Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Исследование полимеров и сополимеров

    При исследовании свойств сополимеров было отмечено, что при одинаковом составе и близких молекулярно-массовых характеристиках некоторые показатели могут существенно различаться. Это объясняется проведением синтеза сополимеров при различных параметрах процесса и применением каталитических систем разного строения, следствием чего может быть различное распределение мономерных звеньев в макромолекулярных цепях сополимеров (разная степень блочности), а также различное содержание сомономера в разных фракциях полимера (разная композиционная неоднородность). Это вызывает различия в кристалличности и плотности и, следовательно, в некоторых эксплуатационных свойствах сополимеров [c.26]


    В книге, состоящей из 40 глав, основное место, естественно, уделяется описанию различных методов исследования полимеров. Представлены все методы определения молекулярных весов полимеров, их молекулярновесового распределения, обсуждаются разнообразные спектральные методы, применяющиеся для анализа строения и структуры гомо- и сополимеров УФ-, ИК-, КР-спектро-скопия, эмиссионная спектроскопия, спектроскопия ЯМР, масс-спектроскопия, спектроскопия ЭПР, нейтронное рассеяние, аннигиляция позитронов. Ряд глав посвящен хроматографическим методам, таким, как газовая и жидкостная хроматография, в том числе и при высоких давлениях, тонкослойная хроматография, ионообменная хроматография, ситовая хроматография, включая гель-про-никающую хроматографию, хроматография с обращением фаз. Методы анализа структуры полимеров обсуждаются при рассмотрении электронной микроскопии, рентгеноструктурного анализа, дифракции электронов и ряда других методов. Физические свойства полимеров оцениваются с помощью таких методов, как дилатометрия, определение температур плавления и стеклования полимеров, их электрических характеристик, анизотропии, диффузии и поверхностного натяжения. Представлены также методы исследования различных видов деструкции полимеров. [c.6]

    Метод эмульсионной полимеризации диенов и некоторых других непредельных соединений интересен тем, что в качестве первичного продукта образуется стойкая водная суспензия, содержащая каучук в виде мельчайших частичек, т. е. синтетический латекс, удобный для многих областей технического применения каучука. Кроме того, этот способ позволяет получать совместные полимеры — сополимеры — различных диенов и соединений, содержащих винильную группу. Например, исследования эмульсионной полимеризации привели к разработке (1930) методов совместной полимеризации дивинила со стиролом, нитрилом акриловой кислоты и т. д. [c.202]

    Методом ЭСХА можно пользоваться для идентификации полимеров, сополимеров или смесей полимеров изучения структурной изомерии полимеров и сополимеров, например установления микрогетерогенности последних изучения валентных состояний в полимерах, полимерных пленочных покрытий исследования поверхностей, подвергнутых различной обработке, например плазменной изучения химической деструкции полимеров, окисления, нитрования их и т. п. изучения термо- и фотодеструкции полимеров, фотопроводимости полимеров, статики и динамики образования зарядов в полимерных образцах, трибоэлектрических явлений в полимерах. [c.142]


    Кроме исследования полимеров, сополимеров и других высокомолекулярных соединений в химии полимеров пиролизная хроматография находит широкое применение в лесохимии, криминалистике и особенно в биохимии для исследования и идентификации биополимеров. [c.195]

    Сканирующей электронной микроскопией можно пользоваться для изучения морфологии полимеров, сополимеров, блок-сополимеров, смесей полимеров исследования микроструктуры двухфазных полимеров, полимерных сеток, шероховатых и разрушенных поверхностей, клеев и особенно поверхностей, образующихся при разрушении клеевого шва наполненных и армированных волокнами пластиков органических покрытий (дисперсий пигментов, текучести связующих и их адгезии к пигментам и субстратам, выветривания из-за покрытия продуктами гниения, меления, образования пузырей или растрескивания, а также набухания окрашенных пленок в воде) пенопластов, определения качества пластиков, получающихся экструзией или прессованием. [c.113]

    Исследование полимера методом ИК-спектроскопии можно провести несколькими путями. Наиболее распространенный метод — отливка тонкой пленки полимерного материала из растворителя. Хотя в этом случае толщина неодинакова и точно неизвестна, она может быть исключена из расчетов, если использовать отношение оптических плотностей двух полос — по одной от каждого компонента. Метод применим к сополимерам любого числа мономеров при условии, что каждый из них имеет отдельную полосу поглощения. Величины пропускания в максимуме полосы должны быть оптимальны, как показано на рис. 6.5. [c.267]

    Исследование полимеров и сополимеров [c.192]

    По спектрам ЯМР высокого разрешения можно установить строение звеньев голова к хвосту или голова к голове , определить стереорегулярность полимеров и состав сополимеров, а иногда и порядок звеньев. Метод используют также для изучения кинетики процессов синтеза. Для полимеров с молекулярной массой AI IO во многих случаях можно определить содержание концевых групп и по этим данным рассчитать среднечисловую молекулярную массу Мп- Преимуществом ЯМР-спектроско-пии является сравнительная простота спектра и возможность проводить количественные определения без градуировки по моделям. Возможности метода для исследования полимеров ограничены их незначительной растворимостью. [c.28]

    Классические методы исследования полимеров — светорассеяние, седиментация, осмометрия, вискозиметрия и другие сталкиваются с существенными трудностями при анализе разветвленных и неоднородных по составу полимеров. Еще более сложен, а зачастую и невозможен анализ этими методами смесей таких полимеров с линейными полимерами. Подобные смеси часто возникают при синтезе сложных полимерных систем — блоксополимеров, привитых сополимеров и разветвленных гомополимеров, когда наряду с основным продуктом получаются соответствующие линейные гомополимеры. Сочетание ГПХ с классическими методами анализа полимеров и с другими хроматографическими методами (адсорбционной и пиролитической газовой хроматографиями) позволяет проводить анализ и таких сложных систем. При этом адсорбционную хроматографию можно с успехом использовать в тонкослойном варианте (ТСХ), что позволяет осуществлять качественный и количественный анализ структурной и химической неоднородности фракций, полученных микропрепаративным ГПХ-фракционированием. С помощью пиролитической газовой хроматографии (ПГХ) можно находить брутто-состав полимеров, а классические методы дают сведения о таких средних макромолекулярных характеристиках, как характеристическая вязкость, среднемассовая и среднечисленная молекулярные массы. [c.230]

    Нет ничего удивительного в том, что добавление полистирола не вызывает упрочнения СИС полимеров, поскольку в рассматриваемых пределах значений молекулярных весов и содержания полистирола прочность не зависит от этих параметров (см. рис. 13). Модули же, как и следовало ожидать, возрастают с повышением содержания полистирола в образцах. Характерно, что свободный полистирол не образует отдельной фазы, как это происходит при смешении двух гомополимеров, например полистирола и полиизо-прена, а включается в домены. Аналогичная совместимость наблюдается у блочного и добавленного полистиролов при переходе к сополимерам СБС, только здесь происходит повышение прочности с увеличением содержания полистирола вне зависимости от того, каково его происхождение. Результаты, полученные при исследовании этих сополимеров, свидетельствуют о том, что полистирол включается в домены, образуемые концевыми блоками, и способствует при этом лучшему разделению фаз, по-видимому, вследствие повышенного суммарного содержания полистирола в смеси. [c.110]

    Однако газо-хроматографические методы применяются далеко не всегда в оптимальном варианте, и использование их для решения различных проблем химии полимеров очень неравномерно. Наиболее широко газовая хроматография используется в тех областях, где формы ее применения являются традиционными. Так, газовая хроматография является основным методом анализа при определении примесей в мономерах и растворителях для полимеризации и широко используется при изучении летучих продуктов деструкции. В гораздо меньшей степени используется газовая хроматография для исследования термодинамики взаимодействия летучих стандартных соединений с высокомолекулярными соединениями методом обращенной газовой хроматографии. Пиролитическая газовая хроматография, в которой исследуемая полимерная система характеризуется спектром летучих продуктов пиролиза, является, пожалуй, единственным примером метода, разработанного совместно исследователями, работающими в газовой хроматографии и в полимерной химии, метода, широко используемого для идентификации полимеров, количественного анализа сополимеров и их строения. Однако можно не сомневаться, что в ближайшее время будут разработаны и другие варианты газо-хроматографического метода специально для исследования полимеров. [c.6]


    В третьем томе справочника по физической химии полимеров приведены результаты исследования полимеров двумя фундаментальными физическими методами — ИК и ЯМР спектроскопией. Объединение в одном томе двух взаимодополняющих спектроскопических методов определило его специфику. В отличие от предыдущих двух томов третий том содержит большое количество иллюстраций. Результаты исследования наиболее важных промышленных полимеров и сополимеров представлены в основном в виде спектров. В таблицах дана интерпретация спектров, позволяющая получить информацию о детальном химическом строении и конформации макромолекул. Иллюстративный характер представления основной массы фактических данных наложил определенные ограничения на выбор цитируемой литературы. Чтобы восполнить хоть в какой-то мере возникший при этом пробел, авторы сочли необходимым привести список рекомендованной литературы. В связи с ограниченным объемом справочника в этот список включена библиография в основном за последние пять лет. [c.11]

    Для исследования таких систем был избран метод дифференциального термографического анализа, широко применяемый для исследования физических и химических превращений в полимерах, сополимерах и смесях полимеров, особенно кристаллических, характеризующихся довольно четкими эффектами плавления, стеклования и др., а также для исследования влияния наполнителей на термическое поведение кристаллических полимеров [1—8]. [c.85]

    Метод обращенной газовой хроматографии, по-видимому, может быть применен также и для определения строения полимеров, состава сополимеров и других характеристик полимеров, которые влияют на изменение константы распределения газ — жидкость стандартных летучих соединений. Достоинством метода является возможность прямого исследования полимера (без его разрушения) при использовании малых величин проб, ограничением — вязкость исследуемых соединений, которая не должна быть слишком высокой при температуре опыта [6]. Метод обращенной газовой хроматографии может быть также применен для исследования кинетики [7] химических реакций, в том числе и реакций поликонденсации. [c.108]

    Жесткий пиролиз проводят при 800—1100°С. При этом разрывается большинство связей, даже связь углерод—углерод. Полимеры разрушаются на небольшие фрагменты, образуется много продуктов. Поэтому иногда предпочтительнее для исследования полимеров или сополимеров нормальный пиролиз. [c.195]

    Исследование полимеров и сополимеров при помощи ИК-спектроскопии 357 [c.357]

    Химические методы исследования полимеров и определение состава сополимеров [c.118]

    Установлена взаимосвязь структурных характеристик сополимеров со стабильностью электрстных свойств исследованных полимер-полимерных систем. [c.97]

    Значение модуля и ход кривой модуля позволяют сделать выводы об агрегатном состоянии и о структуре полимерных образцов. С помощью динамических исследований можно также определить степень кристалличности, степень сшивания, химическую неоднородность, а также отличить статистические сополимеры от блок-со-плимеров. Метод торсионных колебаний удобен для исследования полимеров, которые содержат пластификаторы или наполнители (рис. 28 и 29). [c.100]

    Интересно было выяснить, какой вклад в обнаруженный эффект вносило взаимодействие с поверхностью каждого из блоков. В связи с этим была изучена сорбция образцов гомополимеров, содержащих такие же количества тех же наполнителей, что и исследованный блок-сополимер. Гомополимер на основе олигодиэтиленгликольадипината обладает низкой сорбционной способностью (при относительном давлении пара р1/ро = = 100% значение х/т = 0,34%) максимальная сорбция (1,12%) наблюдается у полиуретана, наполненного 20% ЗЮд. Этот факт свидетельствует о том, что блоки СУДЭГ в полимере обладают весьма низкой гибкостью. Введение в гомополимер 5102 или коллоидного графита приводит к увеличению сорбции, хотя и незначительному. Что касается изотерм сорбции паров толуола полифу-ритом, то в этом случае картина совершенно иная. Сорбция резко возрастает с увеличением р1/ро, как показано на рис. I. 6. При введении 1 % (масс.) наполнителей наблюдается резкое возрастание сорбции в случае 5102 и такое же резкое ее снижение при наполнении графитом. При увеличении содержания наполнителя наблюдается снижение сорбции при наполнении 5102 и ее возрастание при введении коллоидного графита. [c.28]

    Среди стабильных комплексов, полученных на основе ПО, продолжается поиск возможных компонентов радиоиммунной диагностики и генной терапии [68]. В последние годы проявляется интерес к синтезу и исследованию полимеров и сополимеров, содержащих в макромолекулах оксимные группы, которые находят применение в различных технологических схемах получения им-муногенных синтетических вакцин [69-75]. [c.158]

    В последнее время изучение жидкокристаллического порядка в полимерах все в большей степени привлекает внимание многих исследователей. По-видимому, одна из основных причин этого явления кроется в возможности использования нематического состояния концентрированных растворов некоторых жесткоцепных полимеров для получения материалов с высокими механическими свойствами (гл. 4). Однако следует иметь в виду, что область проявления мезоморфных свойств в полимерных системах этим, хотя и важным, примером далеко не ограничивается. Так, в последние годы получило развитие другое направление — синтез и исследование полимеров на основе гибкоцепных гребнеобразных молекул с мезогенными боковыми группами (гл. 3). Несмотря на то что перспективы технического использования таких полимеров пока ще не вполне ясны, изучение их по ряду причин следует считать важным. Не менее широко известны работы по изучению морфологий блок-сополимеров, в концентрированных растворах и гелях которых наблюдаются структуры, аналогичные жидкокри--сталлическим (гл. 6). Заманчивой перспективой практического использования таких систем я1вляется возможность создания материалов, сочетающих свойства эластомеров и пластиков. [c.5]

    Оудиен, Собил и другие [832] исследовали прививку стирола к найлону под влиянием у-лучсй. Они нашли, что разбавление стирола метанолом сильно увеличивает скорость прививки, очевидно, вследствие набухания найлоновой пленки. Это приводит к тому, что реакция происходит во всем объеме пленки. Кинетическое исследование этой реакции привело к выводу, что обрыв цепи является бимолекулярным. На основании исследования привитых сополимеров метилметакрилата, акрилонитрила или стирола к найлону (в виде пленки) или полиэтилену был сделан вывод, что прививка происходит по аморфным участкам полимера, причем большие кристаллы при этом не претерпевают изменений, а микрокристаллы разрушаются. Б растянутых образцах привитые цепи растут только перпендикулярно оси основного полимера. Молекулярный вес привитого полистирола составлял 2 400 ООО размер зерен достигал примерно 100— 200 А, что дает основание считать зерно за одну макромолекулу привитого слоя. Чрезвычайно высокий молекулярный вес объясняется тем, что реакция идет в твердой фазе и, следовательно, передача и обрыв цепи затруднены. Аналогичная картина имеет место при эмульсионной полимеризации в тот момент, когда мономер из капель переходит в водную фазу, а затем внедряется в полимерные зерна, увеличивая их размер. Точно так же и здесь — при прививке мономер из раствора переходит в найлон, а затем внедряется в сополимерные зерна, где происходит процесс прививки. При этом зерна привитого сополимера растут, выталкивая найлон. Авторы допускают возможность обрыва цепи путем рекомбинации [833]. [c.151]

    Действительно, дальнейшее исследование полимера мышьяка (сальварсана), полиакриламида и сополимера метилметакрилата и метакриловой кислоты показало, что эти полимеры в разбавленных растворах образуют вторичные агрегаты — молекулярные пачки, состоящие из нескольких нараллёльно соединенных развернутых цепей [48]. Для сальварсана и полиакриламида наблюдалось образование геометрически правильных структур в виде прямолинейно ограниченных молекулярных пачек (фото84). Видимые на микрофотографиях резкие повороты пачек можно объяснить высокой степенью упорядоченности содержащихся в них молекул, что приводит к возникновению в пачках больших напряжений за счет теплового движения. Эти [c.254]

    Таким образом, из сказанного выше следует, что если в прошлом трудности, возникавшие при попытках отыскать связь между строением полимера и его физическими свойствами, объясняли принципиальными различиями между свойствами макромолекул как таковых и макроскопическими свойствами полимерных вещертв, представляющих собой агрегаты таких макромолекул, то теперь сам факт существования подобных трудностей признается доказательством возможности практически бесконечного варьирования физических свойств полимерных материалов в зависимости от их молекулярного строения, что подчеркивает важное значение индивидуальных свойств макромолекул. Ярким доказательством существования описанной сложной взаимозависимости свойств могут служить результаты исследований полимеров биологического происхождения. Например, дезоксирибонуклеиновая кислота (ДНК), ответственная за наследственные признаки, представляет собой, образно говоря, послание, которое природа записывает на языке молекул и неповторимая индивидуальность которого проявляется, например., в чертах человеческого лица. В последние годы была показана возможность синтеза блок-сополимеров с регулируемой длиной последовательностей, привитых сополимеров с регулируемой длиной привитых боковых цепей и т. п., а также успешно развивались исследования синтетических полипептидов. Достигнутые в этих областях успехи дают основание утверждать, что вскоре в нашем распоряжении будут методы полной характеристики индивидуальности ( лица ) молекул полимеров. [c.153]

    Меерсон и Гримм [602] исследовали гистерезисные явления в растворах полимеров и установили, что в растворе, состоящем из сополимера акрилонитрила и винилиденхлорида, ацетона и бензола, гистерезис появляется, начиная с концентрации порядка 1%, и увеличивается с увеличением концентрации. Возрастание гистерезиса пропорционально температурному коэффициенту вязкости. Исследование фракций сополимера, отличающихся по удельной вязкости в два раза, показало, что в эквиконцентриро-ванных растворах гистерезис наблюдается только для высокомолекулярной фракции. Авторы считают, что все факторы, способствующие росту агрегации, будут приводить к появлению гисте-резисных явлений. [c.453]

    Исследован гидролиз сополимера метакриловой кислоты с 1,8% л-нитрофенил-метакрждата или 3,0% метоксифенилметакрилата. Реакция характеризуется двумя различными константами скорости, зависящими от конфигураций соседних мономерных единиц. Доля эфирных групп, быстро вступающих в реакцию, зависит от условий полимеризации и составляет в случае атактических полимеров 0,18—0,28%. Это группы, оба соседа которых имеют одинаковую (изо- или сипдиотактическую) конфигурацию. [c.545]

    Синтезу и исследованию различных сополимеров акрилонитрила уделяется очень большое и все возрастающее внимание. Как уже указывалось выше, синтетические полиакрилонитрильные волокна, выпускаемые в настоящее время промышленностью США и других стран (зефран [634, 635], креслон и верел [636— 638], орлон-42, акрилан, дралон и другие [639—640]), практически изготовлены из сополимеров акрилонитрила, чаще всего содержащих 80—95 4 акрилонитрила и мономер, обеспечивающий хорошую окрашиваемость полимера. [c.574]

    В работе описаны результаты изучения термостабильносги некоторых типов химических связей. Устойчивость продуктов определяли в изотенископе по давлению выделяющихся газообразных продуктов. Были определены температуры разложения Гр производных симметричного триазина, бензола и боразина. Полученные данные позволили авторам высказать предположение, что симметричный триазиновый цикл обладает примерно такой же устойчивостью к нагреванию, как и бензольный. Однако при исследовании полимера и сополимера 2, 6-диметил-1, 4-фениленоксида оказалось, что последний значительно устойчивее, чем полимер, содержащий три-азиновое звено . Метод определения Гр в изотенископе не является прямым методом определения термостабильности и поэтому возможны ошибки в конечных результатах. Более корректно определение термостабильности методом пиролитической газовой хроматографии Зная площадь хроматографического пика исходного вещества и площадь пика этого вещества после пиролиза при данной температуре, можно определить степень разложения. Измерения проводились при 750 и 870° С в инертной среде. Некоторые результаты определений представлены в табл. 1. [c.5]

    Определение числа компонент спектра поливинилиденхлорида затруднено большой шириной перекрывающихся линий. Лишь дополнительное исследование его сополимеров дало возможность точно установить их число. При сравнении спектра ЯКР С1 чистого поливинилиденхлорида со спектрами его блоксополимеров (с полистиролом и полиэфиром оксиэнантовой кислоты — рис. 8-2, б) оказалось, что число и расположение линий сохраняется, хотя линии чистого полимера гораздо шире. Это означает, что структура фрагмента и характер основного мотива расположения макромолекул остались прежними, однако степень упорядоченности в блок-сополимерах стала больше. Так как в каждой элементарной ячейке содержится по четыре полимерных цепи, то можно предположить, что статистическая разупорядоченность носит трансляционный характер, т. е. расположение ошибочной мономерной единицы в каждой цепи по отношению к соседним цепям статистическое. Образование блоксополимеров сопровождается упорядочиванием этой трансляционной неупорядоченности. [c.175]

    Однако не все свойства блоксополимеров и соответствующих смесей гомополимеров различаются Например, при дилатометрических исследованиях и блоксополимеров, и соответствующих смесей на кривых объем — температура обнаруживаются отчетливые изгибы вблизи точек плавления полиэтилена и полипропилена. При исследовании вибрации сополимеров наблюдаются затухания, подобные наблюдаемым в полиэтилене и полипропилене. Эти явления могут быть объяснены следующим образом. Во многих блоксо-полимерах блоки достаточно длинны и однотипные блоки могут объединяться, образуя кристаллические агрегаты. Эти агрегаты так малы, что в большинстве случаев их нельзя обнаружить микроскопически. При интенсивной термопластификации полиэтилена и полипропилена, однако, образуются смеси с видимыми в микроскоп областями кристаллитов, даже если в качестве третьего компонента присутствует статистический сополимер. [c.164]

    Нижний предел, ори котором боковая цепь начинает проявлять свойства полимера, не определен, но, например, в поли-цетилакрилате боковая цепь подвергается стеклованию при 35° С [45]. Для больщинства коротких боковых цепей Можно ожидать эффект, аналогичный наблюдаемому в поЛимергомо-логах ряда акрилатов [46]. При увеличении количества и размера боковых цепей Тс постепенно снижается. Влияние несовместимости составляющих цепей при этом существенно не проявляется. Анджело [47] получил высокомолекулярные блок-сополимеры стирола, бутадиена и изопрена в растворе тетрагидрофурана в процессе анионной полимеризации, использовав в качестве инициатора комплекс натрий — метилстирол. Выбранные для исследования образцы сополимеров изучали в разбавленных растворах было показано, что они являются истинными блок-сополимерами с узким молекулярно-весовым распределением и малой гетерогенностью состава. Темпера- [c.179]

    Случаи, когда при каталитической сополимеризации двух мономеров образуются блоксополимеры, являются, по-видимому, довольно редкими. Образование блоксопо-лимера по рассматриваемому механизму наблюдалось при сополимеризации пропилена с ацетиленом [403] и этилена с ацетиленом [404]. Если один из сомономеров на данной каталитической системе не образует гомополимеров, то при сополимеризации с другими полимеризующимися мономерами константа относительной активности его приравнивается нулю. Это позволяет получить определенное значение константы сополимеризации первого мономера и на этой основе осуществлять синтез сополимеров заданного состава. Исследование таких сополимеров различными физико-химическими методами показывает, что в цепи полимера встречается небольшое количество диад нереакционноспособного мономера. Вследствие этого для более точного определения константе сополимеризации второго сомономера, видимо, следует задавать какое-то очень малое конечное значение. [c.66]


Смотреть страницы где упоминается термин Исследование полимеров и сополимеров: [c.159]    [c.148]    [c.146]    [c.36]    [c.233]    [c.151]    [c.267]    [c.356]    [c.328]    [c.117]    [c.137]   
Смотреть главы в:

Методы исследования структуры и свойств полимеров -> Исследование полимеров и сополимеров

Методы исследования структуры и свойств полимеров -> Исследование полимеров и сополимеров




ПОИСК





Смотрите так же термины и статьи:

Полимеры исследование



© 2024 chem21.info Реклама на сайте