Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро разделение

    Вес хлористого серебра, разделенный на 0,3584, дает количество кубических сантиметров 0,1 N раствора, эквивалентного 25 см употребленного раствора. [c.216]

    Разделение золота и серебра. Разделение ЗоЛоТа й серебра из сплава может быть произведено химическим путем. Для этого гранулированный сплав разваривают в чугунных котлах в концентрированной серной кислоте при 300—350°. Серебро переходит в растворимую сернокислую соль, золото остается в осадке. Раствор декантируют, золото промывают и переплавляют. Раствор же разбавляют водой и вытесняют ( цементируют ) из него серебро металлической медью. [c.452]


    Молярное отношение (размеры молекул) 2. Функциональные группы а) физические взаимодействия б) химические взаимодействия 3. Форма молекулы (изомерия положения, структурная и оптическая изомерия) Разделение членов гомологического ряда Отделение спиртов от эфиров, ароматических соединений от алканов Разделение олефинов, связанных в комплексы с серебром Разделение ксилолов на бентонитах разделение н- и изо-парафинов на молекулярных ситах разделение рацематов на оптические изомеры [c.42]

    Альдегиды и кетоны можно различать аммиачным раствором окиси серебра. Разделение димедоном и др.  [c.232]

    Конструктивно узкополосные пропускающие интерференционные фильтры представляют собой нанесенные на подложку зеркальные слои из серебра, разделенные диэлектрическим слоем определенной толщины. В качестве диэлектрика могут быть использованы фториды магния или бария, сульфид цинка и др. Технология изготовления этих светофильтров достаточно подробно описана [38, 40]. [c.50]

    Как было показано Ф. М. Шемякиным , изучение процесса хроматографической адсорбции позволяет подойти к объяснению ритмических структур. Ритмические структуры были описаны Лизегангом еще в 1896 г. они представляют собой слоистые отложения кристаллического осадка, разделенные свободными от осадка промежутками. Осадок образуется при взаимодействии двух каких-либо солей. Так, если в пробирку налить 3%-ный раствор желатины, содержащей раствор двухромовокислого калия, дать желатине застыть и поверх нее налить раствор азотнокислого серебра, то по мере диффузии этого раствора в желатину образуются ритмические слои осадка двухромовокислого серебра, разделенные прозрачными, не содержащими осадка промежутками. Ритмические наслоения получены для многих веществ, например нодистого свинца, хромовокислой меди, железистосинеродистого серебра, гидрата окиси магния и др. В природе ритмические структуры встречаются довольно часто (агаты, яшмы). [c.57]

    При облучении нейтронами твердых или растворенных хлоратов, броматов, иодатов, перхлоратов или перйодатов метод Сцилларда — Чалмерса позволяет получать выходы галогенов порядка 70—100%. Радиоактивные галогены можно извлекать из облученных соединений такого типа при добавлении ионов галогена в качестве носителя и последующем осаждении в виде галогенидного серебра. Разделение изотопов ряда других химических элементов с помощью метода Сцилларда — Чалмерса, основанное на различии степеней окисления до захвата нейтрона и после него, также приводит к хорошим результатам. Например, приблизительно половина атомов радиоактивного Р , образующегося лри нейтронной активации фосфатов (растворов или твердых солей), находится в виде соединений трехвалентного фосфора. [c.215]


    Проблема 3 до последнего времени не имела эффективного решения. Последние исследования показали, что такое разделение может успешно осуществляться с помощью растворов солей меди (I) и серебра, особенно растворов меди (I) в апротонных полярных растворителях. [c.665]

    Из па )ладия изготовляют некоторые [шды лабораторной по суды, а также дета.>]н аппаратуры для разделения изотопов водорода. Сплавы палладия с серебром применяются в аппаратуре связи, в частности, для изготовления контактов. В терморегуляторах и термопарах используются сплавы палладия с золотом, платиной и родием. Некоторые сплавы палладия применяются в ювелирном деле и зубоврачебной практике. [c.699]

    Теоретически рассмотрены силы, действующие на частицу, соприкасающуюся со стенкой поры в слое вспомогательного вещества, в частности сила электростатического взаимодействия, обусловленная наличием заряда на границе раздела фаз [383]. На лабораторном фильтре выполнено исследование о влиянии физико-химических факторов на процесс разделения золя иодида серебра с использованием предварительно нанесенного слоя перлита или кизельгура знак заряда частиц золя регулируется избыточным количеством одного из реагентов, образующих золь. Установлено, что при размере частиц меньше размера пор знак заряда на поверхности частиц, противоположный знаку заряда на поверхности пор, способствует задерживанию частиц в пористом слое при этом отношение размера пор к размеру частиц может достигать 7. Отмечено, что увеличение вязкости жидкой фазы суспензии вызывает более глубокое проникание частиц в слой. [c.360]

    Разделение компонентов лучевого топлива пробовали проводить также с применением нерастворимых металлов [348]. В этом случае происходит восстановление урана до металла. Испытывались серебро, лантан [304] и магний [349, 3821. [c.435]

    Ранее диффузия водородсодержащего газа через мембраны из палладия и его сплавов с серебром была в основном лабораторным методом получения водорода. Однако в последнее время этот метод начали применять в промыщленности [36, 48, 49]. Значительной сложностью при разработке диффузионного разделения было создание мембраны, которая не отравлялась бы примесями, присутствующими в водородсодержащем газе. Основными компонентами, снижающими проницаемость диффузора, являются сероводород, непредельные углеводороды, углекислый газ и пары воды. Поэтому в схему установки диффузионного разделения включают блок очистки сырья. Оптимальные условия работы диффузоров из палладия следующие давление 35—40 ат, температура 300—400° С. [c.112]

    Основные направления аналитического и технологического использования ионообменной хроматографии следующие 1) разделение близких по свойствам элементов с применением комплексообразующих реагентов (например, редкоземельных и трансурановых элементов) 2) удаление мешающих ионов 3)концентрирование ценных микроэлементов из природных и промышленных вод 4) количественное определение суммарного содержания солей в растворах 5) деминерализация воды 6) получение кислот, оснований, солей извлечение редких и рассеянных элементов (урана, золота, серебра, германия и др.). [c.225]

    В заключение необходимо отметить широкое применение ионообменной адсорбции для извлечения и разделения ионов. Ионный обмен применяется для умягчения и очистки воды, извлечения ценных компонентов, например урана, золота, серебра. Сейчас нет производства по переработке урановых руд, в котором пе применялась бы ионообменная адсорбция. Ионный обмен используется для разделения редкоземельных элементов, что позволило получать нх в больших количествах и с высокой степенью чистоты. Раньше для этой цели применяли перекристаллизацию, производительность которой несравненно меньше. Ионообменная адсорбция является одним из важных методов в аналитической химии. [c.172]

    Отделение благородных металлов от других составляющих производится обычно с получением так называемого металла д оре (золотого сплава, содержащего серебро и 15—20% золота). Этот процесс проводят на аффинажных заводах химико-термическим методом. Затем сплав подвергают электрохимическому разделению на золото и серебро (стр. 317), а пыль от плавки направляют на извлечение селена и теллура. [c.314]

    В случае необходимости разделения металлов иногда приходится ограничивать напряжение. При этом, очевидно, напряжение целесообразно повышать только до тех пор, пока еще не будет превышено напряжение разложения для раствора соли второго металла. Так, например, для разделения серебра и меди в растворе их сульфатов следует применять напряжение не выше 1,4 в. Эта величина соответствует напряжению разложения [c.196]

    Осаждение из растворов комплексных соединений. Главным достоинством электролиза растворов комплексных соединений является получение плотного осадка металла. Так, серебро выделяется из азотнокислого раствора в виде отдельных длинных кристаллов, легко отваливающихся от катода. Напротив, из цианистого комплекса серебра получается равномерный плотный осадок. Кроме того, применение комплексообразователей изменяет величины потенциалов выделения отдельных металлов, что создает новые возможности для разделения. [c.199]


    В быту серебро используется в виде лигатур с медью, содержащих 87,8% и 52% Ag. Сплавы серебра с медью подвергают электролитическому разделению, которое связано с быстрым насыщением раствора медью и убылью серебра, поэтому в зависИ мости от содержания меди в сплаве производят регенерацию раствора в том или ином масштабе (см. гл. HI, 15). [c.243]

    Образование труднорастворимых соединений меди и серебра и в то же время очень легкая способность к восстановлению соединений золота, определяют при проведении процесса разделения принадлежность этих элементов к различным аналитическим группам  [c.646]

    Ознакомившись с химическими свойствами некоторых анионов, можно перейти к их аналитической классификации, т. е. к разделению изученных анионов на отдельные аналитические группы. Для аналитических групп анионов характерны общие аналитические реакции — окислительно-восстановительные или обменные, т. е. одинаковое отношение к определенному химическому реактиву, называемому в этом случае групповым реактивом. Групповыми реактивами могут служить, например, растворимые соли бария, стронция, серебра, свинца, ртути (I) и (II) и некоторых других металлов, с которыми одни анионы образуют малорастворимые соли, а другие — нет. Групповым реактивом может быть какой-либо окислитель или восстановитель, меняющий окраску в процессе реакции. [c.212]

    Для отделения висмута от серебра Яннаш и Гейман [733] обрабатывают навеску металлического висмута и сухого нитрата серебра в дестил-ляционном сосуде разбавленной HNO3, избыток последней удаляют пропусканием нагретого до 120° воздуха и затем производят дестилляцию в токе сухого HG1 при 260° в течение 2 час. Хлорид висмута улавливается в приемнике разбавленной соляной кислотой. В остатке находится хлорид серебра. Разделение происходит очень легко. Метод дает удовлетворительные по точности результаты. [c.256]

    Тонкослойная хроматография на солях серебра — в основном метод разделения липидов — основана на способности серебра образовывать комплексы с липидами. В неподвижную или подвижную фазу вводят нитрат серебра, разделение определяется формой (например, цис, транс) или степенью ненасыщенности липидов. Этот вид хроматографии рассмотрен в обзоре Л орриса [95, 96]. [c.553]

    Впервые окрашивание комплексами серебра разделенных в электрофоретических гелях белков было применепо в 1972 [197], по потенциальные возмож1ЮСти этого метода были открыты позднее [359]. Методы окрашивания белков комплексами серебра в 100—200 раз более чувствительны, чем основанные на применении кумасси бриллиантового голубого. Из шести предложенных методик с этим реагентом наилучшие характеризовались пределом обнаружения 0,5 нг белка/мм поверхности ПААГ [282]. Чувствительность окрашивания комплексами серебра несколько варьирует в зависимости от свойств и природы белка, как показано в сравнительном исследовании четырех различных методик применительно к белкам секрета околоушной железы человека, причем выбор оптимального варианта [c.302]

    Решение проблемы 2 обычно достигается путем использования различных способов химического превращения изоалкенов (изобутилена, изоамиленов) с помощью кислот или ионообменных смол (см. гл. 36). Может оказаться эффективным разделение с помощью растворов солей меди (и серебра). [c.665]

    Мембраны. Первые инженерные разработки по извлечению водорода с помощью металлических мембран на основе сплзеов палладия начаты 15—20 лет назад. Процесс выделения водорода предлагали проводить при температурах от 673 до 900 К в одну 19] или две ступени [10, II]. Степень регенерации водорода достигает 90% (одноступенчатое разделение при давлении исходного газа 15 МПа и давлении пермеата 0,2—0,3 МПа) и 98,5% при двухстадийном процессе (давление в напорном канале до 45 МПа, давление пермеата I ступени — 3—7 МПа, II ступени — атмосферное). Одно из достоинств металлических мембран — возможность получения водорода, практически не содержащего примесей. Так, применение мембран на основе сплава палладия с серебром в установках каскадного типа английской фирмы Джонсон Маттей Металс [12] позволило получить пермеат, содержащий 99,99995% (о б.) Иг- Отметим, что для. .этого необходимо, чтобы концентрация водорода в исходной смеси была не менее 99% (об.) Н2. Процесс проводится при температуре 550— 600 К под давлением х2, МПа. Производительность установки от 14 до 56 м ч высококонцентрированного водорода. Однако в промышленности металлические мембраны на основе палладия и его сплавов используются редко, в основном из-за дефицитности и высокой стоимости мембран, необратимого отравления палладия, необходимости поддержания высоких температ ур. [c.272]

    Penfield испытательный препарат Пенфильда — легкоплавкий двойной нитрат серебра и таллия с удельным весом 4,5, в расплавленном состоянии применяющийся для разделения минералов [c.408]

    Полученные экстракцией или адсорбционным разделением концентраты гетероатомных соединений содержат примеси, глав ным образом моно- и бициклических аренов. Очистка от углеводо родов и разделение серусодержащнх соединений на группы осу ществляется вакуумной дистилляцией, адсорбционной хромато графией, ступенчатой реэкстракцией растворами серной кислоты [248], комплексообразованием с солями ртути или серебра Очистку и разделение азотсодержащих оснований проводят с по мощью ионообменной или адсорбционной хроматографии [249, 250]. Кислородные соединения (адсорбционные смолы) очищают от углеводородов и разделяют на классы методами адсорбционной хроматографии, вакуумной дистилляции и этерификацией борной кислотой [248]. Дальнейшие исследования гетероатомных соединений направлены на выявление преобладающего типа соединений в очищенных образцах или идентификацию индивидуальных соединений. [c.142]

    В вертикальных столбцах таблицы — группах располагаются элементы, обладающие одинаковой валентностью в высших солеобразующих оксидах (она указана римской цифрой). Каждая группа разделена на две подгруппы, одна из которых (главная) включает элементы малых периодов и четных рядов больших периодов, а другая (побочная) образована элементами нечетных рядов больших периодов. Различия между главными и побочными подгруппами ярко проявляются в крайних группах таблицы (исключая VIII). Так, главная подгруппа I группы включает очень активные щелочные металлы, энергично разлагающие воду, тогда как побочная подгруппа состоит из меди Си,серебра Ag и золота Аи, малоактивных в химическом отношении. В VII группе главную подгруппу составляют активные неметаллы фтор F, хлор С1, бром Вг, иод I и астат At, тогда как у элементов побочной подгруппы — марганца Мп, технеция Тс и рения Re — преобладают металлические свойства. VIII группа элементов, занимающая особое положение, состоит из девяти элементов, разделенных на три триады очень сходных друг с другом элементов, и подгруппы благородных газов. [c.22]

    Из азотнокислотных растворов диалкилсульфиды, помимо Аи и Pd, эффективно экстрагируют серебро и ртуть (II). Коэффициент распределения индикаторных количеств серебра при экстракции 1 М раствором ди-к-гептилсульфида из 2,1 Л/HNO3 равен 276. Зависимость экстрагируемости серебра от кислотности водной фазы невелика, но если концентрация кислоты такова, что вызывает окисление сульфида в сульфоксид, степень извлечения серебра резко падает. Ртуть экстрагируется лучше серебра, но хуже чем палладий. Коэффициент разделения пары Hg — Ag при экстракции ДОС из 1 М HNO3 близок к 10. Из разбавленных азотнокислотных растворов золото экстрагируется существенно хуже ртути и серебра, что позволяет использовать экстракцию ДОС для разделения пар Hg — Аи и Ag — Аи. [c.184]

    Гибкие металлические перегородки особенно пригодны для работы с химически агрессивными жидкостями, при повышенной температуре и в условиях значительных механических напряжений. Они изгота 1Ливаются в виде перфорированных листов, сеток и тканей из углеродистой или нержавеющей стали, меди, латуни, бронзы, алюминия, никеля, серебра и различных сплавов. Пер( юрированные листы используют для разделения суспензий, содержащих грубодисперсные твердые частицы, а также в качестве опорных перегородок для фильтровальных тканей и бумаги. [c.197]

    Успешное развитие аналитической экспрессной системы контроля качества нефтяных и водных продуктов основано на методах авто-детекторной хемосорбционной индикаторно-жидкостной хроматографии. Сущность этих методов заключается в применении индикаторных сорбентов, обеспечивающих хроматографическое разделение анализируемых продуктов и детектирование образующихся зон адсорбции определяемых компонентов и примесей в индикаторных трубках. Производство индикаторных сорбентов было налажено на Щелковском химкомбинате, заводе Диатомит и Сорбполимере . Индикаторные сорбенты получают на основе ионного обмена и хемо-сорбционного комплексообразования в водных растворах индикаторов с последующей дегидратацией конечной продукции. В процессе ионного обмена в качестве модификаторов используются соли различных металлов, среди которых получили применение кобальт и серебро, обеспечивающие голубую, фиолетовую и розовую окраску индикаторных сорбентов. Для получения индикаторных сорбентов берут фракцию с крупностью 0,05-0,15 мм при соотношении сорбент модификатор — I 30, температуре 50-70°С, продолжительности модификации 30-50 мин. Дегидратацию проводят при 110 5 С в течение [c.121]

    В этих работах Норриша с сотр. была применена тщательно отработанная современная аналитическая методика, из основных моментов которой укажем следующие. Перекиси определялись полярографически по методу Штерна и Поляк [54]. Для нахождения общего количества альдегидов последние окислялись окисью серебра в серебряные соли жирных кислот. Серебро затем определялось волюмометрически тиоционатом калия. Разделение и определение индивидуальных альдегидов достигалось хроматографией кислот, освобождаемых из их серебряных солей [98]. Формальдегид определялся колориметрически реактивом Шиффа. Кроме этих и других более обычных методов, исследуемый конденсат подвергался разгонке на нолумикроколонке в 50 тарелок. Получаемые фракции подвергались затем инфракрасному спектрометрическому анализу. [c.258]

    Настоящий автоматический анализатор ионов — бумажный хроматографический титрометр разработан в Советском Союзе. Он имеет скромный вид узкой (несколько миллиметров) полоски фильтровальной бумаги, равномерно импрегнированной тем или иным осадителем ионов, например карбаминатом свинца — для осаждения ряда катионов или нитратом серебра — для осаждения анионов. Количество импрегната, приходящееся на единицу площади поверхности полоски (титр бумаги), известно. Анализ раствора производится впитыванием его в полоску до первой метки, а затем впитыванием растворителя (обычно воды) до второй метки, более удаленной от впитывающего конца полоски, чем первая метка. Разделение смеси ионов, например хлора, брома, иода, происходит со скоростью впитывания, причем высота зоны каждого иона обратно пропорциональна титру бумаги. Результаты анализа считываются со шкалы, заранее нанесенной на полоску в соответствии с титром бумаги. Анализ при помощи этого анализатора — минутное дело, доступное всем, а не только химикам. Он может быть легко изготовлен в любой лаборатории. [c.15]

    Ионы меди, серебра и кадмия переводят в аммикаты [Си(ЫНз) ] - , [Ад(ЫНз)2] . [ d(NHз)4] +. Полученные комплексные катионы разделяют электрохроматографическн, применяя в качестве электролита смесь 1 М раствора хлорида аммония и 0,5 М раствора аммиака. Все три иона перемещаются к катоду [Ае(ЫНз)2]+—на растояние от 2 до 4 см [С(1(ЫНз)4Р — от 4 до 6 см [Си(ЫНз)4] — от 6 до 9 см. Если в анализируемом растворе присутствуют РЬ + и В1 +, то они с электролитом образуют осадки РЬ(ОН) и В1(ОН)(ЫОз)2, которые в силу значительной сорбционной способности искажают хроматограмму, и поэтому четкого разделения ионов не происходит. Б присутствии Hg(N0a)2 часть ионов Hg + образует осадок в виде Hg [c.352]

    По прекращении электролиза осадок, состоящий из порошка серебра, окиси серебра, гидроокиси меди и гидроокисей примесей, спускают на фильтр. Разделение производят в подогретом 15%-ном растворе H2SO4 в присутствии меди. Получается раствор, аульфата меди и осадок цементного серебра. [c.244]

    К раствору, содержащему одновременно хлорид- и иодид-ионы, добавлен раствор AgNOa. Какова должна быть концентрация- иодид-иона, чтобы началось осаждение хлорида серебра Проведите аналогичный расчет для раствора, содержащего хлорид- и бромид-ионы. (Разделение хлорид- и бромид-ионов путем фракционированного осаждения на практике дает значительно худшие результаты, чем следует из расчета. Это происходит вследствие образования твердых растворов Ag l и AgBr.) [c.651]

    Особо селективные жидкие фазы по отношению к некоторым соединениям. Растворы нитрата серебра в полиэтиленгликоле, полипропилен-гликоле и бензилцианиде. Бензилцианид не гигроскопичен и не требует применения сухого газа-носителя, В этом его преимущество по сравнению с гликолями. Максимальная рабочая температура колонкн 40° С. Ион серебра в AgNOs способен как акцептор электронов проявлять донорно-акцепторное взаимодействие с олефинами, ароматическими соединениями и селективно удерживать их в колонке, Наблюдается хорошее разделение цис- и транс-олефинов. Парафины не задерживаются этим адсорбентом и быстро проходят через колонку. [c.283]

    КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ — соединения, кристаллическая решетка которых состоит из комплексных ионов, способных существовать самостоятельно в растворах. Комплексным называется ион, состоящий из атома металла или неметалла в определенном валентном состоянии, связанного с одним или несколькими способными к самостоятельному существованию мoлeкyлa ш или ионами. К- с. образуются в результате присоединения к данному иону (или атому) нейтральных молекул или ионов. К- с., в отличие от двойных солей, в растворах диссоциируют слабо. К- с. могут содержать комплексный анион (напр., Fe ( N)e) ), комплексный катион Ag (NH3)2]+ или вообще К- с. могут не диссоциировать на ионы (напр., [Со (N0 )3 (ЫНз)з]). к. с. широко используются в аналитической химии, при получении золота, серебра, меди, металлов платиновой группы и др., для разделения лантаноидов и актиноидов. К К- с. относятся вещества, играющие важную роль в жизнедеятельности животных и. растений — гемоглобин, хлорофилл, энзимы и др. [c.132]

    Ц. используют при извлечении золота и серебра нз руд методом цианирования. Этот процесс гидрометаллургии осиоиан на растворении металла в цианидных растворах. Ц. используют для гальванического покрытия металлами различных изделий (золочение), в органическом синтезе, иногда для азотирования стали, в аналитической химии, для разделения металлов. Ц. очень токсичны. [c.284]


Смотреть страницы где упоминается термин Серебро разделение: [c.70]    [c.28]    [c.593]    [c.284]    [c.677]    [c.603]    [c.33]    [c.81]    [c.110]    [c.212]   
Химия изотопов Издание 2 (1957) -- [ c.99 ]




ПОИСК







© 2024 chem21.info Реклама на сайте