционирования между двумя альдегидами, которые не содержат водородных атомов прн атоме углерода, соседнем с карбонильной группой. В результате реакции образуются скирт и соль карбоиопоп кислоты. [c.44]

    Все атомы фрагмента С(=0)—ООН размещены почти в одной плоскости в случае пероксимуравьиной и пероксиуксусной кислот. В кристаллах о-нитробензойной и пеларгоновой пероксикислот водородная связь образуется уже между молекулами. Уточненные координаты о-нитробен-зойной пероксикислоты отвечают торсионному углу 0=С-0-0 5°, при этом карбонильный кислород размещен на 0.09 А выше плоскости С—О—О, а атом Н — несколько ниже этой плоскости. Диэдральный угол С-О-О-Н составляет у о-нитробензойной пероксикислоты 146° [38] и у пеларгоновой — 133°. Данные о структуре типичных диацилпероксидов, определенные в кристаллах методом РСА, приведены в табл. 2.11 и на рис. 2.20 [39] и 2.21 [40]. [c.98]

    РИС. 4-5. А. Часть полипептидной цепи кальций-связывающего белка мышцы карпа, содержаш,ей 108 аминокислотных остатков. Показаны две петли, связывающие ионы кальция, и водородная связь между ними. Б. Система водородных связей, связывающих два сегмента полипептидной цепи внутри молекулы. Обратите внимание на связь между гуанидиновой группой остатка аргинина (75) и карбоксилатом остатка глутаминовой кислоты (81), а также карбонильной группой пептидной связи 18-го остатка. Обратите внимание и на то, что карбоксилат взаимодействует также с двумя пептидными NH-группами [32, 32а]. [c.269]

    Если в молекуле содержится гидроксильная групна (нанример, в спиртах, фенолах, карбоновых кислотах), то атомы кислорода гидроксильных групп двух молекул могут тесно сблизиться из-за образования водородных связей. Водородные связи относятся к числу химических связей средней силы, но, когда их миого, оин способствуют образованию прочных димерных или полимерных структур. Общеизвестными примерами являются а-синральная структура дезоксирибонуклеиновой кислоты и других природных полимеров и алмазонодобная структура кристаллического льда. Водородные связи образуются не только между двумя группами -ОН, но и между -ОН и кислородом карбонильной группы С=0, азотом аминогрупны -КНг и т.д. [c.115]

    В отношении каркасных систем, крайне редких среди производных пиримидина, интересно отметить, что пространственные структуры некоторых 5,5-ди-алкилбарбитуровых кислот включают элементы каркасного типа возможно, именно эти стереохимические особенности способствуют образованию вышерассмотренных гетероциклов. В качестве примера можно привести соединения 176-178, пространственное строение которых в случае производного 176 (пунктирной линией изображена водородная связь между МСНз-группой и атомом кислорода карбонильной группы) было установлено комплексом методов, включая РСА и спектроскопию ЯМР Н и С [126, 127], и методы спектроскопии ЯМР и УФ для производных 177 [126] и 178 [128]. [c.340]

    Реакция галоформирования идет ступенчато в первой стадии происходит окисление соединения с образованием карбонильной группы, связанной с метильной группой во второй—замещение водородного атома метильной группы галоидом и в третьей—расщепление соединения под действием едкого натра с образованием галоформа и карбоновой кислоты. Для альдегидов и кетонов, содержащих готовые группировки СН3СО (например, ацетона), реакция галоформирования происходит значительно быстрее (уже на холоду), так как отпадает ее первая стадия. [c.179]

    Существенный вклад в распределение электронной плотности пептидной группы цвиттер-ионной формы (II) должен сказаться в увеличении отрицательного заряда на карбонильном кислороде (по сравнению с ацетоном), что и подтверждается результатами расчета интенсивностей ИК-полос поглощения (см. табл. П.З и II.6). Это полностью согласуется также с таким известным экспериментальным фактором, как предпочтительное протонирование амидов и пептидов по атому кислорода [41], а не азота, как это обычно имеет место. Амиды являются слабыми основаниями значения рКа, например, у ацетамида и N-метилацетамида составляют соответственно 0,35 и 1,0. В то же время они могут выступать и как слабъ е кислоты, рЕа кислотной диссоциации у формамида равно 17,2, а у ацетамида - 17,6 [42]. В соответствии с этим пептидная группа проявляет двойственную способность к образованию водородных связей, выступая одновременно в качестве акцептора протона (С=0) и его донора (N-H)-Образование водородных связей ведет к еще большей поляризации групп, [c.150]

    Инфракрасные спектры. Карбоксильная группа состоит из карбонильной (С=0) и гидроксильной (ОН) групп, и в инфракрасном спектре карбоновых кислот имеются полосы, характерные для обеих этих групп. Для димерной форлгы кислот, содержащей водородные связи, валентные колебания ОН-fpynnbi дают интенсивную широкую полосу в области 2500—3000 м-- (рис. 18.4). [c.579]


Смотреть страницы где упоминается термин Карбонильные кислоты, водородные: [c.221]    [c.230]    [c.99]    [c.221]    [c.294]    [c.357]    [c.474]    [c.179]    [c.74]    [c.400]    [c.72]    [c.52]    [c.69]    [c.277]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

ДНК и РНК кислоты карбонильные

Карбонильные кислоты, водородные связи



© 2025 chem21.info Реклама на сайте