Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галогены, разделение

    Весьма детальная классификация элементов по кристаллическим структурам была дана в 1942—1960 гг. Г. Б. Бокием [160]. Он различает шесть основных типов структур элементов 1) гексагональную плотную упаковку, 2) кубическую плотную, 3) кубическую объемноцентрированную упаковку (металлические структуры), 4) молекулярные структуры, 5) ковалентные структуры с координационным числом K—S—N, 6) прочие структуры. Г. Б. Бокий отметил принадлежность водорода по кристаллохимическим признакам к группе галогенов, разделение элементов III группы на две подгруппы (бора—таллия и скандия—актиния), указал на своеобразие структур марганца, урана, индия, цинка, кадмия и ртути, объяснил повышенные значения da для структур цинка и кадмия эллипсоидальной формой атомов и высказал предположение, что алюминий, а- и р-таллий, свинец и индий в металлическом состоянии не отщепляют всех валентных электронов [160]. В этом плане кристаллохимия элементов была рассмотрена и в ряде других работ [32, 111] и др. [c.190]


    Работа 8. Хроматографическое разделение галоген-ионов [c.704]

    Значения температуры кипения и теплоты испарения жидких галогеноводородов, приведенные в табл. 26.3, свидетельствуют о том, что наименьшая тенденция к ассоциации имеет место у хлористого водорода. Энергия связи в ряду НР — Н1 уменьшается, что обусловлено резким возрастанием числа электронов в атомах галогенов в ряду Р — I, а также уменьшением различия в энергии уровней и подуровней по мере увеличения числа электронных слоев. В результате этого уменьшается степень перекрывания орбиталей водорода и галогена и возрастает межатомное расстояние. Моменты диполей галогеноводородов в связи с уменьшением тенденции к разделению зарядов и увеличением межатомных расстояний в той же последовательности существенно уменьшаются. [c.317]

    Фтор р2 используют при получении фторида урана (VI) ирб, который необходим для разделения изотопов урана. Он применяется как фторирующий агент многих органических и неорганических соединений. Фтор и его соединения с кислородом и галогенами, например Ор2, 1F, вводят в ракетное топливо в качестве окислителя. [c.125]

    КАЛИЯ ГИДРОСУЛЬФИД KHS, f л 455 С раств. в воде, СП. гигр. Образует гемигидрат. Легко окисл. Ог, галогенами при нагрев., гидролизе, действии к-т выделяет HjS. Восстановитель. Получ. поглощением H2S водным р-ром КОН. Примен. в аналит. химии для разделения тяжелых металлов. [c.232]

    Какова же причина такого разделения заместителей на две группы в табл. 16-2 В двух словах это можно объяснить так любой заместитель, присутствующий в кольце и сообщающий ему положительный заряд (полный или частичный), будет дезактивировать кольцо. Эта дезактивация отражает увеличение энергии активированного комплекса, ведущего к ог-комплексу, вызванное взаимодействием в кольце двух одноименных зарядов (одного от электрофильной частицы, другого — от заместителя). К числу групп, дезактивирующих бензольное кольцо, относятся —N02, —СГз, —ЗОзН, —NRз и —СМ. Даже индуктивный эффект галогенов достаточен для уменьшения скорости замещения галогенбензолов по сравнению с незамещенным бензолом. [c.616]

    Галогенопроизводные углеводородов [133]. Введение атомов галогенов в углеводороды сопровождается некоторой поляризацией. Поэтому для разделения галогенопроизводных углеводородов пригодны полярные адсорбенты. При выборе колонок и метода детектирования нужно иметь в виду, что бромпроизводные углеводородов постепенно гидролизуются в присутствии едких щелочей. [c.514]

    Метод обеспечивает количественное разделение практически при любых соотношениях галогенов в смеси, например 1000 ч. хлора на 1 ч. брома и 1 ч. иода 1000 ч. брома па 1 ч. хлора н 1ч. [c.58]


    Классификация способов получения простых веществ. Если подразделить способы производства простых веществ в соответ < твии с состояниями, в которых существуют элементы, и с их химическими свойствами, то получится схема, представленная в табл. 3.14. Замечательным примером технологического про цесса, не сопровождающегося химическими превращениями является способ разделения жидкого воздуха на азот, кислород и инертные газы путем перегонки. Процессы, включающие химические реакции, согласно общей классификации, учитывающей характер этих реакций, можно разбить на три класса восстановление, окисление и пиролитическое разложение (пи ролиз). Большую часть простых веществ получают с помощьк> реакций восстановления. Дальнейшая более детальная класси фикация позволяет распределить эти процессы по подклассам 2.1—2.5. Обычно большинство металлов встречается в виде ка тионов, да и многие неметаллы (за исключением галогенов) имеют положительные степени окисления, поэтому в результате передачи им электронов в процессе восстановления достигается нулевая степень окисления. [c.138]

    Особого внимания заслуживает метод разделения макроингредиентов в жидкостях различной плотности. Он основывается на неодинаковой плотности петрографических компонентов. Для этой цели используются водные растворы хлорида кальция и цинка, смеси бензола с четыреххлористым углеродом и другими галоген-производными углеводородов с высокой плотностью. [c.86]

    Образование комплексов. Азотсодержащие соединения нефтей за счет неподеленных пар электронов азота способны образовывать донорно-акцепторные связи и комплексные соединения с галогенами, солями металлов ртути, цинка, олова, хрома(П1), меди (II) и других, карбонилами железа [207]. Однако из-за наложения электрических моментов диполя серу-, азот- и кислородсодержащих соединений, например для иодидов, амино-, тио- и ал-коксицодидов (6,67—33,33) 10 Кл-м с помощью комплексообразования невозможно селективное выделение или разделение этих классов соединений. [c.91]

    Цепными реакциями помимо реакций с галогенами и процессов термического распада являются многие реакции окисления органических и неорганических веществ кислородом, а также процессы полимеризации мономеров, содержащих двойные связи. Например, полимеризация амида акриловой кислоты СН 2 = СН — ONHg, которая в последние годы нашла широкое применение в биохимии для получения полиакриламидных гелей, позволяющих эффективно проводить разделение сложных смесей белков и нуклеиновых кислот. [c.317]

    Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь прежде всего универсальным способом разделения элементов. Они выгодно отличаются от всех других известных методов разделения высокой специфичностью (избирательностью действия), позволяют осуществить разделение весьма близких по свойствам неорганических или органических веществ. Так, например, хроматографическим путем разделяют смеси катионов металлов щелочной группы, щелочноземельных металлов, редкоземельных элементов, элементов-двойников, таких как цирконий и гафний разделяют смеси геометрически изомерных комплексных соединений (например, цис-транс-язомерных комплексов платины или кобальта) отделяют микроколичества трансплутониевых элементов от основной массы урана или плутония, а также от продуктов деления разделяют смеси анионов галидов, кислородных кислот галогенов, фосфорных кислот, аминокислот, смеси органических соединений, являющихся пред- [c.9]

    Видно, что наличие в молекуле обычных ковалентных связей (даже сильно поляризованной связи С—Р) создает дипольный момент не более 20. Дипольный момент нитросоединений почти вдвое больше. Поскольку межатомные расстояния в связях С— галоген, С—О, С—Ы, N—О имеют один и тот же порядок величины (около 0,15 нм), увеличение дипольного момента указывает на значительную величину разделенного заряда в нитрогруипе. Особенно поучительно сильное возрастание дипольного момента от нитрозосоединений (обычная двойная связь N=-0) к нитросоединениям (семнполярная связь N В—0-). [c.220]

    В качественном ато.мно-эмиссионмом спектральном анализе в отличие от химического ие требуется сложных операций по групповому разделению элементов. С помощью этого метода можно легко различить два металла с близкими химическими свойствами. Например, неодим и иразеодим при их совместном присутствии идентифицирую1ся с не меньшей простотой, чем алюминий и магний. Результаты анализа в любой момент могут быть проверены путем повторного изучения спектрограммы. Этот метод особенно ценен тогда, когда неизвестен общий химический состав анализируемого вещсства или необходимо обнаружить искомый элемент в пробе. Для выполнения анализа небольшая навеска или капля раствора, нанесенная на торец углеграфитового электрода, возбуждаются электрической дугой, а спектр снимается на фотопластинку или изучается визуально. Присутствие или отсутствие элемента в пробе безошибочно может быть установлено по двум-трем характерным спектральным линиям. Этим методом можно быстро определить один или несколько металлов. Спектральные линии благо-ролных газов, галогенов, серы и некоторых редких тяжелых металлов малочувствительны или для их определения требуются специальные приемы и соответствующая аппаратура, что делает выполнение анализа более сложным, чем химическими методами. [c.665]


    Неподвижная фаза должна растворять анализируемые вещества, чтобы они не проходили по колонке слишком быстро и без разделения. При выборе подходящего растворителя следует руководствоваться тем, что растворитель должен быть химически аналогичен растворяемому веществу, поэтому для исследования силиконов берут силиконовое масло, для галогенных соединений — например, дибутилтетрахлорфталат, для спиртов — диглицерин, для насыщенных углеводородов — сквалан и т. д. В этих случаях вещества, как правило, выходят из колонки в последовательности уменьшения их давления пара при рабочей температуре. Поэтому неподвижные фазы, химически сходные с разделяемыми соединениями, предпочитают применять преимущественно для исследования смесей, компоненты которых принадлежат к одному и тому же гомологическому ряду, так как при этом всегда имеются различия в давлении пара и степень разделения зависит исключительно от эффективности колонки. [c.95]

    Получение этиленовых соединений отщеплением галогена от 1,2-дигалогенидов нецелесообразно, так как соответствующие дигалогвниды могут быть синтезированы почти исключительно путем присоединения галогена по двойной связи. Однако этот метод важен тем, что продукты присоединения галогенов являются, большей частью, хорошо кристаллизующимися, трудно растворимыми веществами, которые могут -использоваться как для выделения веществ, так и для разделения смесей, [c.678]

    Малиновская Т. А., Разделение суспензий в промышленности органического синтеза, М., 1971 Ж у ж п к о в В. А., Фильтрование. Теория и практика разделения суспензий, 4 изд., М., 1980 Лунев В. Д., Емельянов Ю. А., Фильтрование в химической промышленности, Л., 1982. В. А. Жужиков ФИНКЕЛЬШТАИНА РЕАКЦИЯ, замещение хлора я брома в орг. соед., содержащих связь С—Hal, на иод действием Nal. Бромпроизводные реаг. легче, чем хлорпроизводные. Высокой реакц. способностью обладают соед., содержащие в а-положении к галогену группы СООН, СО, [c.622]

    Масс-спестрометрическне Ж. а. Действие их основано на разделении ионов по их Nta avi в магн. или электрич. полях предназначены для качеств, либо количеств, анализа состава жидких сред. Области применения анализ галоген-и серосодержащих соед.. >г.7гводородов, спиртов, альдегидов, кетонов, эфиров и лр предел обнаружения 10 % (см. также Масс-спектро.иетрич). [c.151]

    Примененве. Образование К. с. используют в экстракционных и сорбционных процессах разделения и тонкой очистки редких, цветных и благородных металлов, в аналит. химии (см. Комплексонометрия, Комплексоны). К. с. применяют в качестве селективных катализаторов разл. процессов хим. и микробиол. пром-сти, для создания окислителей на основе фторидов галогенов и благородных газов, в качестве источников Н и Oj на основе гидридов и кислородсодержащих соед., в медицине, в т. ч. в терапии разл. видов опухолей, в качестве источников микроэлементов в животноводстве и с. х-ве, для получения тонких покрытий на разл. изделиях микроэлектроники и для придания антикоррозионных св-в и мех. прочности, и т. д. В живых организмах К. с. присутствуют в виде витаминов, комплексов нек-рых металлов (в частности, Fe, Си, Mg, Мп, Мо, Со) с белками и др. в-вами. [c.471]

    Для измерения спектров используют спектральные приборы-спектрофотометры, осн. части к-рого источник излучения, диспергирующий элемент, кювета с исследуемым в-вом, регистрирующее устройство. В качестве источников излучения применяют дейтериевую (или водородную) лампу (в УФ области) и вольфрамовую лампу накаливания или галогенную лампу (в видимой и ближней ИК областях). Приемниками Излучения служат фотоэлектронные умножители (ФЭУ) и фотоэлементы (фоторезисторы на основе PbS). Диспергирующими элементами прибора являются призменный монохроматор или монохроматор с дифракц. решетками. Спектр получают в графич. форме, а в приборах со встроенной мини-ЭВМ-в графической и цифровой формах. Графически спектр регистрируют в координатах длина волны (нм) и(или) волновое число (см )-пропускание (%) и(или) оптич. плотность. Осн. характеристики спектрофотометров точность определения длины волны излучения и величины пропускания, разрешающая способность и светосила, время сканирования спектра. Мини-ЭВМ (или микро-процеесоры) осуществляют автоматизир. управление прибором и разл. мат. обработку получаемых эксперим. данных статистич. обработку результатов измерений логарифмирование величины пропускания, многократное дифференцирование спектра, интегрирование спектра по разл. программам, разделение перекрывающихся полос, расчет концентраций отдельных компонентов и т. п. Спектрофотометры обычно снабжаются набором приставок для получения спектров отражения, работы с образцами при низких и высоких т-рах, для измерения характеристик источников и приемников излучения и т.п. [c.397]

    При хроматографическом разделении смесей необходимо постоянно следить за тем, не происходит ли какого-либо изменения веществ на адсорбенте — полимеризации, изомеризации, отщепления галогенов, воды и т. п. Правильным подбором адсорбента в большинстве случаев удается избежать этих нежелательных явлений. В некоторых случаях, наоборот, хроматографию используют для определенных превращений, например для дегалогенирования третичных галогенных соединений [150] или для разложения молекулярных соединений ароматических углеводородов (пикратов, стифнатов и т. п.) [107]. [c.375]

    Показано, что константа общей скорости реакции присоединения брома к пентену-1 в зависимости от полярности растворителя может изменяться в 0 ° раз ( ) [81J. Такой колоссальный эффект растворителя (а также некоторые другие экспериментальные факты) считался убедительным свидетельством в пользу того, что данная реакция протекает по так называемому механизму АднС1, который включает существенное разделение зарядов на стадии образования активированного комплекса. Показано также, что протонные растворители ускоряют эту реакцию присоединения за счет специфической сольватации анионного центра активированного комплекса [81]. Кроме того, оказалось, что в стадии, определяющей скорость бромирования алкенов, небольшую специфическую роль играет нуклеофильность растворителя [513]. Следует отмётить также, что растворитель сильно влияет не только на скорость, но и на стереоспецифичность реакций присоединения галогенов к алкенам (см. разд. 5.5.7) [79, 81]. [c.222]

    Наибольшее число работ посвящено изучению реакций замещения между радикалами (например, атомами галогенов, ал-коксильными или пероксильными радикалами и т. д.) и нейтральными молекулами А—X (см. первую строку в табл. 5.10). В таких реакциях атом А (часто это атом водорода) медленно переносится от А—X к К . В соответствующем этой реакции изо-полярном активированном комплексе нет существенного разделения зарядов. Следовательно, в таких реакциях должны наблюдаться только пренебрежимо малые эффекты растворителей. Однако известны и радикальные реакции, в которых изменение полярности растворителя может играть важную роль. В таких реакциях, скорость которых заметно зависит от характера среды, следует учитывать ту или иную степень разделения зарядов в процессе активации. В свою очередь степень разделения зарядов в активированных комплексах типа [К ---А---Х ] должна зависеть от сродства радикала К к электрону и потенциала ионизации молекулы А—X. [c.259]

    Химические методы разделения основаны на разном отношени1 компонентов смеси к действию кислот, щелочей, галогенов, водород и других соединений. [c.78]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]

    Специфичным является метод, основанный на взаимодействии ионов галогенов с фенилннтратом ртути(П), приводящем к соответствующему фенилгалогениду [343]. Ценность этой реакции состоит в том, что ее продукт легко экстрагируется органическими растворителями и, являясь устойчивым в условиях разделения методом газовой хроматографии, вполне пригоден для определения галогенов при их одновременном присутствии [346 J. [c.22]

    Особенно щироко методы осаждения и адсорбции применяют для разделения смесей и концентрирования ионов Вг в микро-и радиохимическом анализе. Ярким примером быстрого отделения бромид- и иодид-ионов от большого числа продуктов деления урана является селективное осаждение галогенов на тонком слое све-жеосажденного Ag l (0,01 ммолъ/см ), который наносят просасыванием взвеси через мембранный фильтр площадью 2,5 или 6,5 см , а затем промывают 0,1 HNO3. [c.51]

    В качестве сорбентов для разделения смесей галогенов применяют также гели целлюлозы [382] и неионообменные полимеры типа Сефадексов. Пример такого разделения рассмотрен в работе [432[. [c.64]

    В аналитической химии брома применяют газовую и газожидкостную хроматографию. В первой из них пользуются твердыми сорбентами, во второй — нелетучим, так называемым неподвиж-пым, растворителем, нанесенным на поверхность зерен неактивного носителя, заполняющего колонку. Анализируемую смесь в количестве нескольких микролитров вводят через самоуплотняющуюся диафрагму в обогреваемый испаритель, и образовавшиеся пары переносятся потоком инертного газа-носителя (Аг, Не, Hj, Ng) в верхнюю часть колонки с сорбентом. Перемещаясь по высоте слоя, смесь делится па компоненты, которые попадают в детектор, преобразующий изменения концентрации в потоке в электрические сигналы, регистрируемые самопишущим потенциометром. Узлы хроматографа, соприкасающиеся с анализируемой смесью в случае непосредственного определения галогенов или их водородных соединений, должны быть изготовлены из коррозионноустойчивого материала, чаще всего из стекла. Это требование отпадает, если анализ ведут методами реакционной хроматографии, сочетающими химическое превращение этих компонентов реакционной смеси с хроматографическим разделением полученных менее активных продуктов. Органические бромпроизводные обычно определяют непосредственно в типовой хроматографической аппаратуре, но иногда они подвергаются химическим изменениям до или после разделения на колонке. [c.141]

    Элементный бром. Бром в смеси с хлором можно определить по методу [172], основанному на взаимодействии галогенов с зтиленом прн 0 С и последующем разделении смеси дибром- и дихлорэтана на хроматографе УХ-2, снабженном колонкой длиной 2,5 м и диаметром 4 мм, заполненной носителем ИНЗ-600 с зернами 0,25— 0,50 мм с нанесенной на него смесью полиэтиленгликоля-2000 и силиконового масла ВКЖ-94 в количестве соответственно 5 и [c.141]

    Фотометричес- кий Лигроин Бром, хлор, иод 4.10-5 5 Начало, как в [745], затем выпаривание раствора досуха, сорбция ионов металлов катионитом, добавление Р(1304 и фотомет-рирование Р(1Вг2 при 230 нм при наличии других галогенов необходимо разделение [402] [c.167]

    Облучение 8 мл воды тепловыми нейтронами в течение 20 мин., разделение галогенов с изотопными носителями, осаждение AgBг и измерение активности [c.177]

    Рассмотрим подробнее методы получения производных с целью повышения чувствительности ГХ анализа, в том числе получение летучих производных для высококипящих или лабильных соединений, для которых метод ГХ вообще непригоден без перевода их в более летучие производные с проведением химических реакций в мягких условиях. Метод получения производных для повышения чувствительности различных типов детекторов, глав- ным образом таких селективных детекторов, как ДЭЗ, ДТИ и ДПФ, состоит в введении с помощью химических реакций в молекулы анализируемых веществ различных функциональных групп и атомов, к которым используемый детектор имеет максималь- ную чувствительность. Например, ДЭЗ имеет повышенную чув--ствительность к галогенам. Поэтому получение и анализ галоген- содержащих производных органических соединений путем замены атомов Н на атомы С1, Вг, Р и I является перспективным путем повышения чувствительности этого детектора. Получение азот- и фосфорсодержащих производных позволяет увеличить чувст-л вительность анализа с применением ДТИ, а получение фосфор- и серосодержащих производных снижает предел обнаружения ГХ-метода с использованием ДПФ. В табл. 2.13 приведены срав- нительные показания ДЭЗ для некоторых галогенпроизводных спиртов и фенолов. Бром и иод не входят в состав этих производ-1 ных в связи с их малой летучестью и значительно меньшей эффективностью разделения. Из табл. 11.13 видно, что с увели-1 1.  [c.192]


Смотреть страницы где упоминается термин Галогены, разделение: [c.5]    [c.203]    [c.154]    [c.306]    [c.304]    [c.307]    [c.87]    [c.224]    [c.740]    [c.812]    [c.108]    [c.50]    [c.50]    [c.60]    [c.73]    [c.378]   
Лабораторная техника органической химии (1966) -- [ c.514 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение галогенат-ионов

Хроматографическое разделение галоген-иоиов



© 2025 chem21.info Реклама на сайте