Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные соединения окисления

    Общая концентрация комплексных соединений окисленной формы, включая аквакомплекс, константу устойчивости которого принимаем равной I, может быть выражено суммой [c.622]

    При образовании комплексных соединений окисленная и восстановленная формы ведут себя неодинаково. Повышение степени окисления элемента увеличивает его электроотрицательность и усиливает различия в способности к комплексообразованию неодинаково для окисленной и восстановленной форм. Например, электроотрицательность марганца (У1Г) 2,5, а марганца (П) 1,4, хрома (VI) 2,4, а хрома (III) 1,6. Поэтому комплексообразование понижает активность окисленной формы аок в большей степени, чем активность восстановленной формы авс Так как окислительный потенциал определяется отношением актИВНОСТеЙ ЭТИХ ДВух форм йок/йВс, ТО окислительно-восстановительный потенциал всей системы понижается. Например, =+0,8 в для пары ионов Ре +/Ре . Если ввести в раствор цианид калия, то образуются два комплексных соединения гексациано- [c.111]


    При проведении осаждения необходимо считаться также с факторами, которые могут привести к повышению растворимости осаждаемой формы. Такими факторами могут быть протолиз ионов осаждаемой фюрмы, образование ими комплексных соединений, окисление или восстановление этих ионов (раздел 8.3). Влияние этих факторов следует устранить. [c.149]

    Присутствие в растворе комплексующих агентов значительно сказывается на величине окислительно-восстановительного потенциала многих Ох=Ке(1-систем. Например, реащ/реа ) в присутствии р- понижается, так как происходит образование комплексного соединения окисленной формы этой пары. Процесс комплексообразования существенно сказывается на растворимости осадков, т. е. оказывает воздействие на гетерогенное равновесие осадок — раствор. [c.30]

    Для определения формул комплексных соединений, образование которых обусловило формирование соответствующих линейных участков, необходимо найти шесть величин, а именно р, q, и, v, х я у. Значения двух первых дают угловые коэффициенты кривых ф = = / (рС ) и ф = / (рС ) [см. уравнения (V.12) и (V.13)]. Величины и, X, V и у в общем случае могут быть определены только при последовательном рассмотрении кривых ф = / (рА) или ф = / (pH), начиная с той их части, где не происходит координация лиганда А или гидролиз комплекса, или известен состав комплексных соединений окисленной и восстановленной форм. Увеличение или уменьшение угловых коэффициентов последовательно появляющихся линейных участков позволяет установить, какая из форм, окисленная или восстановленная, участвуют в процессах комплексообразования или гидролиза. Когда значения угловых коэффициентов известны, то, зная последовательность процессов, находим с помощью уравнений (У.14)и (V.30) искомые величины и, х, v, у. Определение численных значений констант устойчивости и гидролиза производится графически или с помощью вспомогательных функций. [c.140]

    При окислении ферроина образуется комплексное соединение Ре 1, имеющее бледно-голубой цвет  [c.368]

    Из меди и ее сплавов с цинком (латуни) изготовляют холодильники газодувок и газовых компрессоров, уплотнения крышек и фланцевых соединений аппаратов высокого давления, блоки разделения газовых смесей и воздуха методом глубокого охлаждения и другое оборудование, не имеющее соприкосновения с аммиаком. Аммиак, взаимодействуя с медью и ее сплавами, образует сложные комплексные соединения. При этом полностью изменяются физические свойства металлов и может нарушиться герметичность оборудования. Кроме того, прн высоких температурах в газовой среде восстановительные газы (водород, окись углерода и углеводороды) вызывают хрупкость окисленной меди. [c.94]


    Соотношение между степенью окисления центрального иона и его координационным числом позволяет ориентироваться в многообразии комплексных соединений, что особенно важно в начальный период их изучения. Эти соотношения не имеют характера строгого закона, а являются- статистическим выводом с большим числом исключений, сохраняющим свою силу главным образом в тех случаях, когда лигандами являются нейтральные молекулы и однозарядные ионы. [c.181]

    Способность органических продуктов образовывать комплексные соединения с металлами известна давно. Однако своеобразие практического применения их в качестве деактиваторов металла для топлив нефтяного происхождения выдвигает ряд новых, самостоятельных теоретических проблем. Известно, что простейшие органические соединения, содержащие хотя бы один гетероатом (азот, кислород, сера или фосфор), уже обладают координационными связями и способны образовывать с медью комплексные соединения, но такие соединения обладают малой стабильностью и в их присутствии каталитическое влияние меди на окисление бензинов сохраняется. [c.252]

    Первоначально к комплексным (координационным) соединениям относили только те соединения, в которых была превышена стехиометрическая валентность (степень окисления элемента) центрального атома. По этим представлениям комплекс состоит из центрального атома А, окруженного непосредственно связанными с ним отдельными атомами (или ионами) В и электронейтральными группами (молекулами) С остальные (не связанные непосредственно с А) ионы образуют внешнюю сферу комплексного соединения. Атомы (или ионы) В и группы С называются лигандами, а их суммарное число — координационным числом центрального атома А. Координационное число всегда больше числа, определяющего стехиометрическую валентность (степень окисления элемента) атома А. [c.33]

    Номенклатуру классических комплексных соединений, т. е. соединений, в которых превышена степень окисления центрального атома, целесообразно рассмотреть после номенклатуры кислот и солей. [c.35]

    Для построения систематических названий кислот и их солей эти соединения рассматривают как комплексные соединения и применяют правила, изложенные выше. Необходимо помнить, что название электроположительной части (катиона) соединения остается без изменений, а название электроотрицательной части (аниона) получает окончание -ат (-ate) независимо от степени окисления кислотообразующего элемента (цент- [c.38]

    К классическим комплексным соединениям относятся соединения, в которых формально превышается степень окисления центрального атома. Большая часть принципов построения их названий была рассмотрена выше. Основные положения можно кратко сформулировать следующим образом комплекс может быть катионным, нейтральным или анионным. Катионные или нейтральные комплексы не получают в названиях специальных окончаний, в названиях анионных комплексов имеется суффикс -ат (-ate). В англо-американской литературе названия лигандов перечисляются по алфавиту. Если необходимо, или для облегчения понимания структуры лиганда, можно указать степень окисления центрального атома по способу Штока или заряд по [c.46]

    В этой книге нет необходимости рассматривать более сложные вопросы, относящиеся к образованию d-элементами различных химических соединений. Достаточно отметить, что наряду с соединениями, отвечающими их обычным степеням окисления, d-эле-менты часто проявляют способность к образованию более сложных (комплексных) соединений (см. 20). -Элементы 3—7 групп периодической системы в соединениях, отвечающих их высшей степени окисления, становятся аналогами соответствующих элементов основных подгрупп. [c.61]

    Псевдоравновесный подход используется при анализе кинетики гетерогенных процессов (растворения солей, экстракции, догорания углерода или его выпадения из газовой фазы), а также процессов электродного окисления, медленных процессов замещения в инертных комплексных соединениях н т. д. [2—6]. Для систем с единственной медленной реакцией характерна возможность однозначно связать концентрацию (п температуры — в адиабатическом случае), а следовательно, и скорость протекания медленной реакции с ее координатой. [c.47]

    Соединения цинка, кадмия и ртути. Степень окисления цинка и кадмия в соединениях +2. Ртуть л<е образует два ряда соединений простые и комплексные соединения со степенью окисления ртути +2, а также соедннення, в основе которых находится свое- [c.330]

    Адсорбция Распределение Обмен ионов Диффузия молекул Образование малорастворимых соединений Образование комплексных соединений Реакция окисления — восстановления [c.187]


    Новые присадки представляют собой комплексные соединения бария или других химических веществ, дающих значительно большее моющее действие, нежели все прежние присадки. В составе присадок содержатся ингибиторы окисления и специальные соединения для нейтрализации коррозионного воздействия продуктов сгорания, являющихся основной причиной повышенного износа двигателей. Масла с этими присадками успешно выполняют также роль консервационных масел, что позволяет оставлять его в двигателе на длительный срок без замены на специальное консервационное масло. [c.145]

    Таким образом, битумы, полученные окислением с добавкой ГеСЬ, особенно в течение длительного времени (до т. размягч. 70—90° С), являются стабильными продуктами, так как к этому времени основная масса активных соединений железа переходит в устойчивые и химически инертные комплексные соединения. [c.145]

    Особенно быстрое окисление бензинов наблюдается в присутствии ионов металлов. Такая проблема возникала при очистке крекинг-бензинов солями меди, следы которых вызыв<1ли сильное смолообразование и потемнение бензина [16], Удаление следов солей меди из бензина оказалось весьма сложным и трудоемким. Вопрос был решен с помощью деактиваторов металлов — гетероатомных соединений, образующих с ионами металлов комплексные соединения неионного характера (см. главу 12), [c.267]

    Как было указано ранее, определяемый компонент часто переводят в соединение, обладающее значительным поглощением. Обычно его связывают в комплексное соединение, хотя могут быть использованы реакции окисления-восстановления, азосочетания и другие. Условия проведения этих реакций должны быть предварительно тщательно изучены для обеспечения воспроизводимости и надежности результатов спектрофотометрического анализа. [c.50]

    В химическом анализе, как известно, используют четыре типа химических реакций 1) кислотно-основные реакции 2) реакции окисления-восстановления 3) реакции образования комплексных соединений и групп 4) реакции осаждения и другие реакции образования новых фаз. [c.271]

    Задача первого этапа осадительной гравиметрии - получить с помощью специфической реации осаждаемую форму в виде малорастворимого соединения. Растворимость этого соединения должна быть настолько низкой, чтобы масса оставшейся в растворе осаждаемой формы не превысила воспроизводимость весов (обычно 0,0001 г). С целью уменьшения растворимости при осаждении, как правило, в раствор вводят избыток осадителя либо подходящие органические растворители. При проведении осаждения необходимо учитьшать ряд факторов, которые могут привести к повышению растворимости осаждаемой формы такие как протолиз ионов осаждаемой формы, образование ими комплексных соединений, окисление или восстановление этих ионов. Влияние этих факторов следует устранить. [c.277]

    Разрушение комплексных соединений окислением при кипячении с концентрированными кислотами (H2SO4, HNO3) является одним из методов, применяемых в аналитической химии. [c.173]

    При проведении фотометрической реакции, необходимой для повышения чувствительности, определяемый компонент переводят в соединение, обладающее значительным поглощением. Чаще всего определяемое вещество связывают в комплексное соединение с различными органическими реагентами. Кроме того, могут быть использованы реакции окисления — восстановления, диазосочетания и доугие. [c.480]

    У элементов подгруппы цинка две первые энергии ионизации-выше, чем у -элементов соответствующих периодов. Это объясняется проникновением внешних -электронов под экран (п—1) 1 -электронов. Уменьшение энергии ионизации при переходе от Zn к Сс1 обусловлено большим значением главного квантового числа п, дальнейшее же увеличение энергии ионизации у Hg обусловлено проникновением бх -электронов не только под экран 5й -электро-нов, но и под экран 4/ -электронов. Значения третьих энергий ионизации довольно высокие, что свидетельствует об устойчивости электронной конфигурации (п—В соответствии с этим у элементов подгруппы цинка высшая степень окисления равна +2. Вместе с тем (п—1) 1 -электроны цинка и его аналогов, как и у других -элементов, способны к участию в донорно-акцепторном взаимодействии. При этом в ряду Zn — d —Hg " по мере увеличения размеров (п—l) -opбитaлeй электроно-донорная способность ионов возрастает. Ионы Э ( ) проявляют ярко выраженную тенденцию к образованию комплексных соединений. [c.631]

    Комплексное соединение состоит из центрального атома в определенной степени окисления, вокруг которого координированы нейтральньи молекулы, атомы или ионы. Центральный. атом вместе с координированными вокруг него молекулами, атомами или ионами, и 5ываемыми лигандами, образуют внутреннюю сферу комплексного соединения. Обпхее число а-связей, образуемых центральным атомом с 1игандами, независимо от механизма их образования, называется координационным числом центрального атома — комплексообразователя. [c.175]

    Деактиваторы металлов, взаимодействуя с ионами металлов и образуя с ними растворимые комплексные соединения, выводят из сферы действия основную часть катализатора. При этом гетерогенный катализ окисления ювенильными поверхностями металлов не подавляется деактиваторами металлов. К де= активаторам металлов относятся салицилидены, аминофенолы и др. С антиокислительными присадками они ооразуют ШнёрпГ-ческие пары [206]. Эффективность деактиваторов металла при окислении в присутствии медной пластинки при 100 °С приведена в табл. 6.7. За рубежом для реактивных топлив разрешен к применению К,Ы -дисалицилиден-1,2-пропилендиамин (см. табл. 6.4), но добавление его не является обязательным. [c.197]

    Первоначальное понятие о комплексных соединениях, образованных центральным атомом или ионом металла и совокупностью ( luster) ионов или молекул, именуемых лигандами (число которых называют координационным числом), в последнее время было расширено, и теперь оно охватывает большую часть неорганических соединений в молекулярном (растворы) или кристаллическом (твердые тела) состоянии. Нихолм [4] указывает, что химию комплексных соединений следует рассматривать как некоторый подход к неорганической химии, а не просто как один из ее разделов и что в связи с этим она должна быть полезной для понимания как гомогенного, так и гетерогенного катализа. Нас интересует динамика обратимых изменений координационного числа и степени окисления центрального атома, и мы [c.15]

    Названия комплексных соединений образуются аналогично названиям обычных солей (Na l — хлорид натрия, K2SO4 — сульфат калия и т. п.) с той лишь разницей, что указываются лиганды и степень окисления центрального иона. Молекулы Н2О и NH3 обозначаются соответственно аква и аммин . Вот несколько примеров, иллюстрирующих номенклатуру комплексов  [c.118]

    Эти элементы проявляют все степени окисления от О до+5. Рост ш отвечает усилению кислотных свойств и усилению тенденции к образованию комплексных соединений. Так, УО — основной оксид, растворяющийся в разбавленных кислотах (ему соответствует ос-1ювание У(0Н)2], а УаОз амфотерный оксид, малорастворимый в кислотах, у УОз основные свойства еще преобладают над кислотными [У(0Н)4 очень слабое основание], у УгОз, наоборот, преобладают кислотные свойства, это ангидрид слабой кислоты НУОз. [c.516]

    Катализаторы — комплексные соединения переходных жталлов. Реакции восстановления, гидрирования, окисления, гидратации ненасыщенных соединений, изомеризации, полимеризации и многие другие в промышленных условиях осуществляются в растворах в присутствии комплексных катализаторов. По типу применяемых катализаторов эти процессы иногда объединяют в группу координационного катализа. В качестве катализаторов в таких процессах применяются комплексные соединения катионов переходных металлов. Сюда относятся металлы УП1 группы Ре, Со, N1, Ри, КЬ, Рс1, 05, 1г, Р1, а также Си, Ag, Hg, Сг и Мп. Сущность каталитического действия заключается в том, что ионы металлов с -электронной конфигурацией могут взаимодействовать с другими молекулами, выступая как акцепторы электронов, принимая электроны на свободные -орбитали, и как доноры электронов. На рис. 200 показано взаимодействие ВЗМО этилена со свободной -орбиталью иона металла (а) и одновременное взаимодействие заполненной -орбитали металла с НСМО этилена (б). Донорно-акцепторное взаимодействие, обусловленное переходом электронов с я-орбитали этилена, уменьшает электронную плотность между атомами углерода и, следовательно, уменьшает энергию связи С=С. Взаимодействие, обусловленное переходами электронов с -орбитали иона металла на разрыхляющую орбиталь молекулы этилена, приводит к ослаблению связей С=С и С—Н. [c.626]

    Комплексные соли. Никель образует разнообразные устойчивые комплексные соединения с различными лигандами в этих соединениях он проявляет степень окисления +2. Многочисленные соли гексаакваникеля (И) окрашены в зеленый цвет различных оттенков. В средах, содержащих аммиак, образуется гексааммин-иикель(П)-ион темно-синего цвета  [c.317]

    Синтетический бензин (когазин I) был исследован Тропшем и Кохом [9]. Несмотря на высокое (свыше 50%) содержание олефинов, этот бензин оказался весьма стойким продуктом, остававшимся бесцветным прп хранении в течение года. Этому, конечно, способствовало доказанное отсутствие в нем диолефинов. Оло-фииы удалось отделить от предельных углеводородов (без какого-либо окисления непредельных) с помощью уксуснокислой ртути, образующей с олефинами комплексные соединения. Это обстоятельство подтверждает, что олефины имеют нормальное или во всяком случае мало разветвленное строение. [c.199]

    При титровании с использованием буферных растворов оптимальное значение pH среды определяется устойчивостью комплексного соединения и это значение, как правило, тем ниже, чем более устойчив комплексонат (чем больше степень окисления металла, образующ,его его). Для прогнозирования возможности кондуктометрического титрования катионов металлов (например, для М) раствором ЭДТА рекомендуется использовать следующие данные (р — константа устойчивости комплекса состава [c.110]

    В условиях сгорания все примеси остаточных топлив подвергаются термическому разложению и окислению с образованием новых соединений. При определенном соотношении натрия и ванадия в топливе получается, например, комплексное соединение Ыа20-У204-5У205— ванадилванадат натрия. Это вещество имеет относительно низкую температуру плавления (625 °С) и может отлагаться на слабо нагретых деталях. Механизм коррозионного действия окислов ванадия связывают с его способностью проявлять переменную валентность в зависимости от условий среды. Коррозия стали в присут- [c.55]

    VI групп, примыкающие к диагонали бор — астат,— типичные полупроводники (т. е. их электрическая проводимость с повышением температуры увеличивается, а не уменьшается). Характерная черта этих элементов — образование амфотерных гидроксидов (с. 151). Наиболее многочисленны d-металлы. В периодической таблице химических элементов Д. И. Менделеева они расположены между S- и р-элементами и получили название переходных металлов. У атомов d-элементов происходит достройка d-орбиталей. Каждое семейство состоит из десяти d-элементов. Известны четыре d-семейства 3d, 4d, 5d, и 6d. Кроме скандия и цинка, все переходные металлы могут иметь несколько степеней окисления. Максимально возможная степень окисления d-металлов +8 (у осмия, например, OsOj). С ростом порядкового номера максимальная степень окисления возрастает от III группы до первого элемента VIII группы, а затем убывает. Эти элементы — типичные металлы. Химия изоэлектронных соединений d-элементов весьма похожа. Элементы разных периодов с аналогичной электронной структурой d-слоев образуют побочные подгруппы периодической системы (например, медь — серебро — золото, цинк — кадмий — ртуть и т. п.). Самая характерная особенность d-элементов — исключительная способность к комплексообра-зованию. Этим они резко отличаются от непереходных элементов. Химию комплексных соединений часто называют химией переходных металлов. [c.141]

    Деактиваторы. Антиокислительные присадки в топливах расходуются при хранении, особенно в присутствии некоторых металлов и сплавов. Чтобы предотвратить каталитическое действие металлов на окисление топлив и уменьилить расход антиокислителей, добавляют специальные присадки — деактиваторы (в тысячных долях процента). Они связывают ионы металла в комплексные соединения, не обладающие каталитической активностью. В отечественной промышленности деактиваторы металла пока не применяют. [c.293]

    Известны способы получения ЭПХГ каталитическим окислением ХА [146-149]. Описаны способы получения ЭПХГ эпоксидированием ХА с помощью органических гидроперекисей в присутствии катализатора, в качестве которого используют хлориды и оксихлориды ванадия, вольфрама, молибдена, а также их смеси, соли указанных металлов с органической кислотой или комплексные соединения зтих металлов с карбонильным соединением [150-152]. В одном из этих способов [150] для повышения выхода ЭПХГ подвергают ультрафиолетовому облучению катализатор или его раствор в ХА. В некоторых случаях реакцию окисления предлагается [c.36]

    В 1892 г. Эрдман сделал важное открытие, что о,о -диоксиазокра-сители при обработке хромовыми солями переходят в прочные хромовые лаки. На этой основе были разработаны ценные и высокопрочные хромирующиеся красители. Ими красят из кислой ванны, после чего мате-риа.л обрабатывают ЫзаСг О , который восстанавливается шерстяным волокном до Сг" и образует комплексное соединение. В результате цвет выкраски углубляется, и она приобретает светопрочность и прочность к стирке. Обычно при этом образуются комплексы, в которых на один атом Сг приходятся две молекулы красителя. В некоторых случаях происходит также дальнейшее окисление самой молекулы красителя, как например у алмазного черного РУ  [c.608]

    Формальдоксим H2 = NOH в щелочной среде взаимодействует с Мп(П), образуя растворимое комплексное соединение красно-коричневого цвета. В начале реакции возникает бесцветное комплексное соединение, которое быстро переходит в красно-коричневое вследствие окисления Мп(П) до Мп(1 У) кислородом воздуха. Состав соединения соответствует формуле [Мп(СН2КО)б] . [c.58]


Смотреть страницы где упоминается термин Комплексные соединения окисления: [c.29]    [c.375]    [c.252]    [c.66]    [c.67]    [c.30]   
Практикум по общей химии Издание 3 (1957) -- [ c.189 ]

Практикум по общей химии Издание 4 (1960) -- [ c.189 ]

Практикум по общей химии Издание 5 (1964) -- [ c.203 ]




ПОИСК







© 2024 chem21.info Реклама на сайте