Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Быстрые реакции методы исследовани

    ЯМР-спектроскопия представляет собой перспективный метод исследования. Она позволяет фиксировать образование промежуточных продуктов химических реакций (ионов, промежуточных комплексов, сольватов и др.). По интенсивности сигналов ЯМР в ходе не очень быстрых реакций уда -ется следить за изменением концентрации веществ. ЯМР-спектроскопия широко применяется для изучения скоростей и активационных параметров обменных процессов, при которых периодически меняется магнитное окружение ядер. [c.128]


    Для исследования кинетики быстрых и сверхбыстрых химических реакций большие возможности дают люминесцентные методы. Эти методы особенно важны для фотохимических реакций. Иногда удается изучать быстрые реакции возбужденных молекул с помощью спектров флуоресценции при стационарном возбуждении (см. гл. III). Прямое измерение кинетики быстрых реакций возбужденных молекул оказывается возможным путем наблюдения кинетики люминесценции. Поскольку интенсивность испускаемого света пропорциональна концентрации испускающих частиц, то кинетические кривые люминесценции непосредственно от- ражают изменение концентрации возбужденных молекул во времени. [c.89]

    При быстрых реакциях, время которых измеряется секундами или их долями, приходится уже учитывать время смешения реагентов. Кроме того, следует сразу прекращать реакцию при выходе смеси из реактора и обеспечить быстрый нагрев реагентов и изотермичные условия. Один из вариантов установки интегрального типа для исследования таких реакций на примере окисления органических соединений раствором хромпика представлен на рис. 4.2. Естественно, что здесь можно применять и дифференциальные реакторы смешения с очень малым временем пребывания. Изучение очень быстрых реакций с временами <0,1 с требует специальных методов. Однако, как указывается в гл. 6, практически в плане данной книги эта задача не стоит, поскольку в этих случаях реактор рассчитывается только по скоростям смешения и теплоотвода. [c.67]

    Детальное экспериментальное изучение химических реакций, лежащих в основе разрабатываемого процесса, — необходимое условие для получения его надежной кинетической модели. В случае быстро протекающих реакций (время полупревращения порядка от долей секунды до нескольких минут), которые реализуются в промышленности в виде непрерывных процессов, проходящих в проточных реакторах, метод исследования кинетики в периодически действующих изотермических реакторах, кратко изложенный в этой главе, непригоден. Изучение кинетики таких реакций, к которым относятся подавляющее большинство каталитических и все газовые реакции, проводят в специальных установках проточного типа. [c.35]

    Методы исследования быстрых реакци . Мир, 1977. [c.355]

    Релаксационные методы исследования кинетики химических реакций основаны на том принципе, что при быстром внешнем воздействии на систему (изменение температуры, давления, электрического поля) время, которое нужно системе для достижения нового равновесного (или стационарного) состояния, зависит от скорости химической реакции (или иногда от скорости диффузии реагентов). Переход системы к новым равновесным (или стационарным) концентрациям реагентов называют химической релаксацией [39, 40]. Если отклонение от равновесия, вызванное внешним воздействием, невелико, кинетика релаксации будет весьма простой (ее удается описать с помош,ью линейных дифференциальных уравнений с постоянными коэффициентами). [c.206]


    Одна из насущных задач химической кинетики состоит в получении кинетических кривых для быстрых реакций с помощью современных методов исследования можно решить эту задачу для многих реакций. Из подходящих для этой цели методов можно назвать осциллографический и полярографиче- [c.167]

    В настоящее время метод вращающегося диска общепризнан в качестве метода исследования кинетики умеренно быстрых реакций. Метод находит широкое применение в анализе благодаря возможности определения веществ, которые реагируют с электродом в области положительных потенциалов, а также потому, что при применении диска протекают значительно большие токи, чем, например, в полярографическом методе. Это позволяет анализировать относительно разбавленные растворы (порядка 10 моль/л). [c.55]

    В стационарных условиях проведения процессов ХВЭ, как правило, короткоживущие частицы находятся в весьма низких концентрациях, недоступных для прямого наблюдения, поэтому были разработаны импульсные методы. Они заключаются в том, что за время, которое существенно меньше времени жизни изучаемой частицы, в систему подается количество энергии, которое генерирует такую концентрацию короткоживущей частицы, чтобы можно было наблюдать ее экспериментально быстрыми физическими методами исследования, например с помощью абсорбционной спектроскопии, люминесценции, комбинационного рассеяния, вольтамперометрии, кондуктометрии, ЭПР и др. Комбинации этих методов и условий проведения процесса позволяет определять такие физико-химические характеристики короткоживущих частиц, как молярный коэффициент поглощения, энергетический и квантовый выходы, времена жизни и константы скорости реакций, константы равновесия, окислительно-восстановительные потенциалы, подвижности в электрическом поле, знак и величину заряда частиц и др. Импульсные методы возбуждения действием света описаны в [172—174], ионизирующего излучения в [175, 176], электрического разряда в [177, 178]. Рассмотрим методы нахождения констант скорости реакций в импульсных условиях при воздействии импульсов света. Следует отметить, что при сложной кинетике для уточнения и нахождения констант скорости реакций целесообразно использовать математическое моделирование (см. разд. 3.10 и 3.12). [c.156]

    Уравнения (1.26) и (1.27) могут использоваться при любой аналитической форме члена г(с). Однако исследование свойств процесса абсорбции с быстрой химической реакцией может быть проведено без введения каких-либо определенных форм зависимости г с). Действительно, непосредственно из уравнения (1.27) можно увидеть, что в режиме быстрой реакции скорость абсорбции не зависит от времени диффузии to, а именно, от гидродинамических условий в жидкой фазе. Этот очень важный вывод составляет основу метода измерения поверхности раздела фаз. [c.28]

    Одной из них является возникновение и быстрое развитие новых теоретических представлений в органической химии. Оказалось, что именно углеводороды, состоящие из атомов всего двух элементов, являются нередко наилучшими объектами для экспериментальной и теоретической проверки новых представлений с целью дальнейшего развития теории органической химии. Другая причина — возникновение принципиально новых и очень информативных методов исследования течения реакции и строения катализаторов (спектральные, адсорбционные, рентгеновские, хроматографические, магнитные методы, использование изотопов в катализе, приме- [c.5]

    Применение ЯМР-спектроскопии не ограничивается установлением или же подтверждением химического строения молекул. ЯМР дает возможность решать ряд проблем стереохимии, количественного анализа смесей, кинетики и механизмов быстрых химических реакций, в том числе протонного обмена, таутомерных превращений и другие вопросы. Целые разделы органической и неорганической химии обязаны своим стремительным развитием именно применению спектроскопии ЯМР- Данные спектров ЯМР считаются такими же надежными критериями в оценке структуры, в распознавании и отождествлении химических соединений, как и сведения других физических методов исследования. [c.10]

    По подсчетам ученых в США все запасы сравнительно недорогостоящего ура-на-235 окажутся исчерпанными приблизительно за 40 лет. Поскольку в урановых рудах очень низкое относительное содержание изотопа уран-235 и его запасы могут оказаться исчерпанными слишком быстро, проводятся активные исследования методов получения других делящихся ядерных веществ. Например, делящиеся изотопы плутоний-239 и уран-233 можно получать в ядерных реакторах из нуклидов, гораздо более распространенных, чем уран-235. Эти изотопы образуются в результате реакций [c.272]


    Большинство химических превращений в газовой и жидкой фа зах относятся к сложным химическим процессам, протекающим через ряд стадий (элементарных реакций). Совокупность всех стадий такого процесса, в итоге которых возникают наблюдаемые продукты, а также данные влияния концентрации, температуры, давления и других физико-химических факторов на скорости элементарных реакций позволяют представить механизм сложного процесса. Первоначальная задача изучения сложного химического процесса состоит в выяснении совокупности отдельных стадий различными химическими или физическими методами. Среди химиков распространено представление о том, что для решения этой первой фактически качественной задачи достаточно средств химии и физики без использования методов химической кинетики, т. е. без изучения скорости реакций. Однако понять количественные соотношения наблюдаемых выходов продуктов не удается, если не изучены скорости их образования. Следует иметь в виду, что состав главных продуктов определяется наиболее быстрыми реакциями, а кинетика сложного превращения или, как говорят, брутто-реакции — наиболее медленными реакциями. Поэтому выяснение механизма сложной реакции никогда не ограничивается установлением качественного и количественного состава продуктов превращения с помощью физикохимических методов исследования и наметкой схемы или механизма превращения, всегда носящий характер гипотезы, а проводится еще и детальное изучение скоростей сложной реакции и ее отдельных стадий. [c.213]

    Большинство из указанных методов может быть применено к сравнительно медленным реакциям со временем полупревращения порядка получаса и более. Для исследования скоростей очень быстрых реакций (с периодом полупревращения до 10 и даже 10 " сек) используются специально разработанные методы и особая аппаратура. [c.333]

    За изучением брутто-процесса следует изучение отдельных стадий. Часто промежуточные стадии протекают очень быстро, и в этих случаях используют подходящие методы изучения быстрых реакций. Нередко их изучение проводится в рамках программы общего кинетического исследования сложного процесса. Иногда необходимые сведения о промежуточных стадиях можно получить в научной литературе. [c.366]

    Этот обмен можно наблюдать, если свободные лиганды предварительно помечены каким-либо образом (например, изотопно). Скорость обмена определяют по выравниванию изотопного состава свободного и связанного лиганда. Если метод меченых атомов неприменим, используют ЯМР, а также специальные методы исследования быстрых реакций, например метод температурного скачка. Обмен лигандами — это механизм, через который осуществляется динамическое равновесие иона со средой. Чем выше скорость обмена лигандами со средой, тем выше и скорость реакции замещения лиганда. [c.37]

    Первоначально в термодинамике изучались, главным образом, соотношения между теплотой и механической работой, однако область практического применения термодинамического метода исследования сравнительно быстро расширилась. В современной науке и технике на основе законов термодинамики исследуются разнообразные физические и химические явления, в том числе процессы в различных электрических и холодильных машинах, паровых турбинах, двигателях внутреннего сгорания, гальванических элементах, процессы электролиза, различные химические реакции, атмосферные явления, процессы, протекающие в земной коре и т. д. [c.77]

    Учебное пособие Экспериментальные методы химической кинетики представляет собой краткое изложение ряда химических и физических методов исследования, которые широко применяются при изучении механизма химических реакций. В настоящее время быстро идет развитие традиционных методов исследования химической кинетики и появляются новые. Многие современные физические методы требуют дорогой аппаратуры, что отчасти мешает их широкому внедрению в учебные планы и программы. Наш педагогический опыт показывает, что студенты, аспиранты и молодые научные сотрудники нуждаются в пособиях, которые в краткой и относительно доступной/ форме излагали бы теоретические и экспериментальные основы применяемых в химической кинетике методов и на конкретных примерах показывали возможности решения тех или иных практических задач. [c.4]

    Изучению быстрых химических реакций способствовало внедрение новых методов исследования. Среди таких методов следует отметить струевые, релаксационные и импульсные методы. Струевые методы осно ваны -на смешении реагирующих веществ за короткий промежуток времени и наблюдении за реакцией одним из аналитических методов, например, по спектрам поглощения. Максимальным разрешающим временем струевых методов является 1 мс. Релаксационные методы основаны на выводе системы из состояния равновесия, например, при помощи внешнего параметра — температуры, давления, электрического поля, и изучении возвращения системы к новому положению равновесия. Интервал времени, доступный измерению релаксационными методами, простирается до 10 с, хотя некоторые из этих методов имеют меньшее разрешение так, метод температурного скачка — до 10 с, метод скачка давления — до 10-5 с. [c.155]

    Благодаря быстрому возникновению новых и усовершенствованию существуюш,их методов исследования и успехам в области физики и химии твердого тела наши сведения о катализаторах пополняются буквально с каждым днем. В настоящее время применение оптической спектроскопии, радиоспектроскопии и других физических методов позволяет более определенно, чем ранее, говорить об электронном строении, о химической природе активных центров и даже об их пространственной структуре. То же можно сказать и о первичных стадиях превращений катализируемых веществ. И здесь также оказалось возможным при помощи физических методов перейти от гипотетических схем к прямому наблюдению и создать достаточно определенное представление о состоянии реагирующих веществ на поверхности катализатора, как и об его участии в каталитической реакции. [c.175]

    Разновидностью фотолиза является метод, предложенный Норришем и Портером и носящий название импульсного фотолиза или флеш-фотолиза. Он применяется для исследования быстрых реакций в газах и жидкостях. Это, например, реакции атомов, радикалов или возбужденных молекул. [c.304]

    Позднее, с открытием и исследованием электрической, лучистой, химТ1ческой и других форм энергии, постепенно в круг рассматриваемых термодинамикой вопросов включается и изучение этих форм энергии. Быстро расширялась и область практического применения термодинамических методов исследования. Уже не только паровая машина и процессы превращения механической энергии в теплоту исследуются на основе.законов термодинамики, но и электрические машины, холодильные машины, компрессоры, двигатели внутреннего сгорания, реактивные двигатели. Гальванические элементы, а также процессы электролиза, различные химические реакции, атмосферные явления, некоторые процессы, протекающие в растительных и животных организмах, и многие другие исследуются не только в отношении их энергетического баланса, но и в отношении возможности, направления и предела самопроизвольного протекания процесса в данных условиях. Они исследуются также в отношении установления условий равновесия, определения максимального количества полезной работы, которая может быть получена при проведении рассматриваемого процесса в тех или иных условиях, или, наоборот, минимального количества работы, которое необходимо затратить для осуществ- [c.178]

    Небольшие системы реакторов с мешалками непрерывного действия обычно применяют для изучения кинетики химических реакций. Денбиг и Пейдж [3] описывают проточный метод, использованный для исследования химических реакций, когда среднее время пребывания в сосуде составляло от 1 до 4000 секунд. Этот ]четод особенно ценен для исследования довольно быстрых реакций. Метод основан на измерении скорости химической реакции при различных скоростях потока жидкости в условиях стационарных режимов. [c.106]

    Для кинетически лабильных простых систем можно предположить, что закономерность, справедливая для пртеденных выше примеров (т. е. что скорость реакции определяется стадией обмена координированного растворителя и лиганда), является общей. Однако высокие скорости большинства их реакций существенно затрудняют исследование, и надежные экспериментальные данные для интерпретации эффекта растворителя стали доступны только после распространения кинетических методов исследования быстрых реакций (метода остановленной струи, Г-скачка, скачка давления и др.). [c.199]

    Небольшая по объему монография Г. Эвери Основы кинетики и механизмы химических реакций в сжатой и доступной форме излагает начала современной химической кинетики формальную кинетику, экспериментальные методы определения скоростей реакций, различные теоретические представления. В книге также рассмотрены радикально-цепные процессы, гомогенный, гетерогенный, ферментативный катализ, фотохимические реакции, методы исследования быстрых реакций. [c.4]

    Константы скорости реакции между ионами обычно велики. Найдено,, что при экстракции цинка дитизоном константа скорости реакции М ++А равна 3,7-10 л1моль-мин. Константа скорости такой реакции в водном растворе может быть определена специальными методами, применяемыми при изучении очень быстрых реакций. Их исследование при экстракции возможно потому, что концентрации ионов М + и А очень малы, первая — в результате использования радиоактивных индикаторов, вторая — малого коэффициента распределения экстрагента переход же образующегося соединения в другую фазу позволяет легко определять его концентрацию. [c.105]

    Дифференциальный метод анализа. Интегральный анализ — простой и быстрый метод исследования некоторых простых уравнений скорости. Однако интегральные формы указанных выражений становятся громоздкими при более сложных уравнениях скорости. В таких условиях дифференциальный анализ удобнее для нахождения кинетического выражения. Преобразуя уравнение (V,ll), получают выражение, позволяющее найти скорости реакций в интегральных реакторах  [c.428]

    Люминесцентные методы включают в себя исследования с использованием флуоресценции (флуориметрия) и фосфоресценции (фосфориметрия). Наиболее широко люминесцентные измерения используются как методы анализа и контроля за протеканием химических и биохимических реакций, а также для кинетических исследований быстрых реакций электронно-возбужденных молекул. [c.49]

    Возможности потенциометрических методов для исследования кинетики химических реакций очень велики. Изменение э. д. с. электродной с-истемы позволяет измерять скорость и изучать механизмы разиоо бразных иро Цессов. Потенциометрическими методами можно изучать как медленные, так и быстрые реакции (0,5-10 с). Исследование кинетики электродных ироцессов является одной из главных задач электрохимии. [c.274]

    За последние годы внедряются и быстро распространяются методы электронно-парамагнитно1 о и ядерно-магнитного резонансов для исследования водоро (ных связей, ионных и молекулярных реакций, для оценки молекулярного строения и изменения конфигураций молекул. Известно, что электронно-паромагнитный резонанс (ЭПР) вызывается свободными связями углерода, находящимися преимущественно в конденсированной ароматической структуре асфальтенов. Повышение температуры (выше 380°С) [82], воздействие ультрафиолетовой радиации и волновая обработка продукта увеличивают число свободных радикалов и, следовательно, повышают скорос ть окисления. [c.35]

    Вследствие того что изотопы одного и того же элемента имеют одинаковую электронную структуру, которая в основном определяет химическое поведение атома, изотопный эффект зависит исключительно от массы изотопов, взятых для сравнения. Это различие в массе влияет на формы движения молекулы или атома (поступательное движение, вращение, колебания). Имеются два метода исследования изотопного эффекта. В одном из них проводится измерение изотопного состава исходных веществ и продуктов реакции, пока она еще не закончилась. Вследствие различия в скорости реакции веществ с легким и тяжелым изотопами (более легкий изотоп реагирует быстрее, что будет обосновано далее) обычно исходные вещества обогащаются тяжелым изотопом, а продукты реакции — легким. В другом методе проводится непосредственно измерение скорости реакции как с веществами, содержащими легкий изотоп, так и с веществами, содержащими тяжелый изотоп. Последний метод применяется, правда, только в случае, если изотопы сильно различаются по массе, и поэтому практически ограничен реакциями с участием изотопов водорода. Основной областью применения изотопного эффекта как раз и является исследование реакций веществ, содержащих атомы водорода. Отношение массы дейтерия к протию (одно из названий легкого водорода) равно 2, трития к протию — 3. Для более тяжелых изотопов это [c.197]

    В химической кинетике при изучении быстрых реакций и химических процессов в экстремальных условиях нашли широкое применение разнообразные физические методы исследования. Для обработки результатов измерения и решения разнообразных теоретических задач, включая квантово-химические расчеты, используют ЭВМ. Возвра-стает роль сложных физико-математических моделей, детально описывающих предреакционное состояние реагирующих частиц, особенно короткоживущих промежуточных частиц, таких, как свободные радикалы, ион-радикалы, возбужденные состояния молекул. [c.3]

    Если Р образуется только из Р,, то а = 0 если Р образуется только из А, Ь = 0 если а О и b Ф О, то Р2 образуется и последовательно и параллельно. Можно также для разных моментов времени определить скорость образования Р-2 (uj) и построить график -= = /Ср,. Если V-2 = О при Ср, — О и растет с ростом Ср,, то Рз образуется последовательно из Pi если v. не зависит от Ср,, то Рг образуется параллельно с Р, если Dj растет с ростом Ср,, но при Ср, = О U2 Ф О, то происходит как последовательное, так и параллельное образование P.J. Удаление из зоны реакции одного из промежуточных продуктов позволяет выяснить, какие продукты непосредственно из него образуются. Для выяснения последовательности превращения продуктов можно также использовать метод меченых атомов (см. 4 гл. XLIV). Для доказательства и изучения реакций лабильных промежуточных продуктов используют методы исследования быстрых реакций.. [c.323]

    Если в спектре ЭПР разрешаются полосы, относящиеся к каждой форме комплекса, для исследования используют параметры, относящиеся к каждой полосе — физический вариант метода. По числу полос определяют число комплексов, существующих в растворе, по интенсивности — концентрацию каждой формы. Исследование зависимости относительных интенсивностей полос от условий комплексообразования дает сведения о равновесиях в системе, о термодинамических и кинетических характеристиках комплексообразования, о механизме реакций. Данные о строении комплексов и характере связи получают по СТС- и ДСТС-расщеплению и величине -фактора. Для исследования кинетики быстрых реакций используют скорость релаксации. [c.301]


Смотреть страницы где упоминается термин Быстрые реакции методы исследовани: [c.4]    [c.60]    [c.269]    [c.54]    [c.5]    [c.456]   
Основы кинетики и механизмы химических реакций (1978) -- [ c.183 , c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Буферные растворы для кинетических Быстрые реакции, методы исследования

Быстрые реакции

Быстрые реакции, методы исследования

Классификация методов исследования быстрых реакций в растворах

Методы исследования быстрых реакци

Методы исследования быстрых экзотермических реакций

Реакция исследование



© 2025 chem21.info Реклама на сайте