Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы восстановления гидрирования

    В работе [90] на примере гидрирования циклопропана исследована удельная каталитическая активность ряда нанесенных и ненанесенных металлических катализаторов и определена активная поверхность металла. В качестве катализаторов использовали Ni, Со, Мо, Rh, Pt и Pd, нанесенные на А Оа, кизельгур и активированный уголь, а также Pt- и Pd-черни. Активность и поверхность катализаторов определяли методом импульсного отравления поверхностных активных центров оксидом углерода. Установлено, что наиболее активными и селективными являются Ni-катализаторы, восстановленные при 360 °С. Показано, что в присутствии Ni, Со, Мо и Rh проходит как гидрогенолиз циклопропана, так и его гидрокрекинг на Pt и Pd крекинг не протекает. По общей активности исследованные катализаторы располагаются в ряд Rh > Ni > Pd > Pt > Мо > Со, по активности в реакции гидрокрекинга получен иной ряд Ni > Со > Мо > Rh > Pt, Pd. Эти результаты показывают, что примененный метод с использованием гидрогенолиза циклопропана в качестве модельной реакции дает возможность быстро и достаточно точно определять удельную активность металлсодержащих катализаторов и поверхность металла. Полученные результаты хорошо согласуются с данными, найденными классическими методами. [c.104]


    Катализ первого класса, сокращенно называемый электронным катализом , осуществляется на твердых телах — проводниках электрического тока (металлах и полупроводниках). Эти тела обладают рядом общих физико-химических свойств, связанных с наличием в них подвижных электронов. Для тел-проводников характерна электропроводность, окраска (т. е. заметное поглощение света в видимой области спектра), термоэлектронная эмиссия и внешний фотоэффект. К этому классу относятся каталитические реакции окисления, восстановления, гидрирования, дегидрирования, объединяемые в тип гемолитических. Все они сопровождаются разделением электронов в электронных парах молекул. Общий механизм действия катализатора сводится при этом к облегчению электронных переходов в реагирующих молекулах за счет собственных электронов катализатора. [c.13]

    Для восстановления N10 переносят в фарфоровую лодочку и помещают ее в середину реакционной трубки. Один конец трубки присоединяют к аппарату Киппа, в котором получают водород, так чтобы водород поступал в трубку через осушитель— пентаоксид фосфора. Другой ко нец трубки соединяют со стеклянной трубочкой, имеющей шарообразное расширение и служащей приемником чувствительного к действию воздуха металлического порошка. Трубочку с никелем можно запаять. Для нагревания применяют трубчатые электропечи с терморегулятором. Перед нагреванием реакционной трубки через установку в течение нескольких минут пропускают поток сухого Нг для вытеснения из нее воздуха. Для предотвращения взрыва проверяют наличие свободного кислорода в установке пробой на гремучий газ. Затем проводят нагревание в трубчатой печи. №0 восстанавливают в токе сухого водорода при 300—400 °С. Через 15 ч нагревание прекращают и установке дают охладиться в потоке водорода. Получаемый таким способом порошкообразный никель применяется в качестве катализатора. при гидрировании. [c.573]

    Катализаторы — комплексные соединения переходных металлов. Реакции восстановления, гидрирования, окисления, гидратации ненасыщенных соединений, изомеризации, полимеризации и многие другие в промышленных условиях осуществляются в растворах в присутствии комплексных катализаторов. По типу применяемых катализаторов эти процессы иногда объединяют в группу координационного катализа. В качестве катализаторов в таких процессах применяются комплексные соединения катионов переходных металлов. Сюда относятся металлы УП1 группы Ре, Со, N1, Ни, КЬ, Рс1, Оз, 1г, Р1, а также Си, Ag, Hg, Сг и Мп. Сущность каталитического действия заключается в том, что ионы металлов с -электронной конфигурацией с/ —могут взаимодействовать с другими молекулами, выступая как акцепторы электронов, принимая электроны на свободные /-орбитали, и как доноры электронов. На рис. 200 показано взаимодействие ВЗМО этилена со свободной -орбиталью иона металла (а) и одновременное взаимодействие заполненной -орбитали металла с НСМО этилена (б). Донорно-акцепторное взаимодействие, обусловленное переходом электронов с я-орбитали этилена, уменьшает электронную плотность между атомами углерода и, следовательно, уменьшает энергию связи С=С. Взаимодействие, обусловленное переходами электронов с -орбитали иона металла на разрыхляющую орбиталь молекулы этилена, приводит к ослаблению связей С=С и С—Н. [c.626]


    Реакции восстановления, гидрирования, окисления, изомеризации, полимеризации в промышленных условиях осуществляются в растворах в присутствии катализаторов — комплексных соединений (ионов металлов УГИ группы Ре, Со, N1, Ни, а также Си, Ад, Иц, Сг, Мп). Сущность каталитического действия заключается в том, что ионы металлов выступают как доноры или акцепторы электронов. Химическое взаимодействие между реагирующими молекулами, координированными около центрального иона металла, облегчается благодаря поляризации молекул и понижению энергии отдельных связей. Центральный ион металла является мостиком, облегчающим электронные переходы между реагирующими молекулами. [c.295]

    При восстановлении нитробензола, последний из резервуара проходит через экстрактор, где извлекает анилин из воды, образующейся при реакции, и попадает в испаритель. Пары нитробензола смешиваются с водородом и проходят в контактный аппарат, содержащий медный катализатор. Температура гидрирования 200—300°С и давление 0,15—0,20 МПа, Для отвода тепла реакции применяется большой избыток водорода — 50 моль на 1 моль нитробензола, возвращаемого в процесс после отделения продуктов реакции. Выход анилина почти количественный. Парофазное гидрирование эффективно в случаях, когда исходное нитросоединение достаточно устойчиво при высокой температуре, например в случае получения толуидинов из нитротолуолов. [c.302]

    Типичные К. при гетерогенном катализе окисл.-восстановит. р-ций (окисления и восстановления, гидрирования и дегидрирования, разложения нестойких кислородсодержащих соед. и др.) — переходные металлы, их соед. и др. в-ва, способные отдавать и принимать электроны при взаимод. с реагентами (см., напр.. Палладиевые катализаторы, Ванадиевые катализаторы). В гомогенном катализе аналогичные р-ции протекают с участием комплексов переходных металлов (см. Комплексные катализаторы). Их каталитич. св-ва объясняются склонностью к образованию координац. связи с реагентами. Высокоактивные К. в кислотно-основных р-циях (крекинга, гидратации и дегидратации, гидролиза, нек-рых р-цйй полимеризации и изомеризации) — твердые и жидкие в-ва, способные отщеплять или присоединять протон при взаимод. с реагентами. При катализе апротонными к-тами взаимод. осуществляется через своб. пару электронов реагента (см. Кислотные катализаторы, Основные катализаторы). [c.248]

    Согласно зтой классификации, катализаторами реакций гидрирования, восстановления, окисления и т.п. процессов являются переходные металлы и их соединения, т.е. они включают элементы переменной валентности, изменяющейся в ходе протекания каталитического акта. Отсюда и возникло название данной группы реакций как окислительно-восстановительных. [c.3]

    Катализаторами жидкофазного гидрирования являются в технике металлический никель, в лабораторной практике — также платина и палладий. Никелевые катализаторы получают восстановлением водородом окислов никеля, образующихся при прокаливании нитрата, карбоната или оксалата никеля. Активный и стойкий никелевый катализатор может быть получен нагреванием формиата никеля в смеси парафина и парафинового масла до 250 °С с последующей промывкой спиртом и петролейным эфиром. [c.122]

    Можно выделить три метода восстановления функциональных групп I) гидрирование молекулярным водородом с использованием гетерогенных или гомогенных катализаторов 2) гидрирование путем переноса водорода с использованием в качестве донора водорода органических соединений 3) селективное восстановление с применением комбинированных катализаторов типа переходный металл — гидрид металла. [c.250]

    Применение гомогенных катализаторов для гидрирования оксимов, иминов и нитрозосоединений изучено мало, однако можно думать, что рутениевый катализатор (11) [123] можно использовать для восстановления нитрозосоединений и оксимов. а комплекс (60) [142]—для восстановления иминов (см. выше). [c.308]

    Максимальная aктивнo tь катализатора прн гидрировании бензола наблюдается при содержании никеля, равном 22%, а в реакции восстановления ацетона — равном 11%. Это указывает на избирательность в отношении состава катализатора и на то, что оба рассмотренных процесса идут, по-видимому, на различных активных центрах, [c.300]

    Чистое (селективное) гидрирование начинает все шире использоваться и для получения других индивидуальных соединений. Можно упомянуть селективное гидрирование циклонентадиена в ци-клопентен и гидрирование других диенов в моноолефины восстановление кислородсодержащих соединений на сульфидных катализаторах и гидрирование альдегидов в спирты [c.96]

    Проведение реакций рафинирования путем гидрирования может преследовать различные цели в зависимости от характера сырья. Бензины или легкое масло коксовых печей обрабатывают для удаления смолообразователей, т. е. легко полимеризующихся олефинов и соединений серы при этом следует избегать гидрирования ароматических соединений. При гидрогенизации керосинов и дизельного топлива основной задачей являются насыщение ароматики, приводящее к повышению теплотворной способности, и удаление серы. Повышения качества рециркулирующих масел каталитического крекинга достигают насыщением ароматики и восстановлением соединений азота, снижающих активность катализаторов крекинга. Такое же понижение активности наблюдается для катализаторов деструктивного гидрирования в присутствии соединений азота. [c.284]


    Металлические никелевые, кобальтовые, медные и другие катализаторы приготавливают восстановленим солей (хлоридов, ацетатов и др.), оксидов, гидроксидов или основных карбонатов, термическим разложением солей (нитратов, карбонатов, формиатов, оксалатов и т. п.) обычно с последующим восстановлением. Термическое разложение органических солей, например формиатов, сопровождается восстановлением и приводит непосредственно к получению металлов. Эффективный катализатор для гидрирования под давлением (катализатор Сабатье) получают разложением формиата никеля в токе диоксида углерода при температуре 200-250 °С  [c.23]

    Наиболее часто применяются при гидрировании бензоидных циклов никелевые катализаторы. Восстановление на них протекает в жестких условиях при температуре 100-200 °С и давлении 100-300 атм. Никель, нанесенный на носитель, как катализатор высокотемпературного гидрирования ароматических соединений по эффективности сопоставим с никелем Ренея, а в отдельных случаях, возможно, даже несколько превосходит его, как следует из приведенных ниже данных по восстановлению бензола в циклогексан  [c.50]

    Для восстановления альдегидов до спиртов применяют обычные гидрирующие катализаторы Условия гидрирования в известной степени зависят от типа применяемого катализатора. Б частности, в качестве катализатора гидрирования применяли кобальт [29], хромит меди [29], никель ]2] и сульфиды металлов групп VI и VIII периодической системы [61]. [c.264]

    Промышленные катализаторы жидкофазного гидрирования — металлический никель илп никель Репея в лабораторной практике, кроме того, применяют платину и палладий. Катализаторами газофазного гидрирования являются активированные сплавы никеля, алюминия, вольфрама, а также медь, нанесенная на оксид кремния. Наиболее селективный катализатор восстановления ароматических нитросоединений в амины—медь в ес присутствии проходит восстановление только нитрогруппы, без гидрирования ароматического ядра. [c.82]

    Освовные механизмы катализа. Каталитич. процессы, обусловленные переносом электрона (окисление, восстановление, гидрирование, дегидрирование, разложение нестойких кислородсодержащих соединений), относят к окислительно-восстановительному катализу. Типичными катализаторами для них являются переходные металлы и их соед. простые оксиды (У О,, МпОз, М0О3, Сг Оз), шпинели (Ре О , СиСг О , сульфиды (МоЗз, WS2) и др. для р-ций в р-рах-соли и комплексные соед. переходных металлов. Высокая каталитич. активность этих в-в объясняется тем, что атомы переходных металлов могут существовать в разл. степенях окисления, изменение к-рых не требует больших энергетич. затрат. В результате перенос электрона от реагента к катализатору осуществляется легче, чем в отсутствие катализатора от восстановителя к окислителю. При одноэлеюронном переходе образуются своб. радикалы, далее участвующие в р-ции. Напр., при переходе одного электрона от активного центра молибденового катализатора к кислороду образуется ион-радикал О , участвующий далее в каталитич. окислении (Мо " -(-63-> Мо " -(-+ О Оз + С Н - продукт). Существует окислит.-восста-иовит. К, с многоэлектронным механизмом, при к-ром не образуются своб. радикалы в качестве промежут. частиц. Многоэлектронные переходы между катализатором и реагирующими молекулами возможны, если в активный центр катализатора входят неск. атомов переходного металла. Напр., в разложении Н,Оз активны комплексные соед., содержащие 2 иона Ре " в восстановлении мол. азота до N2 Н4-комплексные соед., содержащие 2 или более ионов 663 [c.336]

    Катализаторы гетерогенного гидрирования-обычно многокомпонентные каталитич. системы на основе платиновых и др. переходных металлов, а также их оксидов или сульфидов. Нанесенные оксидные К. г., применяемые обычно для гидрирования в газовой фазе, получают осаждением гидроксидов металлов из р-ров их солей на пористый носитель или пропиткой последнего р-ром соли активного компонента, затем следует сушка и восстановление. Пористые К., применяемые обычно для гидрирования в жидкой фазе, готовят выщелачиванием сплавов, содержащих активный в р-цин гидрирования металл, напр. Ni, Со, Fe, u, Pt, Re (см. Катализаторы). Наиб, распрюстранение такие К. г. получили в нефтеперерабатывающей пром-сти в процессах гидроочистки и гидрообессеривания нефтяных фракций и остатков, гидрокрекинга, каталитического риформинга. Более подробно см. Катализаторы процессов нефтепереработки. [c.339]

    В табл. 1.30 и 1.31 суммированы литературные данные по гидрированию бутадиена-1,3 и пентадиена-1,3 на металлических, оксидных и металлокомплексных катализаторах. При обсуждении этих данных следует учитывать, что соотношение продуктов при гидрировании диенового углеводорода зависит не только от типа применяемого катализатора, но и от условий проведения реакции (температуры, природы растворителя, если реакция осуществляется в жидкой фазе). Условия приготовления катализатора также сказываются иногда на соотношении продуктов реакции. Так, При гидрировании бутадигна-1.3 на Со-катализаторе, восстановленном при температурах ниже 300°С, отношение бутен-1/бутен-2 составляет 2,33. В то же время на данном катализаторе, восстановленном при температурах выше 400°С, это отношение равно 0,51. В случае металлических катализаторов кислотные свойства носителя также влияют на состав образующихся Продуктов реакцни [107]. Несмотря на это для выявления характерных закономерностей, присущих тому или иному типу катализаторов, мы будем пренебрегать влиянием некоторых факторов на соотношение продуктов реакции. [c.65]

    В. Векслер и В. А. Зеленцова 81] определяли молибден в катализаторах для гидрирования, применяя для его восстановления иодид калия и сульфит натрия. [c.217]

    ЛИНДЛАРА КАТАЛИЗАТОР (II, 136—137 VI, 138) Восстановление. Гидрирование 3-дамасценона (1) над катализатором Линдлара дает с почти количественным выходом р-дамаскон (2). Гидрирование над палладием на угле приводит к образованию смеси продуктов [1]. [c.268]

    При попытке получения из диацетата фурфурола (VI) тетрагидрофур-фурола (для его получения в настоящее время не существует вполне удовлетворительных методов) Бурдик и Адкинс [130] столкнулись с реакциями, аналогичными описанным выше с катализатором никель на кизельгуре при 160° и 100—120 атм. Ими же было установлено, что скелетный никелевый катализатор является активным катализатором при низких температурах, особенно по отношению к восстановлению С = С-связей, и что как скелетный никелевый катализатор, так и никель на кизельгуре являются прекрасными катализаторами для гидрирования С = С-связей в боковой цепи фуранового кольца. Скелетный никелевый катализатор является наилучшим катализатором для расщепления С—С-связей в первичных спиртах  [c.127]

    Комплексные соли диоксипроизводных антрахинонов с металлами группы платины являются эффективными катализаторами реакций гидрирования. Так, катализаторы, содержащие ализарин или хинизарин и PtHalz или PdHab, предложены [102] для селективного восстановления JM-нитробензола в л<-нитроанилин, используемый в фармацевтической и лакокрасочной промышленности. Аналогичные катализаторы, содержащие ализарин-З-сульфонат, эффективны в реакциях гидрогени-зационного аминирования альдегидов нитробензолом, приводящие к жирноароматическим аминам, применяемым в производстве биологически активных веществ [103]. [c.43]

    Типичным примером восстановления простого алкена на гетерогенном катализаторе является гидрирование циклододе-цена на оксиде платины. Важную роль играет способ приготовления этого катализатора очень активная форма получаетсзг при нагревании хлороплатиновой кислоты с расплавленным нитратом натрия [39]. [c.265]

    Нитрозосоединения и оксимы являются интермедиатами при гидрировании нитросоединений аналогично, в результате частичного гидрирования нитрилов образуются амины. Эти промежуточные соединения редко выделяют в чистом виде, поскольку они легко гидрируются в соответствующие амины. По этой причине катализаторы восстановления нитро- и цианогрупп могут одновременно служить катализаторами восстановления оксимов, иминов и нитрозосоединений. Обычно используют никель Ренея, палладий или платину на носителе. При восстановлении нитро- и цианогрупп трудности возникают в тех случаях, когда частично восстановленные аналоги подвергаются дальнейшему гидрированию. Так, восстановление иминов и оксимов часто приводит к образованию вторичных аминов, и для получения первичных аминов с высокими выходами необходимо применять специальные меры. Как и в ранее описанных случаях, хорошими каталитическими системами являются никель Ренея — аммиак или уксусный ангидрид, а также родий на угле — аммиак. Как отмечалось выше, гидрирование нитросоединений часто протекает экзотермично то же относится и к гидрированию оксимов и нитрозосоединений. При применении никеля Ренея при повышенных температурах и давлениях. (70—100°С 70—100 атм), обеспечивающих высокие [c.307]

    Каталитическое гидрирование. Пиридины легко восстанавливаются до пиперидинов (например, Нг/никель Ренея, 120°). В присутствии благородных металлов в качестве катализаторов восстановление происходит гладко (при 20°), если основания используются в виде хлоргидратов свободные основания могут отравлять катализатор. Пиридиновое кольцо восстанавливается легче, чем бензольное так, 2-фенилпиридин, хинолин, изохинолин и акридин С бразуют соединения (406), (407), (411) и (412) -пот-ветственно. Исчерпывающее гидрирование этих соединений лронс-ходит с большим трудом. [c.71]


Смотреть страницы где упоминается термин Катализаторы восстановления гидрирования : [c.21]    [c.50]    [c.138]    [c.9]    [c.406]    [c.310]    [c.311]    [c.320]    [c.336]    [c.495]    [c.497]    [c.81]    [c.502]    [c.29]    [c.106]    [c.287]    [c.102]    [c.102]    [c.287]    [c.587]   
Химия и технология химико-фармацевтических препаратов (1954) -- [ c.98 , c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрирование Восстановление



© 2024 chem21.info Реклама на сайте