Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовый анализ отбор пробы

    На нефтеперерабатывающих заводах отбор проб газа из технологических аппаратов производится через специальные патрубки с запорными приспособлениями, позволяющими лаборанту присоединять пробоотборник и отбирать нужное количество газа для анализа. В качестве пробоотборников используют газовые пипетки, газометры и металлические пробоотборники. [c.236]


Рис. 1.4. Пробоотборник (а) для отбора неконденсирующихся газовых проб из вакуума схемы его подключения при отборе пробы (б) и вытеснении пробы на анализ (в) Рис. 1.4. Пробоотборник (а) для отбора неконденсирующихся <a href="/info/40329">газовых проб</a> из <a href="/info/619441">вакуума схемы</a> его подключения при <a href="/info/18573">отборе пробы</a> (б) и вытеснении пробы на анализ (в)
    Успехи в рационализации металлургического производства, в частности выплавки чугуна и переработки медной руды, начались с работ Р. Бунзена по анализу доменных и колошниковых газов. Анализируя колошниковые газы, Бунзен установил, что с ними выносится из печи 50% и более тепла, необходимого для процесса. Почти все приборы и методы для газового анализа он разработал сам. В основу анализа газов Бунзен положил их поглощение и сжигание. В книге Газометрические методы Бунзен описал ход анализа отбор пробы, методику анализа газовой смеси, способы определения различных газов, методы определения плотности пара, поглощение отдельных газов различными жидкостями, диффузию и сжигание газов. [c.220]

    Об экономичности сжигания топлива судят по коэффициент, избытка воздуха. Для его нахождения отбирают пробы тс ночных газов. Места отбора проб рассредотачивают по всем газовому тракту (около горелок, в нескольких местах топки, г. конвекционной шахте, в борове). Анализ проб производят аппаратами Орса. Для более совершенного контроля горения топлива используют электрические газоанализаторы, автоматически определяющие состав топочных газов и дающие показания процентного содержания (по объему) в них СО2 и отдельно СО + Из. Чем больше концентрация СО2 и меньше содержание СО + Нг в газах, тем с меньшим избытком воздуха сжигается топливо и тем лучше и полнее оно сгорает. Наличие некоторого количества несгоревших СО - - На объясняется недостатком воздуха в топливе. Итак, наиболее рациональн(. топливо будет сжигаться при максимальном содержании СО2 и полном отсутствии O-f Но в дымовых газах. [c.105]

    Вследствие того, что корпус 1 тигля имеет продольные пазы 4, отходящие у основания вставки 2, а внутри тигля помещена трубка, снабженная также продольными пазами 5, газовый поток свободно омывает гранулы исследуемого материала. Для отбора проб продуктов регенерации непосредственно из тигля была разработана пробоотборная система автоматического анализа (рис. 3.4). [c.54]


    Примечание. Настоящий стандарт не распространяется на природный и искусственный газ, транспортируемый по магистральным газопроводам или вырабатываемый заводами, который не направляется непосредственно в городскую и поселковую газовую сеть. Отбор проб такого газа и его анализ осуществляется по соглашению между преднриятиями-поставщиками и организациями, осуществляющими эксплуатацию газового хозяйства. [c.58]

    Отбор равновесной газовой фазы на анализ производят двумя способами. Чаще всего некоторое количество газовой фазы выпускают из сосуда с помощью обогреваемого дроссельного вентиля в охлаждаемые ловушки, соединенные с газовыми бюретками для измерения объема выпущенного газа. При отборе пробы газовой фазы на анализ всегда необходимо добиваться полноты конденсации из нее растворенного вещества. С этой целью газовую фазу из сосуда выпускают очень медленно. По привесу ловушек и замеренному объему газа вычисляют количество вещества в единице объема газа при нормальных условиях (0°С, 760 мм рт. ст.) или в условиях опыта. [c.27]

    В сосуды заливаются щелочь, серная кислота, бром и пирогаллол. Раствор пирогаллола применяется для определения содержания кислорода, так как при работе в газ может попасть воздух (при отборе проб либо в процессе). Определение кислорода производится во всех газовых анализах. [c.214]

    Некоторые затруднения могут возникнуть при выборе фазы (жидкой или газовой) СНГ для проведения анализа и единиц измерения физических величин для выражения полученных результатов, так как при этом возможны значительные расхождения. Например, при отборе пробы жидкой фазы пропана с температурой 20 "С и полном испарении ее было определено, что массовая доля воды в общей пробе паров и жидкой фазе составляет 0,014 %, молярная доля ее в общей пробе паров — 0,034 %, объемная доля в жидкой пробе — 0,007 %, а при взятии пробы из паровой фазы, находящейся над жидкой поверхностью пропана при той же температуре, массовая, молярная и объемная доли воды в парах пропана — соответственно 0,15, 0,36 и 0,36 %. [c.81]

    Температурный режим в реакторах (5- 8) изменялся путем нагрева катализатора или изменением мощности источников ИК-из-лучения. Анализ состава газовой смеси до и после реакторов определялся путем отбора проб при установившемся режиме работы реакторов и анализе их на хроматографе. Изменение скоростных характеристик достигалось путем изменения объема газовой смеси и размещением на входе в реактор закручивающего устройства с другими характеристиками (площадью проходного сечения сопел, их числа, угла наклона винтовых каналов, профиля этих каналов). [c.266]

    Для комбинации хроматографического разделения со спектроскопическим анализом пригоден любой газовый хроматограф, позволяющий улавливать вымываемые из колонки вещества и снабженный детектором, не разрушающим пробу. В противном случае отбор проб для снятия спектров следует производить непосредственно на выходе из колонки. [c.195]

    Для точного определения концентрации какого-либо компонента в газовой смеси важно правильно взять пробу для анализа. Если определяемая составная часть воздуха — газ или пар, то его пропускают через поглотительную жидкость, где вещество растворяется. Если определяемое вещество — жидкость, то используют твердые поглотители, в результате чего частицы укрупняются и адсорбируются. Твердые примеси и пыль задерживаются твердыми поглотительными средами (фильтры АФА и др.). Большие объемы газов отбирают калиброванными газометрами. В настоящее время выпускают приборы для автоматического отбора проб. Ниже при- [c.365]

    Многочисленные приспособления и устройства для парофазного дозирования проб можно разделить на две основные группы. Одна из групп использует для установления равновесия сосуды с постоянным объемом, пробы из которых отбираются при переменном давлении. Другая группа устройств предусматривает применение систем с переменным объемом газовой фазы и отбор проб при постоянном давлении. Каждой из этих групп устройств присущи определенные особенности, которые необходимо учитывать при выборе методики подготовки пробы, варианта количественного анализа и способа дозирования газа в хроматограф. [c.27]

    Концентрирование примесей равновесного газа при пневматическом отборе проб. Необходимость промежуточного накопления веществ, содержащихся в газовой фазе сосуда с пробой, до введения в хроматографическую колонку, возникает в случаях, когда прямое дозирование либо не обеспечивает достаточной чувствительности анализа, либо снижает эффективность разделения, как это имеет место при анализе с капиллярной колонкой. Расчеты анализов с однократным отбором пробы и концентрированием не отличаются от описанных выше случаев с известными и неизвестными /(иг. Когда накопление примесей в концентраторе производится многократным отбором газа из сосуда с пробой, масса отобранного вещества за п дозирований может быть вычислена по одной из следующих формул  [c.241]


    Отбор проб газа для анализа по длине реактора позволил вайтв распределение концентрации компонентов газовой смеси в работающем слое катализатора. Установлено, что предельная нагрузка ва катализатор при оптимальной температуре и полном отсутствии гомологов метана в очищенном газе соответствует объемной скорости 1500 ч по природному газу. [c.59]

    Точность и надежность результатов газового анализа во многом зависят от правильности отбора и сохранения пробы газа. Если проба отобрана неправильно, дальнейший анализ бесполезен. Повторить же взятие пробы в одинаковых условиях не всегда возможно. [c.77]

    Выбор сосудов, применяемых для отбора проб, определяется объемом отбираемой пробы, в свою очередь зависящим от применяемого метода газового анализа. В любом случае объем отобранной пробы должен быть достаточным не только для проведения анализа, но и для повторных контрольных определений. [c.80]

    В практике газового анализа иногда для отбора пробы применяют резиновые камеры. Однако следует предостеречь от этого, так как резиновые камеры не пригодны даже для кратковременного хранения газовых смесей и чистых газов. Относительно высокая скорость диффузии отдельных газов и воздуха через резиновую стенку приводит к искажению состава газа. Для подтверждения этого факта был проведен специальный опыт в резиновую камеру отобрали из баллона пробу [c.82]

    Статические методы отличаются способами перёмешивання системы и способами отбора проб на анализ. Перемешивание системы производят электромагнитной мешалкой, помещаемой внутри сосуда равновесия, вращением самого сосуда или цир-куляцонным насосом, забирающим газовую фазу и проталкивающим ее через жидкую. Изучая растворимость жидкостей в газах, удобнее всего использовать для /перемешивания электромагнитную мешалку. [c.27]

    Сходимость теоретических расчетов и данных эксперимента становится еще больше, если в расчеты вводить коэффициент диффузии, определенный отбором пробы и газовым анализом в одном из опытов. [c.92]

    Методика эксперимента. Описанная в гл. 2 методика измерения скорости образования частиц в диффузионном пламени позволяет измерить поток сажевых частиц, т. е. число сажевых частиц, проходящих через данное сечение пламени в 1 сек сек ). Это осуществляется извлечением сажи на различных горизонтальных сечениях пламени и измерением ее выхода и удельной поверхности. Для определения скорости образования частиц измерялся объем зоны сажеобразования, а также температура и концентрация углеводорода в этой зоне. Благодаря излучению от нагретых сажевых частиц зона, заполненная сажевыми частицами, резко отличается от других зон пламени. Это позволило объем зоны сажеобразования измерять визуально при помощи горизонтальной иглы, перемещаемой в специальной координатной головке, с точностью отсчета 0,1 мм. Температура измерялась во внешнем крае зоны сажеобразования при помощи плати-народиевых термопар различного диаметра (от 0,09 до 0,4 мм) с экстраполяцией к нулевому диаметру. Концентрация углеводорода определялась при помощи газового анализа. Отбор проб с помощью охлажденных капилляров диаметром 0,9 мм проводился как с внешней, так и с внутренней стороны зоны сажеобразования. [c.119]

    Характеристика работ. Ведение технологического процесса разделения газовых смесей на их компоненты или фракции абсорбцией газов с отпаркой и ректификацией методом глубокого охлаждения или другими методами. Прием газо-жид-костной смеси на абсорбционно-отпарную колонну. Абсорбция тяжелых компонентов газовой смеси. Отпарка легких компонентов, растворенных в абсорбенте. Охлаждение и подача насыщенного абсорбента в ректификационную колонну. Выделение фракции углеводородов. Обслуживание блока предварительного охлаждения, кабины газоразделения при методе глубокого охлаждения. Регулирование технологического процесса по показаниям контрольно-измерительных приборов и результатам анализов. Отбор проб для контроля производства. Предупреждение, выявление и устранение отклонений от режима и неполадок в работе оборудования. Пуск и остановка оборудования. Учет расхода сырья, полученной продукции. Ведение записей в производственном журнале. Подготовка оборудования к ремонту, прием из ремонта. [c.25]

    Важно помнить, что обеспечение безопасности на всем протяжении ремонта, особенно в цехах, где применяются взрывоопасные и вредные вещества, где по условиям производства на стенках аппаратов и трубопроводов могут образоваться слои нагара или происходит коагуляция продукта, во многом зависит от контроля за состоянием воздушной среды. В таких цехах следует непрерывно контролировать воздух в помещении с помощью газоанализаторов, а при их отсутствии устанавливать периодичность отбора проб воздушной среды на анализ и назначать ответственных лиц за эту операцию. Известны случаи, когда при удалении футеровок или вырезании газовым резаком участков трубопроводов выделяются газы в результате разложения остатков катализатора или по-лимеризованного продукта. Если своевременно не устранить возникшую загазованность, возможны отравления, хлопки и даже взрывы. [c.58]

    В кубик загружают 400—500 г сырья (гудрона, крекинг-остатка) и закрывают крышкой (при завинчивании гаек не следует подтягивать их ключом подряд, а обязательно накрестлежаш ие, чтобы не перекосить крышку кубика). К отводной трубке кубика привинчивают холодильник далее присоединяют предварительно взвешенные приемники, абсорбер и газовые часы. Для отбора пробы газа на анализ параллельно газовым часам (через тройник) присоединяют газометр. Приемник и абсорбер ставят в ледяную баню и записывают начальные показания газовых часов. [c.127]

    По окончании каждого периода подачи сырья, не выключая обогрева реактора, продувают его азотом и выжигают с катализатора образовавшиеся во время реакции смолисто-коксовые от-ложе1ШЯ. Для этого к верхней отводной трубке реактора присоединяют шланг от источника сжатого воздуха, а к холодильнику — газовые часы и параллельно с ними газометр для отбора средней пробы газа. Воздух на регенерацию подают со скоростью 20—30 л/ч. Температура регеиерации составляет 550—600 °С, продолжительность зависит от количества кокса на катализаторе и составляет 2—3 ч. Продукты сгорания анализируют в аппарате типа ВТИ. Ввиду того, что содержание углерода в коксе составляет примерно 95%, основной интерес представляет концентрация в продуктах сгорания СОа и СО. О конце регенерации можно судить по результатам анализа контрольной пробы газа, отбираемой через троЙ1ШК перед газовыми часами. Условная полнота регенерации соответствует содержанию СОд -Ь СО в дымовых газах не более 0,5% (об.). [c.154]

    Работы по газовому каротажу скважин начались при исследованиях в области газовой съемки. Первоначальные опыты заключались в систематическом отборе проб глинистого раствора из скважин и анализе извлеченных из этих проб газов на углеводороды. Эти опыты показали перспективность газокаротажного метода, поскольку при разбуривании нефтеносных и газоносных пластов газопоказания глинистого раствора были повышенными. Дальнейшее развитие и промышленное внедрение метода были связаны с разработкой спе-цнальных газокаротажных станций. [c.94]

    Отводы для измерения статического напора подсоединены к обоим плечам и-образного манометра, во время анализа регулируют скорость отбора. Однако было показано [216], что в точке статического равновесия, особенно при низких скоростях газового потока (менее 6 м/с), скорость отбора не строго изокинетична, поэтому даже небольшое отклонение от статического равновесия приводит к большим ошибкам в отборе проб. При более высоких скоростях ошибка меньше (менее 5% при 15 м/с для показанного типа трубки). Если для отбора проб предполагают использовать трубку нулевого типа, следует предусмотреть ее калибровку в заданной области. [c.83]

    При выборе улавливающего оборудования необходимо учитывать последующую обработку материала. Если требуется определить только его общее количество, можно применять практически любой из приведенных выше методов, поскольку улавливающее устройство можно взвесить до и после отбора пробы, и вычислить чистую массу образца. Если образец должен далее подвергнуться химичеокому анализу, его необходимо собрать с фильтра, либо смывая, либо используя растворитель в качестве фильтрующей среды. Возможно, требуется определить гранулометрический состав частиц, тогда решение проблемы связано с значительными техническими затруднениями. Если для определения размеров частиц будет использован метод жидкостной седиментации, или декантации, тогда фильтр можно прамьгвать седиментационной жидкостью. Однако как для воздушной, так и для жидкостной классификации и седиментации основным остается вопрос о сохранении размеров частиц и апромератов такими, какими они были в газовом потоке. [c.89]

    Изложенный подход интересен еще и потому, что для получения надежной информации о содержании суперэкотоксикантов в атмосфере необходимо отбирать большие объемы проб воздуха для ПАУ - до 1000 м (28], а для диоксинов - до 2000 м [5] Кроме того, для улав швания и накопления паров этих вешеств, а также субмикронных аэрозо.11ьных частиц необходимо применять как селективные твердые сорбенты, так и жидкие реагенты, криогенные ловушки и т.д. Они должны обеспечивать поглощение определяемых компонентов в различном агрегатном состоянии без изменения их свойств, что практически трудно осуществить Применение адсорбентов требует их тщательной очистки от примесей, мешающих анализу Особая тщательность необходима при анализе газов, выбрасываемых термическими установками промышленных предприятий и МСЗ. Для получения достоверных данных температура в месте отбора пробы не должна превьппать 200 °С, поскольку сорбент может взаимодействовать с содержимым горячих газовых выбросов. [c.124]

    Как уже отмечалось выше, фильтры обеспечивают практически количественное улавливание неорганических компонентов, тогда как органические соединения, имеющие значительно большую упругость пара, могут частично теряться. Известно, что в почве, обработанной ХОП, концентрация последних с течением времени понижается не только вследствие химических превращений, но и из-за их испарения, т е, час-тично пестициды переходят в газовую фазу. Для всех случаев определения ХОП опубликованные в литературе данные, полученные при отборе проб только с применением фильтров, следует считать заниженными. Этот вывод справедлив и для ПАУ. В частности, в образцах пыли из воздуха, отобранных летом, по сравнению с зимними пробами содержание бенз(а)-пирена заметно меньше, что объясняется его испарением при более высоких летних температурах (соответственно 2 и 8 нг/м ) [22]. Анализ наиболее важных причин потерь ПАУ, ХОП и ПХБ при пробоот 1оре из атмосферы рассмотрен в работах [5-7,23,24 . [c.172]

    Для титрования отбирают в мерный цилиндр 10 см пробы, фиксируя время отбора. Выход по току щелочи рассчитывают из результатов определения содержания Na l и NaOH по методике, приведенной ниже. Выход по току хлора рассчитывают из результатов газового анализа (см. ниже методику). Время отбора пробы анодного газа фиксиру1рт. [c.172]

    Следует указать на жесткие требования к системе отбора и транспортировки пробы при использовании первого метода и модифицированного второго метода [Л. 2, 3]. Для определения действительной полноты те-пловыделения необходимо производить отбор из газового потока всех составляющих недожога и доставку их к газоанализатору без изменения химического состава компонентов. Двухфазность потока требуют ориентирования газообразного отверстия зонда навстречу вектору скорости и выполнения отсоса со скоростью, равной местной скорости потока, а высокая температура конденсации топливных паров требует применения отсосной системы с температурой стенок не ннже 350—400° С (для дизельного топлива). В камерах со сложной аэродинамической структурой выполнить требование ориентированности зонда не всегда возможно. Значительные технические трудности вызывает создание высокотемпературного отсосного тракта. В высокотемпературной системе отсоса падает эффективность закалки пробы, необходимой для предотвращения догорания. Указанные трудности привели к тому, что методика определения локальной полной величины недожога по газовому анализу получила относительно небольшое распространение в практике исследования процессов горения. [c.286]

    По данным газового анализа для момента отбора проб рассчитывают суммарный выход по току кислородных соединений хлора. Например, собрано 75 см газа из кулонометра (50 см На и 25 см О2) и 55 см из электролизера (40 см Нг и 15 см Ог). Выход по току или, другими словами, количество электричества, затраченное в электролизере на образование водорода, составляет 40-100/50 = 80 %, кислорода 15-100/25 == 60 %. Следовательно, в данном случае на синтез ЫаСЮ и НаСЮз используется 40 %, а на их восстановление — 20 % пропущенного электричества. Отсюда суммарный выход по току кислородных соединений хлора 40 — 20 = 20 %. [c.183]

    В состав. хроматографа Цвет-530 входит дополнительный блок — устройство дозирования газов и обогащения примесей УДО-94. Оно устанавливается на правую стенку аналитического блока. Устройство имеет двоякое назначение 1) дозирование газовых проб, 2) извлечение и накопление примесей из газового потока с последующей десорбцией и дозированием их в аналитическую колонку. Обе функции выполняются краном-дозатором, аналогичным описанному выше, но имеющим дополнительно среднее положение. Кран-дозатор термостатируется в индивидуальном термостате. Термостатирование крана осуществляется по каналу управления температурой испарителя от РТИ-36. Кран переключается вручную со стороны лицевой панели блока БДГ-П7. Извлечение и накопление примесей производится в положении крана Отбор пробы на заполненной соответствующим сорбентом обогатительной колонке, подключаемой к штуцерам блока спереди. При этом колонка опускается в сосуд с хладагентом — жидким азотом или смесью диоксида углерода с ацетоном. После лропуска-ния достаточного количества газа через колонку кран ставится в среднее положение, при котором колонка запирается. Десорбция примесей производится под действием нагревания колонки электропечью, после чего поворотом крана в положение Анализ десорбированные примеси направляются в аналитическую колонку хроматографа. Объем обогатительной колонки 0,8 и 1,0 см . С использованием УДО-94 возможен анализ примесей в газах (например, углеводородов в кислороде или воздухе), концентрация которых в 100 раз ниже предела обнаружения хроматографа при прямом анализе (без обогащения). [c.136]

    Эти трудности могут быть частично преодолены в том случае, когда один из продуктов жидкофазной реакции имеет достаточно высокое давление паров при температуре реакции. Тогда проба может быть отобрана из газовой фазы над раствором, при этом отпадает необходимость ее обработки перед анализом, не требуется устойчивость всех компонентов смеси в ходе анализа, часто удается ликвидировать или уменьшить воздействие агрессивных компонентов. Главный источник возможных ошибок — отставание изменений состава паров над раствором от изменений состава раствора. Возможность применения ГЖХ с отбором проб из газовой фазы определяется, таким образом, кинетикой массопередачн в реагирующей системе через границу раздела фаз. В условиях интенсивного перемешивания жидкости и турбулентного режима движения в газовой фазе скорость массопередачн для большинства органических соединений в идентичных условиях с точностью около 30% одинакова. Это позволяет вывести общие критерии использования отбора проб из газовой фазы. Можно показать, что он пригоден для реакций, время полупревращения которых не ниже 10 мин. Кроме того, необходимо, чтобы вещество, для которого снимается кинетика, обладало достаточным давлением пара. Количество вещества в пробе должно превышать порог чувствительности хроматографа [c.372]

    Наряду с техническими соображениями существенное значение для решения этой проблемы имели ее экономические аспекты. В техническом отношении в первую очередь стремились устранить ошибки, возникающие при отборе пробы из технологического потока, доставке ее в лабораторию и введении в хроматограф. Эти ошибки лабораторного контроля качества продукта выявились после замены классических аналитических методов более точным хроматографическим методом серийного анализа. Из-за экс-нрессности хроматографического анализа возникает необходимость в автоматической подаче пробы в прибор для полного использования возможностей метода. В то время как в классических методах анализа время, затрачиваемое на подачу пробы, составляло лишь часть времени, необходимого для анализа (например, время анализа — 4 час, время отбора и доставки пробы — 30 мин), продолжительность этих операций при применении газовой хроматографии (при лабораторном анализе) во много раз превышает [c.362]

    Протекание реакции образования аддуктов контролировали, измеряя показатель преломления на небольших ппобах реакционной смеси, отбираемых каждые 2—5 мин. Отбор проб осуществляли при помощи пипетки, внизу которой находился небольшой фильтр из спеченного стекла (для предотвращения одновременного отсасывания твердых частиц мочевины и аддуктов). Количество спирта, содержащееся в реакционной смеси, и изменение его во времени измеряли ме--тодом газовой хроматографии с применением внутреннего стандарта. Отбор проб для газохроматографического анализа производили при помощи медицинского шприца. В этих опытах применяли хроматограф с приемниками фрактовап В итальянской фирмы К. Эрба. Применяли две последовательно соединенные колонки первая длиной 2 м была запол-250 [c.250]

    В практике газового анализа получил распространение метод отбора (накапливания) проб после поглощения RO2 и О2 в газоанализаторе типа Орса по приведенной на рис. 4-8 схеме [Л. 1]. При этом в аспиратор отводится остаток пробы, состоящий из азота и несгоревших горючих компонентов, которые анализируют на хроматографе. При таком методе отбора предполагается исключить ошибки, связанные с растворимостью СО2 в запирающей жидкости, и обогатить анализируемую пробу продуктами неполного горения за счет удаления из пробы СО2 и О2. Однако при таком методе отмечается существенное искажение оставшейся пробы газа за счет выделения СО из щелочного раствора пилогаллола. [c.89]

    В большинстве работ по определению ЗОз в дымовых газах авторы стремятся к одновременному определению и ЗОаВ той же пробе, в том же поглотительном растворе, в котором улавливается ЗОз. Такая постановка вопроса нам представляется методически неоправданной. Действительно, известны и широко применяются простые, достаточно чувствительные, специфические методы определения ЗО2 в газовых смесях, пригодные н для анализа дымовых газов [Л. 5-43]. Для определения ЗОз требуются особые условия улавливания и анализа, и стремление во что бы то ни стало в той же пробе находить ЗО2 лишь осложняет задачу. Если по условиям испытаний возникает необходимость в строго одномоментном отборе проб газа для определения и ЗО2 и ЗОз, то можно установить в том же штуцере две газозаборных трубки или, наконец, отбирать параллельные пробы из одной и той же трубки, подсоединив к ней короткий стеклянный тройник. [c.293]

    Кроме общих измерений производились специальные измерения, позволявшие определить итоговые характеристики процесса горения за камерой и за газификационной зоной. Основным методом исследования был принят метод газового анализа. Производились также аэродинамические измерения в характфных сечениях и измерение полей температур в газификационной зоне. В качестве характерных сечений были приняты (см. рис. 2) сечение / — за выходным соплом камеры на расстоянии 50 мм от него сечение II — за поворотом переходной камеры (550 мм от выходного сопла по оси факела) сечение III, точка контроля режима — 1 200 мм от выходного сопла сечение IV—за газификационной зоной, сечение V — в газификационной зоне. Отбор проб газа производился во всех характерных сечениях, а также в дожигательной зоне и в радиально-осевых сечениях газификационной зоны с помощью прямых (сечения II и ///) и Г-образных (сечения /, IV, V и газификационная зона) одно- и многоканальных водоохлаждаемых газозаборных трубок с наружным диаметром до 25 мм (в камере) и 35—42 мм (сечения / и //). Г-образ-ные зонды вводились в объем камеры либо по ее оси через торцевое воздухораспределительное устройство (заборные отверстия в этом случае располагались на [c.205]

    Возросшее внимание к методам газового анализа для исследования процесса горения обусловлено широким развитием хроматографии и появлением автоматических кислородомеров. Метод газового анализа позволяет определить полную (среднюю за время отбора пробы) величину недожога в каждой точке зоны горения, т. е. долю тепла теплотворной способности топлива, содержащуюся в продуктах неполного окисления (На, СО, СН4, СгНб, С2Н4), парах и каплях топлива, саже. [c.284]

    Надслойный газовый анализ является весьма эффективным и универсальным приемом инди-цирования любого слоевого процесса. Во всех наиболее прогрессивных схемах слоевого процесса имеет место поперечное перемещение слоя по отношению к потоку подводимого к нему воздуха (либо чистая поперечная схема питания, либо смешанная, комбинированная). В этом случае надслойный газовый анализ дает основу для построения достаточно четкой схемы выгорания слоя. Иногда опасаются, что при отборе пробы газа возможно ее искажение. за счет попутного дожигания при этой операции. Сомнение это мало основательно. Во-первых, явление дожигания возможно только за счет избытка непрореагировавшего кислорода в самой пробе, что не может относиться к наиболее интересующей нас активной зоне слоя, в которой, как мы убедились, работа слоя характеризуется явным и чаще всего значительным недостатком воздуха. Скорее можно было бы говорить о некотором искажении пробы за счет достижения равновесного состояния газовой смеси, если оно не успело возникнуть к моменту отбора (что вероятно только при очень больших скоростях газо-воздушного потока, не имеющих места в слоевых процессах), например, по тршу равновесной реакции [c.219]

    При замерах температуры или отборе пробы газа для анализа термометры или заборные трубки погружают на глубину, обеспечивающую получение средней температуры газового потока. Эта глубина для большинства конструкций газовоздушных клапанов соответствует 150—180 мм от верха патрубка, входящего в подовый канал. Отсчеты температур следует делать на 10-й минуте после кантовки при одновременном измерении в газовых и воздушных клапанах, обслуживающих данный отопительный простенок. Пробы продуктов горения отбирают также одновременно в патрубках газовых и воздушныз клапанов, обслуживающих данный простенок. [c.194]


Смотреть страницы где упоминается термин Газовый анализ отбор пробы: [c.27]    [c.438]    [c.79]    [c.29]    [c.70]    [c.154]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.732 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.732 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ газовый

Анализ проб,



© 2025 chem21.info Реклама на сайте