Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометрия в капиллярной

    При создании приборов, сочетающих с масс-спектрометром капиллярную колонку, В. Л. Тальрозе и сотрудниками был впервые предложен и осуществлен [66] напуск всего газа в масс-спектрометр. В тех случаях, когда с масс-спектрометром соединяется микроколонка с большим объемом, необходимо применять сепараторы, отделяющие анализируемый компонент от газа-носи-теля. Различные виды этих сепараторов описаны во многих работах [32, 67]. [c.40]


    Относительно простой состав метилзамещенных алканов в нефтях группы позволил провести качественное и количественное определения углеводородов этого типа и в более высококинящих фракциях. В работе [13] сообщалось об определении этих углеводородов методом ГЖХ с использованием высокоэффективных капиллярных колонок. Метилзамещенные алканы большой молекулярной массы определялись методом молекулярной масс-спектрометрии [14]. Ти- [c.49]

    Дальнейшее развитие рассматриваемой области привело к качественно новому подходу в масс-спектрометрической идентификации органических соединений и созданию прибора, представляющего оригинальное сочетание хроматографической капиллярной колонки и масс-спектрометра статического типа [238—244], Для идентификации использовались интенсивности двух пар масс-спектрометрических линий или сумм интенсивностей двух больших участков масс-спектра. Этот новый изящный прием позволил упростить конструкцию масс-спектрометра и чрезвычайно облегчил сам процесс идентификации. [c.129]

    Масс-спектрометрия в газовой хроматографии. Применение масс-спектрометрии для анализа газохроматографических фракций позволяет проводить качественный анализ компонентов разделенной в колонке смеси непрерывно, без выделения выходящ их из колонки веществ. Второе существенное преимущество метода состоит в том, что для масс-спектрометрии вполне достаточны даже те количества вещества, которые получают при анализе на капиллярной колонке. Таким образом, масс-спектрометр может выполнять функцию детектора. Такой метод сочетания хроматографического анализа с масс-спектрометрическим получил название хромато-масс-спектрометрии. [c.195]

    Применение высокоэффективных капиллярных набивных колонн с ГТС дало возможность использовать в качестве детектора масс-спектрометр, позволяющий исследовать различия в структуре мо- [c.22]

    Следует иметь в виду, что в отличие от других разновидностей масс-спектрометрии, где скорость сканирования спектров не имеет принципиального значения, в хромато-масс-спектрометрии она лимитируется временем выхода компонента из колонки (для капиллярных колонок от 2 до 10 с). Этим обусловлен один из двух дополнительных источников искажений масс-спектров при хромато-масс-снектрометрическом анализе 1) за счет изменения количества вещества, поступающего в источник ионов во время выхода хроматографического пика, и 2) за счет наложения на спектр исследуемого соединения сигналов фона неподвижной фазы, особенно ири высоких рабочих температурах. Для борьбы с этими источниками погрешностей спектров уменьшают время сканирования, используют статистическую обработку нескольких спектров, записанных в разных точках хроматографического пика, и работают, по возможности, с максимально термостабильными неподвижными фазами, из которых наиболее перспективны силиконовые эластомеры, либо, при анализе низкокипящих веществ, неорганические или полимерные сорбенты. Статистическая обработка нескольких спектров одного и того же соединения представляет собой несложный, но крайне эффективный прием, с помощью которого легко выявляются сигналы фона и примесей других веществ. Критерием их обнаружения служит плохая воспроизводимость относительных интенсивностей соответствующих им пиков масс-спектра. [c.205]


    Прн помощи масс-спектрометра можно снимать характерные спектрограммы летучих соединений, поэтому его можно использовать для идентификации газохроматографических фракций (если, конечно, они летучи). Стоимость масс-спектрометра сравнительно велика, но он обладает зато-двумя преимуществами 1) качественный анализ выходящего из хроматографической колонки потока газа удается производить непрерывно, без выделения выходящих из колонки веществ 2) для масс-спектрометрии достаточны даже такие малые количества вещества, которые выделяются при капиллярной газовой хроматографии. Поэтому именно в сочетании с капиллярными колонками масс-спектрометрия является наилучшим методом идентификации неизвестных составных частей. [c.265]

    Открытые колонки внутренним диаметром около 1 мм — мы называем их широкими капиллярными колонками — принадлежат по своей разделительной способности к истинным капиллярным колонкам. Они оказались эффективней заполненных колонок обычного диаметра (4—6 мм). Допустимое количество пробы значительно выше, чем у истинных капиллярных колонок. Количество пробы составляет примерно 1 мкл, и можно обойтись без применения делителя потока (ср. разд. 5.3.2). При больших количествах пробы проще применять другие физикохимические методы (как, нанример, масс-спектрометрию) для идентификации хроматографических пиков. Наконец, при больших диаметрах удобнее изготовлять и очищать колонки, а также наносить неподвижную фазу. При умеренных требованиях к эффективности разделения широкие капиллярные колонки можно рассматривать как наиболее удобный тип колонок. [c.336]

    Решена также (по крайней мере для ряда специальных случаев) проблема получения в капиллярах стабильной пленки из полярной неподвижной фазы (ср. рис. 41—43). Таким образом, капиллярную хроматографию, которая прежде использовалась лишь для разделения углеводородов, можно применять для анализа веществ других классов. В некоторых случаях разделенные компоненты выделялись препаративно для дальнейшего исследования (Янак, 1964). В тех случаях, когда это невозможно, капиллярную хроматографию используют в комбинации с масс-спектрометрией. [c.357]

    Первый масс-спектрометр (МС), который был разработан для анализа неорганических веществ, описан в 1950-х гг. в нем в качестве источника ионов использовалась радиочастотная искра. Пределы обнаружения уже тогда были в диапазоне миллионных долей. Впервые использование плазмы в качестве ионного источника описано Греем в 1975 г. Была использована капиллярная дуговая плазма постоянного тока. Пределы обнаружения для этого прибора были уже на уровне менее 10 . Использование индуктивно-связанной плазмы (ИСП) приходится на середину 1980-х гг. Оно дало подъем растущему рынку неорганической масс-спектрометрии. Большое число компаний, производящих приборы для ИСП-МС, является доказательством интереса к этому методу. Неорганическая масс-спектрометрия полезна не только для определения эле-ментов в разнообразных пробах, но и для измерения распространенности природных изотопов, а также в методе изотопного разбавления. [c.132]

    Компоненты образца, разделенные на капиллярной ГХ-колонке, последовательно поступают в ионный источник масс-спектрометра в виде газа или пара чистого вещества (см. гл. 5.2). Ионный источник, квадрупольный фильтр масс и электронный умножитель находятся при низком давлении, обычно около 10 Па. Для вакуумирования используют турбомолекулярный или диффузионный насосы в сочетании с форвакуумным механическим насосом. При работе следует быть особенно осторожным во избежание нарушения или загрязнения вакуума. [c.260]

    Интерфейс прямого соединения. Наиболее простой из всех способов введения хроматографического элюата в масс-спектрометр — это прямое соединение, т. е. есть когда хроматографическая колонка непосредственно вставлена в источник ионов масс-спектрометра через непроницаемый для вакуума фланец. Однако такой способ может быть реализован лишь для капилляров малого диаметра со скоростями потока 1-2 мл/мин. Такая скорость потока еще совместима с современными вакуумными МС-системами и также близка к оптимальным скоростям для полых капиллярных колонок. [c.600]

    Присоединение капиллярных колонок к масс-спектрометру [c.85]

Рис. 5-14. Хроматограмма сложной смеси органических растворителей, полученная методом хромато-масс-спектрометрии с непосредственным введением капиллярной колонки в ионный источник. Хроматографическое разрешение сравнимо с получаемым при использовании пламенно-ионизационного детектора. Рис. 5-14. Хроматограмма <a href="/info/26001">сложной смеси</a> <a href="/info/8337">органических растворителей</a>, полученная <a href="/info/1619619">методом хромато-масс</a>-спектрометрии с <a href="/info/1535935">непосредственным введением</a> <a href="/info/39331">капиллярной колонки</a> в <a href="/info/141306">ионный источник</a>. <a href="/info/429781">Хроматографическое разрешение</a> сравнимо с получаемым при <a href="/info/528985">использовании пламенно</a>-ионизационного детектора.

    Прямое подсоединение к масс-спектрометру капиллярных колонок с внутренним диаметром 0,25—0,75 мм обеспечиваег 100%-ную эффективность, так как весь элюат поступает в прибор в случае необходимости давление можно ограничить с помощью простого делителя потока. Существенным недостатком небольших капиллярных колонок является малая величина пробы однако при увеличении длины колонки возрастает перепад давления по колонке и ухудшается эффективность разделения,, что связано с влиянием вакуумной системы масс-спектрометра. [c.117]

    Прибор состоял из реакционного сосуда объемом 200 мл, присоединенного к масс-спектрометру капиллярным отводом [10, И]. Эта методика позволяла проводить анализы газовой смеси в ходе реакции. Пленки получали в самом сосуде испа рением соответствующих металлов. [c.64]

    В предыдущей главе были рассмотрены некоторые групповые характеристики нефтей. Настоящая глава, как и две следующие, посвящена индивидуальным углеводородам нефтей, т. е. содержит результаты работ, выполненных на молекулярном уровне. Все полученные ниже данные были достигнуты с применением наиболее современных методов исследования, таких, как ГЖХ с использованием капиллярных колонок и программирования температуры и хромато-масс-спектрометрия с компьютерной обработкой и реконструкцией хроматограмм по отдельным характеристическим фрагментным ионам (масс-фрагмептография или масс-хроматография). Широко использовались также спектры ЯМР на ядрах Большинство рассматриваемых далее нефтяных углеводородов было получено также путем встречного синтеза в лаборатории. При этом применялись как обычные методы синтеза, так и каталитический синтез, приводящий к получению хорошо разделяемых смссеп близких по структуре углеводородов, строение которых устанавливалось спектрами ЯМР на ядрах Идентификация любого углеводорода в нефтях считалась доказанной, если пики на хроматограммах (чаще всего использовались две фазы) совпадали, а масс-спектры этого пика и модельного (эталонного) углеводорода были при этом идентичны. [c.34]

    Наилучшим методом определения изопреноидных углеводородов является ГЖХ, проводимая в режиме линейного программирования температуры с применением высокоэффективных капиллярных колонок, или хромато-масс-спектрометрия. Хорошие результаты дает также предварительное концентрирование изопреноидных алканов путем клатратообразования с тиомочевипой. Изопреноидные алканы нефтей весьма различны по своей молекулярной массе и поэтому находятся в различных по температурам выкипания фракциях. Самый низкомолекулярный нефтяной изопреноид — [c.62]

    Изопреноидные углеводороды. Наиэолее важным открытием в области химии и геохимии нефти за лоследние два десятилетия было обнаружение в нефтях алифатических изопреноидных углеводородов. Первые публикации об этом относятся к 1961 — 1962 гг. Затем изопреноидные углеводороды были обнаружены в различных нефтях, бурых углях и сланцах, в современных осадках и в битумоидах дисперсного органического вещества осадочных пород различного возраста. Число публикаций о содержании изопреноидных углеводородов в различных каустобиолитах растет из года в год. Благодаря особому строению, характерному для насыщенной регулярной цепи полиизолрена, эти соединения получили название биологических меток или биологических маркирующих соединений. Действительно, особенности их строения и высокая концентрация в различных нефтях убедительно свидетельствуют в пользу биогенной природы последних. Методами капиллярной газожидкостной хроматографии и химической масс-спектрометрии обнаружены все 25 теоретически возможных углеводородов изсиреноидного строения, каждый из которых определен количественно. [c.39]

    В настоящее время широко [гснользуются также капиллярные колонки. Капиллярные трубки изготовлены из металла нли стекла. Внутренний диаметр капиллярных колонок колеблется в пределах 0,25—0,5 мм, длина от 10 до 200 м. В истинных капиллярных колонках неподвижная фаза находится в виде тонкой пленки на внутренних стенках и не заполняет всего объема. Капиллярные колонки имеют эффективность до 1000 теоретических тарелок на метр длины и в комбииацгиг с масс-спектрометрами позволяют анализировать сложные и многокомпонентные смеси. Нижний температурный предел работы всех колонок ограничивается температурой плавления жидкой фазы. Верхний температурный предел работы колонок в основном ограничивается летучестью жидкой фазы и чувствительностью детектора. Вновь приготовленную колонку обычно необходимо выдержать в течение суток в потоке газа-носителя при температуре, которая на 25° выше максимальной рабочей температуры стационарной фазы. [c.299]

    Были описаны методы идентификации ацеталей в сложных смесях, содержащих эфиры, альдегиды, кетоны и другие соединения [231]. Поток нз капиллярной колонки поступал непосредственно на время-пролетный масс-спектрометр. Один из коллекторов прибора настраивался на ионы с массой 15, которые использовались для регистрации хроматограммы. На втором коллекторе отбирались все ионы в диапазоне 24— 200 ат. ед. массы полный спектр регистрировался на осцилло- графе в течение 6 сек. При хроматографическом разделении земляничного масла с помощью этой методики удалось идентифицировать 150 компонентов. Аналогичным образом исследовалась сложная смесь углеводородов [232]. [c.128]

    В последние годы в хромато-масс-спектрометрии ш poкo применяются кварцевые капиллярные колонки с привитыми силиконовыми неподвижными фазами. Их использование позволяет анализировать крайне труднолетучие и термически нестабильные соединения, например дипептиды (после получения производных по амино- и карбоксильным группам), олигосахариды (также после соответствующей дериватизации), токсичные полихлорированные ароматические углеводороды и т. д. Кроме того, подобные фазы устойчивы к действию больших количеств (до 500 мкл) агрессивных растворителей, в том числе воды, что существенно расширяет возможности хромато-масс-спектрометрии при анализе следов органических соединений. [c.206]

    Создание капиллярной газовой хроматографии позволило значительно увеличить эффективность газохроматографического метода. Впервые разделение-на капиллярной колонке осуп ествлеио Голеем в 1956 г. Современный газовый хроматограф с капиллярной колонкой часто сочетается с масс-спектрометром, применяемым в качестве детектирующего устройства. [c.583]

    Для качественного анализа, проводимого на капиллярных колонках, наиболее пригодна комбинация капиллярной хроматографии с масс-спектро-метрией. В качестве детектора используют масс-спектрометр, фиксирующий массы молекул непрерывно поступающего вещества. В соответствии с аналитической проблемой селективность этого детектора можно изменить при помощи выбора определенного массового числа (Хеннеберг и Шомбург, [c.356]

    Флюидиая К. X. основана на использовании в качестве подвижной фазы СО2, N30 и др. газов, сжатых до сверхкритич. состояния (флюиды), и полых капиллярных колонок с внутр. диаметром 25-100 мкм. Растворяющая способность флюида сопоставима с растворяющей способностью подвижной фазы в жидкостной хроматографии, а значение коэф. диффузии растворенных во флюиде в-в на 2-3 порядка выше, чем в жидкостной хроматографии. Это св-во флюида в сочетании с относительно низкой его вязкостью позволяет увеличить эффективность разделения. При разделении многокомпонентных смесей в-в коэф. распределения и время элюирования регулируют программированием плотности флюида. Для детектирования применяют универсальный к орг. в-вам пламенно-ионизац. детектор, оптич. спектральный детектор или масс-спектрометр. [c.309]

    Наиб, удобный для Х.-м.-с. газ-носитель - гелий. Эффективность работы сепаратора, т. е. отношение кол-ва орг. в-ва в газовом потоке, выходящем из колонки, к его кол-ву, поступающеьлу в масс-спектрометр, в значит, степени зависит от расхода газа-носителя, попадающего в сепаратор. При оптимальном расходе 20-30 мл/мин удаляется до 90% газа-носителя, а в масс-спектрометр поступает более 60% анализируемого в-ва. Такой расход газа-носителя типичен для насадочных колонок. В случае использования капиллярной хроматофафич. колонки расход газа-носителя не превышает 2-3 wi/мин, поэтому на ее выходе в газовый поток добавляют дополнит, кол-во газа-носителя, чтобы скорость потока, поступающего в мол. сепаратор, достигла 2б-30 мл/мин. Тем самым обеспечивается наилучшая эффективность мол. сепаратора. Гибкие кварцевые капиллярные колонки могут вводиться непосредственно в ионный источник. В этом случае ионный источник должен бьггь обеспечен мощной откачивающей системой, поддерживающей высокий вакуум. [c.318]

    Масс-спектрометрический детектор (МСД). Прямое со тание масс-спектрометрии с колонкой возможно в капиллярной ГХ благодари низким скоростям потока газа-носителя (от 1 до 25 мл/мин). В случае набивных колонок поток газа-носителя должен бь1ть разделен с помощью делителя потока. [c.253]

    Стыковку капиллярного хроматографа и масс-спектрометра в режиме on-line можно осуществить двумя способами напрямую или посредством открытого ввода с делителем потока. [c.279]

    Поток газа, проходящий через капиллярную хроматографическую колонку диаметром 0,25 мм, соответствует допустимой нагрузке на вакуумную систему масс-спектрометра. Поскольку компоненты, элюирующиеся из колонки, уже находятся в парообразном состоянии, возможен непосредственный ввод элю-ата в ионный источник масс-спектрометра, работающий в режиме электронного удара. Хотя такое прямое сочетание используется довольно часто, этот подход обладает рядом недостатков. Выход колонки находится в условиях высокого вакуума, и это изменяет времена удерживания относительно данных, полученных при использовании других ГХ-детекторов, таких, как пламенноионизационный. Более того, скорость потока газа к ионному источнику изменяется в ходе температурной программы ГХ-анализа, что может влиять на параметры ионного источника. И наконец, попадание в масс-спектрометр всего количества вещества, введенного в колонку, приводит к резкому скачку давления в системе. При этом возможны негативные эффекты разъюстировки [c.279]

    В разд. 9.4 были описаны масс-спектрометры различных типов. Ограничимся характеристикой особенностей, относящихся к газовой хромато-масс-спектрометрии, таких, как чувствительность, линейный динамический диапазон, разрешение, диапазон масс и скорость сканирования. Скорость сканирования масс-спектрометра—это время, необходимое для сканирования одного порядка на шкале масс (например, от т/г 50 до 500). В газовой хромато-масс-спектрометрии с капиллярными колонками благодаря небольшой ширине пика необходима высокая скорость сканирования (< 1 с/порядок), чтобы получить по крайней мере 3-5 спектров для пика в режиме полного сканирования. Ограниченный диапазон масс некоторых масс-анализаторов не является проблемой, поскольку молекулярная масса соединений, поддающихся газохроматографическому разделению, обычно меньше 600. Различные типы масс-спектрометров значительно различаются разрешающей способностью. Разрешение Д —мера способности масс-спектрометра разрешать два пика иона с различными т/г, она определяется как К = т/Ат. Способность масс-спектрометра разрешать два пика с различающимися на единицу массами называется единичным массовым разрешением. С едичичным массовым разрешением обычно работают квадрупольные приборы. Приборы же с двойной фокусировкой достигают высокого массового разрешения (Д > 10 ООО). Это важно, поскольку из точной массы иона фрагмента часто можно непосредственно получить элементный состав. Для разделения ионов С5Н11О2 и 4HllN20 (табл. 14.2-1) с Дт = 0,01123 требуется разрешение по крайней мере К = 9172. [c.603]

    В типичном масс-спектрометре проба вводится в вакуумную камеру в виде паров или газа. Следовательно, твердые вещества или очень высококипящие жидкости (с температурой кипения > 250°С), как правило, не могут быть подвергнуты анализу с использованием обычного масс-спектрометра. Давление внутри масс-спектрометра приблизительно в миллиард раз ниже нормального атмосферного давления, таким образом непрерывный ввод пробы при оп-1те-анализе представляет достаточно сложную техническую задачу. Для того чтобы поддержать низкое давление в масс-спектрометре без перегрузки его вакуумных насосов, необходимо использовать специальный ограничитель потока. Существует четыре способа подключения масс-спектрометра к котро-лируемым технологическим линиям капиллярный ввод, молекулярное натекание, пористая прокладка и мембранное соединение. После того как проба введена в масс-спектрометр, она ионизируется в ионизационной камере. Наиболее общий метод ионизации — ионизащя электронным ударом. Следующей стадией за ионизацией молекул пробы является разделение заряженных частиц в соответствии с их массой. Эта стадия в приборе выполняется в масс-анализаторе. Различают два основных типа масс-анализаторов, используемых в масс-спектрометрах для промышленного анализа магнитные и квадрупольные масс-анализаторы [16.4-32,16.4-33]. Магнитные анализаторы обычно дают наиболее стабильные показания. Масс-спектрометры, способные проводить измерения ионов с массой более чем 200 атомных единиц массы (а.е.м.), обычно имеют квадрупольные анализаторы, поскольку они менее дорогие и более компактные по сравнению с магнитными анализаторами. [c.661]

Рис. 5-9. Схема масс-спектрометра с ионным источником электронного удара, квадрупольным анализатором масс, электронным умножителем непрерывного динодного типа. Конец капиллярной колонки помещен непосредственно в ионный источник, как это сделано в МС-детекторах фирмы Пе у1е11-Раскаг(1 моделей 5970 и 5971. Рис. 5-9. <a href="/info/679973">Схема масс-спектрометра</a> с <a href="/info/428574">ионным источником электронного</a> удара, <a href="/info/190236">квадрупольным анализатором масс</a>, <a href="/info/141616">электронным умножителем</a> непрерывного динодного типа. <a href="/info/1518451">Конец капиллярной</a> колонки помещен непосредственно в <a href="/info/141306">ионный источник</a>, как это сделано в МС-детекторах фирмы Пе у1е11-Раскаг(1 моделей 5970 и 5971.
    До появления кварцевых капиллярных колонок стыковка газового хроматографа с масс-спектрометром представляла собой сложную задачу из-за различия давлений, которые требовались для успешного функциоиироваиия каждого из приборов [II]. Было разработано большое количество устройств, позволяющих переходить от высокого давления на выходе из насадочной колонки хроматографа к низкому давлению (вакууму), которое требовалось в масс-спектрометре. Предложенные устройства обеспечивали минимальные потери анализируемого вещества, вызванные наличием температурных градиентов (холодных зон) или плохим разделением молекул. Такие устройства были названы молекулярными сепараторами, поскольку в иих с высокой эффективностью удаляется газ-носитель — гелий. Присутствие его нежелательно, так как именно газ-носитель вносит наибольший вклад в создание высокого давления на выходе из колонки. [c.84]

    В качестве ГХ — МС интерфейсов использовали главным образом 1) мембраны из силиконовой резины, 2) эффузиоииые трубки и 3) молекулярный струйный сепаратор [11, 12]. В настоящее время чаще всего применяется молекулярный струйный сепаратор (рис. 5-11). Первое такое устройство было выполнено Райхеджем из нержавеющей стали. Впоследствии молекулярные струйные сепараторы стали изготовлять из стекла. Сепараторы из стекла имеют большую химическую инертность, иронускную способность и чувствительность [11-13, 15]. Принцип действия устройства основан на законе сохранения количества движения. В струйном сепараторе молекулы гелия отделяются от более тяжелых молекул анализируемой смеси. Выходное отверстие сопла имеет очень маленький диаметр, поэтому скорость газового потока, выходящего из колонки ГХ, близка к сверхзвуковой. Анализируемое вещество, обладающее большим количеством движения, проходит расстояние между двумя соплами, а более легкие молекулы гелия отклоняются от прямолинейного движения и откачиваются иасосом. Струйные сепараторы успешно используются для стыковки насадочных и капиллярных кварцевых колонок большого диаметра (> 0,5 мм) с масс-спектрометром. [c.84]

    Кварцевые капиллярные колонки [17] сочетают высокута эффективность разделения и низкую объемную скорость газового потока, выходящего из колонки, что необходимо для стыковки с масс-спектрометром. В настоящее время кварцевые колонки подсоединяют к масс-спектрометру либо напрямую, либо посредством открытого ввода с делителем потока. При использовании открытого ввода с делителем потока [18-21] в масс-спектрометр попадает определенная часть потока. Вакуум в газохроматографической колонке не создается, и ее разрешающая способность остается неизменной. Это устройство было разработано специально для стеклянных капиллярных колонок с диаметром, не превышающим 0,35 мм. Используя непосредственное подсоединение, можно создать вакуум в узле ввода пробы, однако при этом в масс-спектрометр попадает большое количество воздз ха, что снижает чувствительность прибора. Поэтому при использовании кварцевых капиллярных колонок с внутренним диаметром, превышающим 0,32 мм, рекомендуется открытый ввод с делением потока. [c.85]

Рис. 5-12. Схема открытого ввода с делителем потока для подсоединения капиллярных колонок большого диаметра к масс-спектрометрам с низкопроизводительной системой создания вакуума. Рис. 5-12. <a href="/info/699948">Схема открытого</a> ввода с <a href="/info/39602">делителем потока</a> для <a href="/info/1020943">подсоединения капиллярных колонок</a> <a href="/info/328302">большого диаметра</a> к <a href="/info/6125">масс-спектрометрам</a> с низкопроизводительной <a href="/info/147814">системой создания</a> вакуума.

Смотреть страницы где упоминается термин Масс-спектрометрия в капиллярной: [c.250]    [c.263]    [c.23]    [c.282]    [c.298]    [c.393]    [c.747]    [c.10]    [c.122]    [c.220]    [c.260]    [c.119]    [c.69]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 1 (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Капиллярная

Капиллярность

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры



© 2025 chem21.info Реклама на сайте