Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость изменение с давлением и температурой

    Червяки с большой глубиной и большим шагом витка почти не применяются из-за их чувствительности к изменениям давления, температуры и вязкости материала. [c.195]

    Здесь с и 0) — индивидуальные постоянные, не зависящие ни от температуры, ни от давления. Вторая из них представляет собой некоторый объем, по смыслу уравнения близкий постоянной Ь уравнения Ван-дер-Ваальса (111,28). Таким образом, v — о) характеризует свободный объем жидкости. Вязкость оказывается обратно пропорциональной этой величине. Точнее говоря, при изменении температуры и давления изменяется свободный объем жидкости, а это главным образом и влияет па ее вязкость. Так, с повышением температуры увеличивается объем жидкости, а следовательно, и величина v — ы при этом, в соответствии с ур. (V, 3), уменьшается вязкость. Это происходит потому, что при повышении температуры увеличиваются средние расстояния между молекулами и ослабляется взаимное притяжение между ними. (В ассоциированных жидкостях это сопровождается и уменьшением степени ассоциации.) Уменьшение вязкости при повышении температуры показано в табл. 22. [c.176]


    Предварительными расчетами устанавливают, что в заданном диапазоне изменения температуры и состава газовой смеси значение динамического коэффициента ее вязкости при давлении 300 ат находится в пределах 2,95 10 3,1 10 н сек/м . Принимаем ц = 3,0 10 (к сек)1м . Плотность газовой смеси рассчитываем по правилу аддитивности  [c.301]

    Кроме того, установлено, что изменение давления на работу сепаратора заметного влияния не оказывает. Изменение атмосферных условий также прямо не сказывается, так как разделение эмульсии идет в закрытом канале. Однако при значительном снижении температуры окружающей среды может уменьшиться температура эмульсии, что приведет к повышению ее вязкости и, как следствие этого, снижению скорости коагуляции и ухудшению условий разделения эмульсии. Это нежелательное явление можно компенсировать, так как в неравномерном электрическом поле высокого напряжения происходит подогрев жидкости и ее перемещение за счет создания бегущего " электрического поля. [c.48]

    Вязкость минеральных масел меняется с изменением давления больше, чем растительных и животных коэффициент а в приведенном выше уравнении составляет для минеральных масел 1,002 —1,004, а для растительных и животных соответственно 1,001—0,0015. Из минеральных масел сильнее всего меняют свою вязкость с изменением давления масла из асфальто-смолистых и нафтено-ароматических нефтей и меньше масла парафинового основания. В рассматриваемом отношении все перечисленные масла ведут себя, следовательно, так же, как и в отношении к изменению температуры. [c.126]

    В табл. 26 дается изменение вязкости под давлением при двух температурах для воды и минерального масла (вязкость при атмосферном давлении принимается за единицу). [c.80]

    Принцип непрерывности. При непрерывном изменении параметров, определяющих состояние системы (давление, температура, концентрация), свойства ее отдельных фаз также изменяются непрерывно. Свойства всей системы в целом изменяются непрерывно лишь до тех пор, пока не изменится число или характер ее фаз. При появлении новых или исчезновении существующих фаз свойства системы в целом изменяются скачком. Например, если на диаграмме состояния воды (см. рис. 50) взять фигуративную точку в пределах области пара, то пока точка находится в этой области, с изменением давления и температуры в системе будет происходить непрерывное изменение ряда свойств плотности, вязкости, теплопроводности и др. Но если при изменении температуры или давления фигуративная точка пересекает кривую АО, то пар превращается в кристаллы и в связи с этим на кривых наблюдается излом. Он указывает на то, что при переходе системы из парообразного состояния в кристаллическое вязкость, теплопроводность и другие свойства изменяются скачком. [c.201]


    Изменение давления до 10 МПа мало влияет на изменение вязкости. При больших давлениях его влиянием на изменение вязкости пренебрегать нельзя. Аналитические зависимости вязкости от температуры весьма разнообразны. Отношение коэффициента динамической вязкости к плотности жидкости называется коэффициентом кинематической вязкости, который обычно и применяется в практических расчетах  [c.18]

    Для расчета обобщенных индексов (как и индексов Ковача в изотермических условиях) используются исправленные времена удерживания, вычисление которых требует знания мертвого времени колонки Следует подчеркнуть, что значения / в режиме программирования температуры нельзя рассчитать по временам удерживания трех последовательно выходящих из колонки реперных компонентов (см. лабораторную работу 6), так как этот прием справедлив только для изотермических условий предпочтительнее использовать экспериментально определенные в том же самом режиме программирования значения /мг поскольку в других условиях из-за изменения давления на входе в колонку, вязкости газа-носителя и его термического расширения мертвые времена будут различными. Однако погрешности расчета индексов удерживания, обусловленные ошибками определения заметно сказываются на индексах только легких компонентов (ориентировочно при /я 2 ), поэтому на практике сравнительно небольшими изменениями в разных режимах можно пренебречь [c.172]

    Можно, например, следить за ходом реакции по выделению или, наоборот, поглощению газа, наблюдая изменение давления во времени. В других случаях можно также регистрировать изменение во времени показателя преломления, вязкости, объема, плотности, интенсивности окраски, изменение температуры замерзания или температуры кипения, электрической проводимости или вращения плоскости поляризации света ( сли продукты оптически активны). Если соединения, образующиеся в ходе реакции, поглощают некоторые излучения, то пользуются спектроскопией в инфракрасной, видимой и ультрафиолетовой областях. В этом случае интенсивность поглощения зависит от концентрации соединений. [c.10]

    С учетом изменения вязкости среды вдоль зазора вследствие изменения давления и температуры в потоке расчет силы Р , тр жидкостного трения усложняется, так как в этом случае градиент давления не будет постоянным по длине зазора. При использовании зависимости динамической вязкости среды от давления и тем- [c.300]

    Явление гистерезиса выражается не только в отставании вязкости, осмотического давления, оптического вращения и т. д., от изменения температуры, но также и в процессе синерезиса — самопроизвольного расслоения студня. При снижении растворимости полимера (например, за счет охлаждений) раньше, чем успеет осуществиться расслоение, может образоваться студень. Так как состояние равновесия соответствует расслоению и уже произошло застудневание, процесс разделения фаз (синерезис) продолжается в самом геле. Точно так же возникновение межцепных связей может отставать от падения температуры этим, по-видимому, объясняется, почему чрезмерно быстрое охлаждение растворов полимеров не ускоряет, а, наоборот, тормозит процесс застудневания (в результате снижения температуры падает скорость образования межцепных связей, которые не успели возникнуть при более высоких температурах). [c.504]

    Увеличение начальной температуры Го жидких ВВ имеет двойной эффект. Во-первых, с ростом Та возрастает скорость горения жидкости. Одновременно изменяются и критические условия (80) и (93) ввиду убывания т и о (в той мере, в какой растет температура поверхности горящей жидкости) при увеличении начальной температуры (влиянием Та на рг можно пренебречь). Анализ изменения критической обстановки в зависимости от Т показывает, что увеличение Та существенно снижает критическое давление р и скорость 3. Учитывая, что вязкость зависит от температуры экспоненциально, следует ожидать значительно более сильное влияние начальной температуры на устойчивость горения высоковязких систем в сравнении с невязкими. [c.207]

    Из табл. 1 видно, что полиэтилен высокой плотности менее чувствителен к давлению, чем полиэтилен низкой плотности. Кроме того, высокомолекулярный полиэтилен (материал с меньшим значением индекса расплава) подвержен более сильному влиянию давления, чем полиэтилен с низким молекулярным весом. Полипропилен и полиэтилен средней плотности почти одинаково реагируют на изменение давления. Было замечено также, что при давлении порядка 560—680 атм начинается процесс кристаллизации, а при достижении 700 атм скорость кристаллизации увеличивается. Это связано с тем, что внешнее давление сближает молекулы, способствуя кристаллизации, которая наступает значительно выше температуры плавления, соответствующей низкому давлению. Наиболее существенно влияние давления на вязкость полистирола, которая увеличивается в сто р аз. Молекулы полистирола по сравнению с полиэтиленом содержат очень большие боковые группы—бензольные кольца. Эти группы препятствуют плотному расположению молекулярных цепей, а при течении полистирола выступают в роли внутреннего пластификатора. При таком строении цепей имеется свободное пространство для их уплотнения и, следовательно, существует возможность изменения вязкости полимера в широком диапазоне. Исследованный перепад давлений очень часто имеет место при литье под давлением полистирола и, конечно, при этом ни в коем случае нельзя пренебрегать повышением вязкости. Можно надеяться, что в скором времени появятся дополнительные данные необходимые для расчета процесса литья. [c.40]


    Промышленный синтез метанола из оксидов углерода и водорода при низких температурах (200—300 °С) может быть проведен при разных давлениях. Естественно, при изменении давления меняются и физико-химические свойства реагируюш,их компонентов (плотность, вязкость, скорость диффузии, способность к адсорбции и т. п.). И хотя общие закономерности процесса образования метанола сохраняются, влияние отдельных технологических факторов на его выход (производительность катализатора), содержание и состав примесей будет различен, С повышением давления при прочих равных условиях увеличивается также равновесное содержание метанола в газе. [c.83]

    Коэффициент пропорциональности в этом уравнении т] называют динамическим коэффициентом вязкости или просто вязкостью. Вязкость ньютоновских жидкостей существенно зависит от рода жидкости и ее температуры. Изменение давления на вязкость оказывает незначительное влияние. [c.65]

    Неизотермический характер течения расплавов обусловлен прежде всего значительным диссипативным разогревом, являющимся следствием высокой вязкости полимерных расплавов. Строгий анализ неизотермического течения удается выполнить только численным методом. Однако на практике в большинстве случаев оказывается достаточным использовать приближенные методы, основанные на учете изменений средней температуры потока. Полученные при этом решения правильно описывают изменения профиля давлений и температур в одномерных течениях простейших типов. [c.187]

    Несколько неожиданным оказывается независимость глубины затекания от скоростного и температурного режимов. Этот факт объясняется тем, что увеличение скорости, которое приводит к уменьшению времени затекания, одновременно вызывает и уменьшение эффективной вязкости, приводящее к увеличению скорости затекания. Изменение температуры, проявляющееся в основном в изменении параметра х, приводит к таким изменениям эффективной вязкости и давления, при которых скорость затекания остается постоянной. [c.408]

    В промышленных процессах почти всегда возникает необходимость повышения или понижения температуры каких-либо веществ. Так, в химической технологии характер протекающих в химических реакторах процессов в значительной степени зависит от температурного уровня, поддерживаемого в реакторах. Температура влияет на выход продуктов реакции, обуславливает наличие или отсутствие побочных реакций, скорость реагирования и необходимые размеры реактора. От температуры могут зависеть физические и физико-химические свойства веществ (вязкость, теплоемкость, парциальные давления паров, растворимость, равновесные составы многокомпонентных смесей и т. п.). Для изменения значения температуры вещества или веществ, поддержания нужной температуры в реакторе или в ином аппарате необходимо подводить или отводить соответствующие количества теплоты. [c.207]

    Зависимость вязкости от давления. При изменении давления вязкость масел изменяется, причем эта зависимость будет различной при разных температурах При небольших давлениях (до 50 кПсм ) вязкость масла практически не изменяется. При давлениях до 300— 400 кПсм эта зависимость имеет практически линейный характер [c.154]

    При выводе указанного уравнения предполагалось, что коэффициенты пористости и проницаемости не изменяются с давлением, i. e. пласт недеформируем, вязкость газа также не зависит от давления, гяз совершенный. Принимается также, что фильтрация газа в пласте происходит по изотермическому закону, т.е. температура газа и пласта остается неизменной по времени. Впоследствии один из учеников Л.С. Лейбензона-Б. Б. Лапук в работах, посвященных теоретическим основам разработки месторождений природных газов, показал, что неустановившуюся фильтрацию газа можно приближенно рассматривать как изотермическую, так как изменения температуры газа, возникающие при изменении давления, в значительной мере компенсируются теплообменом со скелетом пористой среды, поверхность контакта газа с которой огромна. Однако при рассмотрении фильтрации газа в призабойной зоне неизотермичность процесса фильтрации сказывается существенно вследствие локализации основного перепада давления вблизи стенки скважины. Кстати, на этом эффекте основано использование глубинных термограмм действующих скважин для уточнения профиля притока газа по толщине пласта (глубинная дебитометрия). При рассмотрении процесса фильтрации в пласте в целом этими локальными эффектами допустимо пренебрегать. [c.181]

    Вследствие сложности измерения вязкости мазута в системе измеряется его температура, от которой зависит вязкость. Коэффициент коррекции фиксируется в блоке соотношения. Давленне в паропроводе по сушеству подслежпвает изменение давления мазута, которое, в свою очередь, изменяется ири колебании его температуры. Постоянная величина, определяющая разность между давлениями мазута и пара, устанавливается на суммирующем блоке. Опмсапная САР была реализована на стандартных приборах и прошла промышленные испытания на действующей печи одного из нефтеперерабатывающих заводов. Отклонение от заданного значения температуры сырья на выходе из печи составляло 2,5 °С, что значительно ниже допускаемого по технологическому регламенту. При этом усредненная суточная экономия топлива составила 15 т, экономия пара [c.122]

    Так как изменение давления в системах, достигающее в некото ыд случаях значительных величин, может вызвать повышение или понижёвле температуры масла, необходимо, чтобы эти колебания рабочих температур в минимальной степени отражались на вязкости применяемого масла. Иначе говоря, гидравлические масла должны иметь высокий индекс вязкости, т. е. пологую вязкостно-температурную кривую. Исключение мог)гг составить системы, где возможно поддержание постоянной рабочей температуры масла и давления в системе. [c.493]

    Для гидравлических амортизаторов применяют жидкости, представляющие собой маловязкие масла (веретенное, трансформаторное, турбинное) или их смеси (табл. 34). В качестве всесезонной амортизаторной жидкости можно рекомендовать жидкость ЛЖ-12Т — минеральное маловязкое масло и синтетический продукт (полисилоксана) с добавлением других компонентов и присадок. Жидкость АЖ-12Т вбладает низкой температурой замерзания (ниже —55° С) и относительно небольшим изменением вязкости при колебании температуры окружающего воздуха, применяется в интервале температур воздуха —50,..+60° С. Она выдерживает нагрев амортизаторов до 140° С и не разлагается при возрастании давления в них до 120 кгс/см . [c.64]

    Из физических свойств, влияющих на теплопередачу, только вязкость и давление наров значительно зависят от температуры. На рис. П2.2 и П2..3 показано влияние температуры на указанные свойства. Давление оказывает малое влияние, кроме области, близкой к состоянию насыщения. Поэтому все характеристики приведены для условий атмосферного давления, за исключением рис. П2.4—П2.6. Как видно из этих трех рисунков, удельная теплоемкость и теплопроводность (так же, как и плотность) изменяются в широких пределах при изменении давления в области, близкой к состоянию иасьицеиия. [c.327]

    Вязкость бензинов невелика, и ее изменение с температурой не вызывает ка1ких-либ0 осложнений в работе двигателей с воспламенением от иокры. Во всех других двигателях и топочных устройствах вязкость топлива имеет важное эксплуатационное значение. В дизельных и газотурбинных двигателях топливо обеспечивает смазку плунжерных пар топливных насосов. При недостаточной вязкости топлива плунжер и гильза насоса быстро изнашиваются. Кроме того, топливо малой вязкости может просачиваться через зазоры в топливном насосе при этом снижаются давление распыливания и экономичность двигателя, ухудшается смесеобразование. Верхний предел вязкости топлив обусловлен необходимостью обеспечить их прокачку по топливопроводам системы питания при низких температурах. [c.19]

    VII. 18.16. Оценить среднюю вязкость расплавленной вулканической массы в интервале температур 2000—1800 К, содержащей к концу процесса расширения (застывания) 70 % по объему газа под давлением 10 Па. В момент выброса объем расплава составлял половипу от объема затвердевшей прн 1800 К массы. Время остывания до затвердевания 20 мин, Изменением давления за счет изменения температуры массы можно пренебречь. [c.253]

    В.— одно из важнейших и наиболее полно изученное соединение. Некоторые из свойств В. положены в основу определения единиц измерения фундаментальных физических величин массы, плотности, температуры, теплоты и уде гьной теплоемкости. По ряду физических свойств В. обнаруживает аномалии, например, по летучести соединений водорода с элементами подгруппы кислорода, по изменению плотности при увеличении температуры, зависимости вязкости от давления и теплопроводности от температуры. Эти аномалии В. обусловлены наличием водородных связей. Они играют важную роль в природе. [c.55]

    С увеличением температуры вязкость жидкостей уменьшается а газов увеличивается, что объясняется различным молекулярным строением этих двух сред. Вязкость жидкостей и газов изменяется твкже с изменением давления. Для жидкостей зависимость динамической вязкости от давления имеет вид [c.241]

    Различие в характеристиках пневмо- и гидроприводов связано с особенностями течения газов через дроссельные устройства, с большими по сравнению с жидкостями изменениями плотности газов при изменении давления и температуры и с меньшей их вязкостью. Однако в ряде случаев наблюдается лишь количественное расхождение характеристик того и другого класса приводов, Основные положения устойчивости и качества регулирования, рассмотренные ранее для гидроприводов, оказываются применимы и к пневмоприводам. Общие и отличительные черты динамики гидро- и пневмоприводов ыявляюгся прежде всего в результате сравнения их математических моделей. Ограничимся сравнением линейных моделей, причем воспользуемся схемой пневмопривода, которая аналогична описанной в параграфе 12.1 схеме гидропривода с дроссельным регулированием. С некоторыми дополнительными обозначениями схема пневмопривода дана на рис. 12.15. Для того чтобы более наглядно показать влияние сжимаемости газа на динамические характеристики привода, опора пневмоцилиндра принята абсолютно жесткой. Кроме того, предполагаются постоянными давление и температура газа в напорной линии перед входом в золотниковое распределительное устройство, Остальные упрощающие модель привода допущения укажем при составлении уравнений. [c.357]

    Плотность и вязкость жидкой N2O существенно зависит от температуры (рис. 1-2). Изменение давления почти не влияет иа вязкость N2O4 (ж). [c.17]

    Для разделения смеси соединений, характеризующихся широким интервалом т-р кипения, применяют газовую хроматографию с программированием температуры, когда в процессе хроматографирования в заданные промежутки времени повышают т-ру колонки со скоростью от неск. °С/мин до неск. десятков С/мин. Это создает дополнит, возможности расширения области применения ГХ (сравни хроматограммы иа рис.). Для улучшения разделения таких смесей используют также программирование скорости газового потока. При давл. 0,1-2,5 МПа роль газа-носителя сводится в осн. к перемещению исследуемых соед. вдоль колонки. Повышение давления приводит к изменению распределения в-в между подвижной и неподвижной фазами хроматографич. подвижность многих в-в увеличивается. ГХ при давлениях газа 10-50 МПа обладает рядом преимуществ по сравнению с жидкостной хроматографией 1) возможностью целенаправленного изменения объемов удерживания разделяемых соед. путем изменения давления в ширюких пределах 2) экспрессностью анализа вследствие меиьшей вязкости подвижной фазы и большего значения коэф. диффузии 3) возможностью использования универсальных высокочувствит. детекторов. Однако сложность аппаратуры и техники работы при повыш. давлении ограничивает широкое распространение этого метода. [c.468]

    Данные об аммиаке были взяты у Б. Коха (см. выще), за иск.тю-чением теплопроводности, которая была заимствована из работы Дж. М. Ленуара [Л. 306]. Дополнительные данные для водорода были получены у Кинана и Кэйя (газовые таблицы) и у Дж. М. Ленуара [Л. 307]. Опять, за исключением области критического состояния, данные о свойствах при других давлениях можно получить следующим образом. Плотность можно определить по уравнению состояния газа р =р1 Т. Из этого следует, что при любой температуре плотность р = р (р/ро), где ро=1,0 и р — плотность, приведенная в табл. П-4 для рассматриваемой температуры. Кроме того, удельная теплоемкость Ср изменяется очень мало с изменением давления в широких пределах. Такая независимость от давления справедлива также для теплопроводности Я, динамической вязкости [х и, следовательно, для критерия Прандтля Рг. Кинематическая вязкость V и коэффициент температуропроводности а обратно пропорциональны плотности  [c.603]

    Особенность работы масел данной группы постоянный контакт с холодильным агентом (фреон, аммиак, углекислота), циклическое изменение температуры и давления среды. Основные требования, которым должны удовлетворять эти масла не вступать в реакщ1ю с холодильным агентом, иметь возможно более низкую температуру застывания и меньше увеличивать вязкость при понижении температуры, не вызьшать коррозию цветных металлов. Масла для холодильных машин должны обладать высокой стабильностью и работать весь период эксплуатации без замены, т. к. в герметичных, часто неразборных узлах компрессоров невозможны смены и наблюдение за изменением его свойств. Чаще всего это маловязкие глубокоочищенные масла, к которым добавлены ингибиторы окисления и присадки, понижаюшле температуру застывания. [c.233]

    Основы методов исследования отдельных свойств нефтей при пластовых условиях на аппаратуре всех типов одинаковы и подробно изложены в литературеАппаратура, предназначенная для определения физических характеристик пластовых нефтей, допускает проведение комплекса исследований, включающего пять этапов 1) однократное выделение газа (разгазирование) 2) ступенчатое разгазирование 3) определение зависимости давление — объем 4) определение вязкости 5) определение температуры насыщения нефти парафином. На основании полученных данных могут быть рассчитаны следующие характеристики пластовой нефти давление насыщения, коэффициент сжимаемости, газосодержание, плотность, объемный коэффициент и усадка, растворимость газа в нефти. По данным ступенчатого разгазирования могут быть получены зависимости между давлением и газосодержанием, давлением (или газосодержанием) и объемным коэффициентом, давлением (или газосодержанием) и плотностью нефти, давлением и плотностью выделяющегося газа. Кроме того, можно получить зависимость между давлением (или газосодержанием) и температурой насыщения нефти парафином, а также давлением (или газосодержанием) и вязкостью нефти. Эта аппаратура не рассчитана на проведение исследований изменения свойств нефтей при термических методах разработки залежей. [c.9]

    В полидисперсных эмульсиях подъем относительно более крупных частиц может тормозиться более мелкими или ускоряться при их слипании. Причем коагуляция и коалесценция играют решающую роль в ускорении процесса расслаивания эмульсии. Например, в эмульсиях типа жидкость — жидкость коагуляция частиц дисперсной фазы приводит к удивительным на первый взгляд результатам сливки молока относительно быстрее и полнее отстаиваются в глубоком сосуде, чем в мелком [201 ], а увеличение вязкости дисперсной среды иногда приводит не к замедлению, а наоборот, к ускорению скорости расслоения [202]. Мельчайшие капельки жира увлекаются более грубодисперсными капельками и выносятся с ними кверху, потому что концентрация более глубокодисперсных капелек на единицу поперечного сечения вскоре становится достаточно высокой для проявления фильтрационного эффекта. При добавлении веществ, уменьшающих агрегативную устойчивость (но одновременно повышающих вязкость молока), происходит быстрая коагуляция и агрегация частиц и, следовательно, увеличение скорости расслаивания эмульсии. Поэтому не случайно внимание исследователей привлекают вопросы, связанные с изучением влияния ПАВ на гидродинамику стесненного движения капель и пузырьков [71, 190, 203, 204]. Особенно сложными становятся процессы седиментации совокупности пузырьков в полидисперс-ной газовой эмульсии при перемене внешних условий (давления, температуры, при наложении электрического или ультразвукового поля), когда изменяется их устойчивость вследствие интенсификации процессов испарения легколетучих компонентов, фазовых переходов газ — жидкость, изменения свойств межфазной поверхности и т. д. [c.102]


Смотреть страницы где упоминается термин Вязкость изменение с давлением и температурой: [c.179]    [c.31]    [c.125]    [c.46]    [c.217]    [c.140]    [c.43]    [c.164]    [c.323]    [c.206]    [c.247]    [c.206]    [c.125]    [c.87]   
Справочник инженера-химика Том 1 (1937) -- [ c.859 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость температуры и давления

Изменение температуры



© 2025 chem21.info Реклама на сайте