Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловой эффект равновесия

    Сопоставляя это значение с приведенным в приложении 3, не следует забывать, что записанная выше реакция включает газообразный иод, а не твердый, как в приложении 3.) Если понизить температуру, при которой проводится эта реакция, равновесие сместится в сторону того процесса, который сопровождается выделением тепла, т.е. в сторону прямой реакции. И наоборот, если понизить температуру, создадутся более благоприятные условия для протекания обратной реакции с образованием Н2 и 12- Равновесие смещается в такую сторону, чтобы в какой-то мере компенсировать эффект поступления тепла извне (повышение температуры) либо эффект его отвода наружу (понижение температуры). [c.190]


    Матрица — несимметричная квадратная матрица, по главной диагонали которой расположены коэффициенты, связывающие потоки компонентов или тепла с градиентами концентраций этих же компонентов или температуры коэффициенты вне главной диагонали учитывают эффекты взаимодиффузии и термодиффузии, т. е. перекрестные эффекты. Учитывая соотношения взаимности Онзагера, условия термодинамического равновесия, второй закон термодинамики и известную свободу выбора единиц и систем отсчета физических величин, можно говорить [8] о существовании линейного преобразования с трансформирующей матрицей Q , диагонализирующего матрицу Применяя это преобразование к уравнению (3.8), получим [c.138]

    Выделение или поглощение тепла в процессе химического превращения продолжается до тех пор, пока существует отклонение химической системы от равновесия, которое характеризуется нулевым производством энтропии. Полная диаграмма химической системы должна топологически отражать связь производства энтропии с необратимыми процессами собственно химических превращений и тепловыделений (теплопоглощений). Зависимость теплового эффекта реакции АН от степени ее удаления от равновесия В характеризуется соотношением [c.137]

    АЯ° > О, т. е. химическая реакция с поглощением тепла, то реакция эндотермическая знак производной будет положительный, следовательно, константа равновесия с увеличением температуры возрастает (рис. 114). Если АИ° < О, т. е. химическая реакция идет с выделением тепла, то реакция экзотермическая знак производной будет отрицательный, следовательно, константа равновесия с увеличением температуры уменьшается. Если АЯ° = О, т. е. химическая реакция идет без теплового эффекта, константа равновесия не зависит от температуры. [c.250]

    ТЕПЛОЕМКОСТЬ — отношение количества теплоты, сообщенной системе, к изменению ее температуры. При этом подразумевается, что изменение состояния системы не сопровождается ни химическими реакциями, ни фазовыми превращениями. Т., отвечающая конечному изменению температуры, называется средней Т. Т., соответствующая бесконечно малому изменению температуры, называется истинной Т. На величину Т. влияет химический состав вещества. Повышение температуры, как правило, вызывает возрастание Т. Данные о Т. необходимы для расчетов тепла на нагревание вещества, физико-химических расчетов, определения влияния температуры на тепловой эффект реакции, расчета химического равновесия и др. [c.246]


    В середине прошлого века М. Бертло на основании большого числа определений тепловых эффектов химических реакций выдвинул принцип, согласно которому химическое сродство определяется количеством тепла, выделяющегося при реакции. Из принципа Бертло следует, что самопроизвольно могут протекать только экзотермические реакции. Легко видеть, что этот принцип неправилен хотя бы потому, что существуют самопроизвольные процессы, протекающие с поглощением тепла, например растворение многих солей в воде. Казалось бы, принцип Бертло оправдывается для реакций образования многих соединений из элементов, которые происходят с выделением тепла и идут практически до конца. Однако в действительности это справедливо лишь при относительно низких температурах. При достаточно высоких температурах эти же реакции самопроизвольно протекают в обратном направлении, т. е. происходит диссоциация соединений, сопровождающаяся поглощением тепла. Мы уже видели, что полнота завершения реакций зависит от температуры и концентраций. По существу принцип Бертло находится в противоречии с самим фактом существования химического равновесия. Это обусловлено тем, что М. Бертло основывался лишь на величинах ДЯ, т. е. на представлениях первого закона термодинамики, который, как отмечалось, дает лишь балансы тепловых явлений. Поэтому величина изменения энтальпии при реакции ДЯ не может служить мерой химического сродства. Такой мерой является величина ДО, определяемая уравнением [c.53]

    При термодинамическом равновесии обе скорости в последнем равенстве равны нулю, а во всех остальных случаях мы имеем дело с установлением стационарного процесса переноса молекул воды из одного сосуда в другой. За прямое направление этого процесса следует считать то, при котором происходит поглощение тепла. Тепловой эффект AQ переноса молекулы воды равен разности тепловых эффектов испарения из обоих сосудов, т. е. разности соответствующих энергий активаций и имеет отрицательное значение при переходе молекул из сосуда с кислотой в сосуд с водой [c.46]

    Дело в том, что избыточное количество оптического отбеливающего вещества может вызвать нежелательную окраску. Оптические отбеливающие вещества дают высокую белизну при очень низких концентрациях, но при накапливании их на ткани отбеливающий эффект пропадает и ткань окрашивается в светлые цвета (розовый, зеленоватый, голубоватый и др.) за счет собственного цвета отбеливателя , являющегося в данном случае прямым красителем. Обладая высокой прочностью к стирке и сильным химическим сродством, оптический отбеливатель от стирки к стирке будет накапливаться на бельевой ткани и даст в конце концов нежелательную окраску. Поэтому химическое сродство и стойкость к стирке должны быть согласованы так, чтобы после многократной обработки создавалось определенное равновесие между удаляемым количеством оптического отбеливающего вещества и количеством его, наносимым на волокно в процессе стирки белья. Оптические отбеливающие вещества, применяемые при стирке белья, должны быть стойки к синтетическим моющим средствам, щелочи, перекиси водорода, к теплу и нагреву в процессах стирки, сушки и глажения. [c.205]

    Следовательно, повышение температуры смещает равновесие влево, как это видно по уменьшению величины и на этом основании можно сделать вывод, что прямая реакция — экзотермическая. Отметим, что повышение температуры приводит к возрастанию скорости как прямой, так и обратной реакций независимо от того, является ли результирующим эффектом выделение или поглощение тепла. Однако возрастание скорости эндотермической реакции оказывается значительна большим, так что при [c.243]

    Дегидроциклизация парафинов проходит значительно труднее, чем ароматизация циклопарафинов. Как видно из табл. 1.1, наиболее медленной из реакций ароматизации является дегидроциклизация парафинов, скорость которой на два порядка ниже и лимитируется наиболее медленной стадией циклизации. Эта реакция проходит с поглощением 260 кДж/ моль тепла. С повышением температуры константа равновесия при дегидроциклизации увеличивается в большей степени, чем при дегидрировании нафтенов, так как тепловой эффект первой реакции приблизительно на 39 кДж/моль больше. С повышением давления термодинамически возможный выход ароматических углеводородов при дегидроциклизации парафинов снижается в большей степени, чем при дегидрировании циклогексанов. [c.9]

    Стадия низкотемпературной конверсии проводится в условиях, обеспечивающих получение газа, не содержащего гомологов метана. Давление и предельное соотношение пар газ выбираются, исходя из требований следующей стадии. Температуру предпочтительно выбирать таким образом, чтобы суммарный тепловой эффект протекающих на этой стадии реакций позволял вести процесс в автотермических условиях. Стадия высокотемпературной паровой конверсии, требующая подвода большого количества тепла, проводится в трубчатых печах различных типов [27—30] или в кипящем слое с циркулирующим теплоносителем [31 ]. Основной целью этой стадии в описываемой схеме является достижение такой глубины превращения углеводородов, которая была бы достаточной для того, чтобы содержание метана в техническом водороде, полученном после переработки конвертированного газа, не превышало заданный предел (обычно 4—5 об. %). При выполнении этого условия экономически целесообразно процесс вести при более низкой температуре и высоком давлении, однако следует учесть, что как снижение температуры, так и повышение давления сдвигают равновесие реакции конверсии метана в обратном направлении. Увеличение расхода водяного пара улучшает термодинамические условия, но удорожает процесс. Для оптимального выбора температуры, давления и соотношения пар газ проводят расчет равновесия с получением конвертированного газа такого состава, который позволяет после переработки получить технический водород, удовлетворяющий необходимым требованиям. Полученные данные должны быть откорректированы по степени приближения к равновесию, определенной в эксперименте, методика такого расчета приведена в настоящей работе. [c.248]


    В заключение остановимся на температурной зависимости адсорбции в пористых телах. Простые опыты с системой поршень — цилиндр показывают, что при гистерезисе системы в цикле должна теряться механическая работа (т. е. должно выделяться тепло). В необратимых процессах этого типа изменение энтропии при небольших смещениях системы из состояния равновесия не равно бд/Т. Поэтому, как отмечает Ла-мер [16], в этом случае уравнения типа уравнения (ХП1-16), полученные на основе второго закона термодинамики, теряют ясный физический смысл. В гистерезисных системах, конечно, можно получить два ряда значений относящихся к адсорбционной и десорбционной ветвям. Обычно эти величины не равны друг другу и ни одна из них не соответствует калориметрической теплоте адсорбции. Этот эффект можно объяснить локальной необратимостью системы. Адсорбция при увеличении х на 8х не эквивалентна десорбции при последующем уменьшении относительного давления на ту же величину бх. Поэтому к данным по изостерическим теплотам адсорбции и ин- [c.498]

    Показания термометра сопротивления, помещенного в газовую среду, зависят от режима равновесия между подводимым и отводимым тепловыми потоками. Эффект уноса тепла газовым потоком значительно превосходит все другие охлаждающие факторы и зависит от скорости потока. Поэтому измерительная проволока термометра сопротивления должна быть расположена по возможности перпендикулярно направлению потока. [c.72]

    Парафиновые углеводороды при рифор-минге подвергаются дегидроциклизации, изомеризации и гидрокрекингу (гидрогенолизу). Второй важнейшей реакцией ароматизации является дегидроциклизация. Она проходит с поглощением 60 ккал/моль тепла и значительно труднее, чем дегидрирование нафтенов. Заданный выход ароматических углеводородов термодинамически возможен при значительно более высоких температурах, чем для нафтеновых углеводородов. Однако с повышением температуры константа равновесия дегидроциклизации увеличивается в большей степени, чем, при дегидрировании нафтенов, так как тепловой эффект первой реакции приблизительно на 10 ккал/моль выше. [c.13]

    Реакция эта обратима и сопровождается выделением большого количества тепла. Экспериментальные результаты по изучению равновесия этой реакции показывают, что при атмосферном давлении и температуре ниже 200° С процесс идет практически полностью слева направо тот же эффект достигается при давлении водорода 50 ат и температуре 300° С. Данные по равновесному составу продуктов гидрирования при разных температурах приведены в табл. VII. 2. [c.204]

    Совмещенные реакционно-ректификационные процессы очень сложны, и строгий расчет их пока не создан. Однако имеются расчеты для некоторых упрощенных случаев [47—50], Так, Марек [51] предложил общий метод расчета ректификации при наличии химической реакции, взяв за основу итерационный расчет ректификации по Сорелю и Мак-Кэбу и Тиле. При этом наличие химической реакции в жидкой фазе учитывается введением в уравнения материального и теплового балансов дополнительных членов, соответствующих изменению количества вещества и тепла за счет реакции. Общность метода состоит в том, что он не ограничен числом компонентов, типом реакции и т, д, В общем случае, для расчета необходимы исходные данные в полном объеме (для концентрационного симплекса я-ко.мпонентной смеси в целом) о скорости реакции, тепловом эффекте, фазовом равновесии жидкость — пар, Мареком учтены возможные упрощения метода, связанные с рациональными допущениями, которые встречаются при обычном расчете ректификации, В итерациях, наряду с предположением определенных концентрации, предполагается также общее прореагировавшее количество вещества и учитывается в связи с этим задержка жидкости на каж- [c.208]

    Шателье если на систему, находящуюся в состоянии химического равновесия, оказывается внешнее воздействие, положение равновесия смещается в такую сторону, чтобы противодействовать эффекту этого воздействия. Если прямая реакция в равновесной химической системе является экзотермической, то при повышении температуры уменьшается если прямая реакция является эндотермической, то при повышении температуры Кравн увеличивается. Равновесный выход продуктов можно увеличить путем повышения температуры только для реакции, идущей с поглощением тепла. Чтобы не ошибаться, следует всегда записывать уравнение в полном виде с учетом теплового эффекта, как будто он является одним из продуктов реакции [c.191]

    Особенность совмещенных процессов состоит в том, что, помимо фазового равновесия, необходимо рассматривать и химическое равновесие. А это значит, что необходимо исследовать кинетику возможных химических реакций в условиях, создаваемых при ректификации. Следует заметить, что при медленных химических реакциях и при низких тепловых эффектах процесс практически не отличается от обычной ректификации. Имеющееся отличие будет сказываться лишь при большом времени пребывания реагентов и проявляться в накоплении продуктов побочных реакций в продуктах разделения. При наличии же больших тепловых эффектов и скоростей реакций могут быть совершенно неожиданные результаты. Так, при экзотермической реакции с большим тепловым эффектом возможно полное испарение потока жидкости в зоне реакции и, наоборот, при эндотермической — захолаживание жидкости и конденсация парового потока. Поэтому при попытке совмещения ректификации и реакции важнейшей задачей является обеспечение условий нормального функционирования процесса, т. е. его устойчивости и управляемости. Отсюда следует, что хеморектификация протекает в более жестких границах изменения основных технологических параметров. Выход за допустимые границы (например, по теплоотводу) может привести к взрыву в случае сильно экзотермической реакции и останову процесса массообмена между потоками пара и жидкости в случае эндотермической реакции. Интересным моментом является то, что возникает проблема рационального использования выделяемого тепла внутри схемы, например, на образование парового потока с целью снижения энергетических затрат на ведение процесса. [c.365]

    Термодинамика реакций этерификации. Взаимодействие спиртов с карбоновыми кислотами в жидкой фазе протекает практически без какого-либо поглощения или выделения тепла (АЯ = 0). Соответствеино, алкоголиз, ацидолиз и переэтерификация также имею тепловой эффект, близкий к нулю. Следовательно, константы равновесия этих реакций ие зависят от температуры. В отличие от этого, этерификация спиртов хлораигидрндами кислот, а также первая стадия этерификации спиртов ангидридами являются экютермическими процессами. [c.205]

    По тепловому эффекту каталитические процессы делят ъл экзотермические, идущие с выделением тепла (4-0 и эндотермические (—Q). ОЬобенно сильно сказывается знак теплового эффекта на зависимости равновесия реакции от температуры. [c.69]

    СН3ОН СН3-О-СН3 + НаО СНзОН + пСО + 2пЯ2 СНз(СН2) -ОН СН3ОН -Н На 5= СН4 -Ь НаО Реакции (а—д) протекают с выделением тепла и уменьшением объема, но различаются величиной теплового эффекта и степенью контракции. Поэтому, хотя для всех этих реакций степень превращения возрастает с увеличением давления и понижением температуры, в наибольшей степени повышение давления влияет на равновесие основной реакции синтеза (а), для которой степень контракции максимальна и составляет 3 1. В то же время, понижение температуры ниже некоторого предела нецелесообразно, так как при низких температурах скорость [c.261]

    Большой вклад в изучение в СССР вихревого эффекта внес А.П. Меркулов. В предложенной им гипотезе процесса энергетического разделения большое внимание уделено турбулентному энер-гообмену. Энергия турбулентности используется для осуществления работы охлаждения вынужденного вихря, так как за счет радиальной составляющей турбулентной пульсационной скорости элементарные турбулентные моли перемещаются по радиусу в поле высокого радиального градиента статического давления . При адиабатном сжатии или расширении турбулентные моли изменяют свою температуру, соответственно вызывая нафев или охлаждение газа при смешении со своим слоем. Передавая тепло из зоны низкого в зону высокого статического давления, они осуществляют элементарные турбулентные циклы. Охлаждение имеет место только в приосевом потоке, так как в нем и статическая температура, и окружающая скорость падают, обеспечивая снижение полной температуры . Основная доля кинетической энергии исходного потока зафачивается на закрутку вынужденного вихря и дисси-пирует в турбулентность. Энергия на закрутку передается до тех пор, пока не наступит равновесие со свободным вихрем в сопловом сечении . Считается, что формирование центрального потока происходит по всей длине фубы и завершается в сопловом сечении. Учет поля центробежных сил проводится через радиальный фадиент статического давления. Передача кинетической энергии направлена от периферии к оси, и часть ее расходуется на турбулентность. Термодинамическая температура в приосевой области ниже, чем в периферийной области вихревой трубы. [c.23]

    Следует заметить, что гистерезисное выделение тепла .W при усталостном испытании с постоянной амплитудой деформации уменьшается с увеличением температуры, поскольку пропорционально Оо81пб, т. е. ". При таком условии может установиться тепловое равновесие. Конечно, тот же самый эффект уменьшения Е" можно получить, если образец пластифицируется. Поэтому пластификация промышленных образцов, предназначенных для эксплуатации в динамических условиях при постоянной амплитуде деформации, может оказаться подходящим средством увеличения выносливости образца [152]. Мачюлис и др. [152] указывают, что эффекты термостабили- [c.292]

    По П. Н. Семенову, самовосплаиеыетпю углеводородов представляет собой тепловой взрыв, который возникает в результате самоускорения цепной окислительной реакции с вырожденным разветвлсяхиом. Если бы такую реакцию удалось осуществить в изотермических условиях, взрыв, в случае его наступления, имел бы чисто цепную природу. На самом же деле обычно самоускорение реакции приводит к нарушению равновесия между скоростью выделения тепла и скоростью теплоотдачи. Таким образом, имеет место и тепловое самоускорение реакции — в результате взрыв будет иметь цепочечно-тепловую природу. Условием взрыва, следовательно, яв./1яется достижение По ходу реакции скоростью тепловыделения Ф (Ф — wQ, где W — скорость, а — тепловой эффект реакции) некоторого критического значения, определяемого условиями проведения опыта. [c.363]

    III-3-9. Для любого изотермического процесса AS = o6p/7 , где <7обр — поглощенное тепло в процессе обратимого перехода системы из начального в конечное состояние. Будет ли <7 = обр в описываемом процессе Конечно, At/ = Ai/o6p и q = AU + W. Вопрос заключается в том, будет ли w = Wo6p В данном случае справедливо предположение, что ш = Шобр для процесса плавления в любом случае это фактически не является работой и Шобр — ш может быть даже несколько больше, чем w. Единственным отличием был бы результат расширения (или сжатия) настолько быстрого, что атмосфера не успеет прийти в равновесие с этой системой — слишком незначительный эффект. [c.235]

    ДС — положительная величина, и реакция будет протекать самопроизвольно в сторону распада продуктов и образования исходных веществ. Таким образом, химическое сродство, мерой которого слух<ит ДО, зависит не только от природы реагирующих веществ, но и от их парциальных давлений, изменяясь от —оо до +оо, проходя через нуль при равновесии. Ранее полагали, что мерой химического сродства является тепловой эффект реакции ДЯ и что самопроизвольно идут лишь реакции, соировол<дающиеся выделением тепла (экзотермические). Это неправильно, так как существуют самопроизвольные реакции, сопровождающиеся поглощением тепла (процессы растворения некоторых солей в воде). [c.29]

    Жидкий объем любого масштаба может подвергаться воздействиям гидростатической подъемной силы, возникающим однократно или многократно от многих и разнообразных видов и сочетаний физических процессов. Подъемная сила может возникнуть из-за разности плотностей в поле объемной силы, а разность плотностей образуется вследствие тепло- и массопереноса. В свою очередь тепло- и массоперенос, вызывающий появление подъемной силы, может быть обусловлен действием многих и разных механизмов. Например, даже кажущийся простым эффект возникновения подъемной силы, действующей на лист кукурузы, освещенный солнцем, оказывается достаточно сложным. Солнце нагревает лист, который для поддержания теплового равновесия (терморегулирования) может испарять водяной пар. В процессе фотосинтеза хлоропласт листа поглощает СОа из воздуха и выделяет Ог. Таким образом, в образовании результирующей подъемной силы одновременно участвуют перенос тепла и три процесса массопереноса. Эти процессы объединяются с переносом тепла излучением. Другой пример — потеря метаболической теплотымлекопитающими с поверхности их тел. Теплота тела порождает теплоперенос вблизи его поверхности. Но часто такое же по порядку величины воздействие оказывает потение. Испарения с поверхности тела увлажняют прилегающий слой воздуха. Таким образом, возникают две составляющие аэростатической силы, направленной вверх. [c.9]

    Уравнения (15.2.5) — (15.2.8) получаются лишь после введения ряда дополнительных ограничений. Так, предполагается, что вовлеченная в конвективное движение жидкость является однофазной. Считается также, что пористый материал не испытывает механических деформаций, а между жидкостью и твердым телом существует локальное термодинамическое равновесие. Физические свойства обеих сред предполагаются при этом пстоянными и не меняющимися во времени. Химические реакции в среде, вязкое рассеяние и работа сил сжатия не учитываются. Плотность жидкости считается постоянной (за исключением члена, связанного с массовыми силами), что позволяет учесть соответствующий гидростатический эффект. Объемные источники тепла и члены, описывающие излучение, также не учитываются. [c.366]

    Теперь рассмотрим аппаратурно-технологическую реализацию выбранных условий конверсии метана. Как следует из равновесных данных, необходима высокая температура процесса. Катализатор в этих условиях весьма активен, и равновесие достигается быстро. Поэтому достигаемое в реакторе превращение можно с достаточной точностью определить из равновесных данных. Конверсия метана - реакция эндотермическая тепловой эффект взаимодействия метана с водой по уравнению (5.12) =-206,4 кДж/моль и превалирует над экзотермическим эффектом другого этапа [см. уравнение (5.13)] О2 =+41,0 кДж/моль. Необходимое тепло можно подвести через стенки обофеваемых труб, в которых находится катализатор и протекает реакция, т, е. осуществить процесс в трубчатом реакторе, или, как его называют, трубчатой печи. Обофев осуществляется сжиганием природного газа в факельных инжекционных горелках, расположенных в верхней части межтрубного пространства. Дымовые газы с температурой 1200-1300 К отводятся из нижней части реактора. Температура, необходимая для полного превращения метана, - 1300 К, а металл, из которого сделаны трубки, допускает нафев не выше 1180-1200 К. Максимальная температура в слое (на выходе) будет, естественно, ниже 1080-1100 К. Превращение метана не превышает 75% (см. табл. 5.4). [c.440]

    Такая зависимость найдена между постоянной равновесия и тепловым эффектом химического превращения. Всякое химическое превраидение сопровождается выделением или поглощением тепла. Теплоты многих химических реакций измерены опытным путем. Если тепло реакции не может быть определено прямым опытом, то все же возможно вычисление ее величины. [c.47]

    Из этого выражения видно, что постоянная К равновесия при данной температуре зависит от величины тепла реакции и от абсолютной температуры, при которой находится система. Из формулы вытекает, что если тепловой эффект незначителен, то доля превратившихся веществ остается одной и той же при всех температурах, и что перемещение равновесия в ту или другую сторону тем значительнее, чем больше величина теплового эффекта превращения. Эти выводы подтверждены опытными данными. Если образование данного соединения идет с поглощением тепла, то повышение температуры способствует увеличению концентрации в общей массе реагирующих веществ понижение температуры вызывает обратное явление. Таким образом, всякое понижение Температуры усиливает ту из двух противопопоженых реакций, которая выделяет тепло. Более общая слоресная формулировка прин Ципа, представленного формулой Вант-Гоффа, дана последним в едующем выражении всякое равновесие между двумя различными состояниями вещества (системами) перемещается, под вли- [c.47]

    Техшовой эффект химической реакции зависит от температуры, при которой протекает эта реакция. Знание величины теплового эффекта при различных температурах, как это будет показано ниже, имеет большое практическое значение при расчете химического равновесия и подсчете потерь тепла от диссоциации продуктов горения при высоких температурах. [c.10]

    Следовательно, х должен увеличиваться приблизительно пропорционально общему давлению в реакционной смеси. Опыты Габера подтверадают зто. Он показал, что содержание аммиака в равновесной смеси при 800° и давлении 1 ат равно приблизительно 0,012% объемн., тогда как при давлении 30 ат (при той же температуре) содержание аммиака достигало 0,34%о, т. е. было приблизительно в 30 раз больше. Однако пропорциональность между выходом и давлением наблюдается только при небольшом содержании аммиака в газовой смеси, если же содержание аммиака большое, выход оказывается несколько меньше рассчитанного. Повышение температуры оказывает неблагоприятное действие на конверсию азота и водорода в аммиак это вытекает из принципа ле Шателье. Взаимодействие азота и водорода с образованием аммиака сопровождается выделением тепла повышение температуры смещает равновесие в направлении поглощения тепла, поэтому выход аммиака уменьшается с повышением температуры. Влияние температуры на константу равновесия реакции К и ее связь с тепловым эффектом реакции выражается уравнением  [c.677]

    Следует также иметь в виду, что многие из известных в литературе значений свойств являются приближенными, а некоторые — даже весьма ориентировочными. Это плохо не только само по себе, не только в связи с тем, что непрерывно повышаются требования к точности измерений и к чистоте материалов, но и потому, что отдельные свойства связаны между собой, т. е. образуют систему значений. Поэтому нередко небольшая ошибка в значениях одного из свойств служит источником большой погрешности в значениях других. Так известдао, например, что расчет тепловых эффектов взаимодействия органических соединений по их тепло-там сгорания может привести к существенным ошибкам, так как нередко он сводится к вычислению небольшой разности больших величин, и поэтому незначительная неточность в какой-либо составляющей может привести к огромной относительной погрешности в искомой величине. Вот колоритный пример, иллюстрирующий это положение расхождение в значениях теплоты сгорания этена на 1% при 7 = 600 К приводит к 17-кратной ошибке в величине константы равновесия реакции [c.6]

    В работе Э. Молинари [711] предполагается, что для реакций, в которых лимитирующей стадией является десорбция, в стационарных условиях работы катализатора компенсационный эффект мол<ет быть обусловлен передачей тепла, выделяющегося при адсорбции, десорбирующимся молекулам. С этой точки зрения константа, трактуемая как температура приготовления катализатора , согласно Молинари, означает температуру, при которой в реакции достигается адсорбционное равновесие, с изменением значения энергии активации. [c.316]

    В качестве А] можно выбрать любой компонент реакции и выразить ее уравнение, принимая стехиометрический коэффициент VI равным единице для этого целесообразно выбрать вещество, участвующее в образовании активированного комплекса. В уравнении (У1И.42) тепловой эффект Q относится к уравнению реакции, согласно которому подвергается превращению одна частица Аь Разность энергий активации обратной и прямой реакции составляет количество тепла, выделяющегося в элементарном акте реакции. Так как в элементарном акте реакции превращается один активированный комплекс лимитирующей стадии, 10, как видно из уравнения (У1П.41), если Q относится к превращению одной частицы Ль то величина М по Г. К. Борескову показывает, сколько частиц Л] участвует в превращении одного активированного комплекса лимитирующей стадии, т. е. из скольких частиц Л] состоит этот активиршанный комплекс. В общем случае, если уравнение реакции, а следовательно, и тепловой эффект Q и константа равновесия К, отнесены к превращению V/ частиц A , то величину М можно рассматривать как число, показывающее, во сколько раз число [c.324]

    Слабый тепловой эффект. Основным вопросом при расс.мотрении теплового эффекта является определение линии равновесия, зависящей от температуры жидкости. Слабый тепловой эффект можно учесть, исходя из температуры жидкости наверху и внизу абсорбера. Первая определяется внешними условиями (например, тепло-съемом в контуре подачи жидкости), а последняя — из энергетического баланса всего абсорбера. Эти температуры обусловливают рэстворимость газа на концах абсорбера и таким образом определяют наклон равновесной кривой в точках, соответствующих составу жидкости на входе в абсорбер и на выходе из него. Если приближенная равновесная линия, проведенная через эти конечные точки, имеет не слишком большую кривизну, то можно предположить, что движущая сила, рассчитанная по такой зависимости, достаточно точна, [c.419]


Смотреть страницы где упоминается термин Тепловой эффект равновесия: [c.328]    [c.679]    [c.103]    [c.341]    [c.45]    [c.216]    [c.632]    [c.538]    [c.40]    [c.100]    [c.679]   
Синтез углеводородов из окиси углерода и водорода (1954) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Эффект тепловой

Эффект тепловой, Тепловой эффект



© 2025 chem21.info Реклама на сайте