Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газов углерода, удаление из газов

    Очистная система. Для очистки газа от двуокиси углерода применяется промывная склянка И (см. рис. 81), заполненная 33—35-процентным раствором едкого кали, а для осушки газа — патрон 12, заполненный хлористым кальцием. Следует обратить особое внимание на тщательность удаления из газа водяных паров и двуокиси углерода, так как при попадании в колонку они легко замерзают, образуя ледяные пробки. [c.164]


    Разработаны многочисленные процессы очистки газа для удаления сероводорода, двуокиси углерода, азотистых оснований, воды й других нежелательных примесей. Применяемые чаще всего процессы перечислены в табл. 2. [c.98]

    Схема процесса представлена на рис. 13.6. В качестве примера рассматривается очистка водорода, получаемого паровой конверсией углеводородов природного газа. Выходящая из реактора газовая смесь, содержащая главным образом водород, окись и двуокись углерода, охлаждается добавкой водяного пара и конденсата примерно до 370° С и пропускается через, конвертор СО первой ступени, заполненный катализатором. Здесь 90—95% присутствующей окиси углерода превращается в двуокись с образованием эквивалентного количества водорода. Первая ступень конверсии служит в основном для получения дополнительного водорода и поэтому не может рассматриваться как операция очистки газа в узком смысле этого термина. Горячий газ, выходящий из конвертора СО, охлаждается примерно до 38° С, после чего двуокись углерода удаляют обычными регенеративными жидкостными процессами (этаноламиновая или поташная очистка). Очищенный от двуокиси углерода газ снова подогревается в печи и после добавки водяного пара проходит через конвертор второй ступени, за которым следует вторичная очистка от двуокиси углерода. Для получения водорода весьма высокой чистоты может быть добавлена третья ступень конверсии и удаления двуокиси углерода. Газ, получаемый по схеме с трехступенчатой конверсией СО, имеет следующий типичный состав (в % объемн.) окись углерода 0,02, двуокись углерода 0,01, метан 0,27, водород 99,7. [c.332]

    Газы нефтехимических процессов требуют той же очистки перед алкилированием, что и топочные газы (главным образом удаление оксида углерода). Основными разбавителями этилена являются этан, метан, водород, азот и оксид углерода, которые могут использоваться в качестве топлива после отделения алкилата. Процесс алкилирования можно проводить и без предварительной очистки газов от СО,, воды и (их отделение проводят с помощью стандартных операций), но тогда будет наблюдаться повыщенное старение катализатора. Если провести отмывку щелочью и СО, и осушку охлаждением, то полученный газ будет иметь следующий состав (% об.) метан - 37 этан - 19 этилен - 19 Н, - 9 Ы,— 13 СО — 3. Однако в результате очистки образуется большое количество сточных вод, загрязненных щелочью, и потребуется затратить значительное количество энергии на осушку газа. [c.293]


    Очистка газа (в особенности газов сухой перегонки, которые пропускались с кислородом над окисью железа) перед удалением окислов углерода газы обрабатывают (применяя катализаторы) для удаления кислорода эти предварительная контактная обработка проводится между насыщением газа паром и каталитической конверсией окиси углерода [c.410]

    Ядами для никелевых катализаторов метанирования являются соединения серы, мышьяка и хлора. Содержащий 0,1-0,2% серы катализатор является полностью неактивным. Однако на практике при эксплуатации крупных агрегатов маловероятно попадание на катализатор вредных примесей, которые практически полностью задерживаются на стадиях низкотемпературной конверсии и очистки газа от диоксида углерода. Наиболее вероятные яды, которые могут отравлять катализатор метанирования - это абсорбенты, применяющиеся для удаления СО2, или продукты их разложения. Они могут попасть на катализатор метанирования при плохой сепарации из газа или в аварийных ситуациях. [c.141]

    Удаление из коксового газа цианистых соединений производится методом абсорбции в скрубберах, где для промывки используется умягченная вода. Одновременно в воде растворяются двуокись азота, а также часть СО2, НгЗ и нафталина. На следующем этапе очистки двуокись углерода и сероводород удаляют абсорбцией, применяя в качестве абсорбента аммиачную воду. В реакцию с аммиаком вступают и остатки цианистых соединений. Для поглощения испарившегося аммиака газ затем промывают водой и направляют в скрубберы для удаления остатков СО2 и НгБ путем промывки раствором КаОН. [c.97]

    Современная химическая нромышленность и другие отрасли народного хозяйства во все возрастающем объеме используют в качестве сырья водород и углеводородсодержащие газы и атмосферный воздух. Во всех агрегатах разделения газов удаляют вредные примеси двуокиси углерода и пары воды. Как правило, эта операция осуществляется многоступенчато с применением главным образом жидких поглотителей. Для достижения большей степени очистки газов от двуокиси углерода применяют растворы щелочей, а для осушки газов — твердые поглотители, силикагель или активную окись алюминия. В связи с большой сложностью применяемых методов процесса осушки и очистки газов в настоящее время изыскиваются более рациональные методы решения указанной задачи. В частности, в проблемной лаборатории по разделению газов МХТИ им. Д. И. Менделеева проводятся работы по разработке процесса тонкой очистки газов от двуокиси углерода с одновременным удалением паров воды адсорбционным способом, с применением синтетических цеолитов. Эти работы, помимо изучения общих закономерностей процесса адсорбции на цеолитах, имеют целью получение данных для создания укрупненных опытно-промышленных установок для конкретных технологических процессов, как например очистки и осушки воздуха высокого давления перед низкотемпературной ректификацией, создания защитных атмосфер и др. [c.240]

    А—приготовление угольной пасты Б—жидкофазная гидрогенизация В—предварительное гидрирование Г—бензинирование или расщепление Д—стабилизация Е—получение этана Ж—получение пропана 3—осушка газа И—получение бутана К—абсорбционная очистка газа (удаление аммиака) Л—производство газового бензина М—газоочистка (удаление СО и Н З) И—алкацидная очистка, молотковая дробилка 2—вращающаяся сушилка 3—бункер для сухого (4% НаО) угля с катализатором 4 —бак для затирочного масла 5—ластовый насос высокого давления 6—регенератор (теплообменник) / сепаратор Л—газоподогреватель 9—реактор 10—уровнемер 11—горячий сепаратор 12—центрифуга 3—печь полукоксования шлама 14—емкости для дросселирования 15—холодильник 16—продуктовый сепаратор 17—водоотделитель 18—циркуляционный насос 19—масляный абсорбер 20—детандер 21—алкацидный абсорбер 22—реактор с окисью железа (280°) для удаления сероокиси углерода 23—сборник среднего масла 24—дистилляционная колонна 25—водный абсорбер 26—бак для среднего масла 27—электрический подогреватель сборник бензина 29—емкости для среднего масла Б  [c.35]

    Очистку газа от сероводорода и двуокиси углерода проводят на крупных ГПЗ, которые обслуживают одно или несколько месторождений. Они находятся, как правило, на значительном удалении (до 50-70 км) от места добычи газа. Поэтому для предотвращения осложнений в работе установок очистки газа на ГПЗ, необходимо на месте добычи [c.47]

    Процесс конверсии углеводородного сырья с паром является наиболее распространенным способом специального производства технического водорода и синтез-газа. Достоинства этого способа — возможность работы без дорогостоящих окислителей (кислорода), легкость создания установок большой производительности и получение водорода достаточно высокой степени чистоты. Процесс включает три основные стадии, связанные общей технологической схемой 1) конверсию углеводородного сырья с паром 2) конверсию окиси углерода с паром 3) очистку газа от двуокиси углерода. Кроме того, в зависимости от качества исходного сырья и требований к водороду в схему могут быть включены процессы предварительной очистки сырья и удаления из водородсодержащего газа следов окиси углерода. [c.114]


    Производство водорода методом паровой конверсии углеводородов включает несколько стадий подготовка сырья к конверсии, собственно конверсия и удаление окислов углерода из конвертированного газа. На стадии подготовки сырье очищают от непредельных углеводородов, органических соединений серы и сероводорода в некоторых случаях проводят стабилизацию методом частичной конверсии гомологов метана. На стадии удаления окислов углерода из конвертированного газа проводят конверсию окиси углерода водяным паром, очистку газа от двуокиси углерода и удаление остаточных окислов углерода методом метанирования. Перечисленные стадии, за исключением отмывки газа от двуокиси углерода,, являются каталитическими процессами, близкими между собой по> аппаратурному оформлению. [c.59]

    Очищенный от сажи и золы газ поступает на очистку от сероводорода и значительной части двуокиси углерода водным раствором диэтаноламина. Остаточное содержание в газе сероокиси углерода и сероводорода после очистки составляет 600 и 20—30 мг/м соответственно. Для полного удаления сернистых соединений предусматривается тонкая очистка газа. [c.158]

    Производство современных стереорегулярных каучуков растворной полимеризацией потребовало углеводородного сырья высокой степени чистоты. Для промышленного синтеза бутадиена, изопрена и изобутилена каталитическим дегидрированием требуются соответственно бутановая, изопентановая и изобутановая фракции с содержанием основного продукта не менее 98 % (масс.). Для улучшения качества продуктов и условий эксплуатации оборудования углеводороды предварительно подвергают специальной подготовке, состояш,ей в очистке газа от механических примесей, осушке от влаги, удалении сероводорода и двуокиси углерода. [c.29]

    Выделяющийся газ содержит равные объемы окиси и двуокиси углерода. Для удаления двуокиси углерода газ пропускают через две последовательно соединенные промывные склянки (см. рис. 28, 4,. 6, 1, стр. 51) с раствором КОН. Дальнейшую очистку газа проводят так же, как и при получении окиси углерода из муравьиной кислоты (см. стр. 241). [c.245]

    Очистка от оксидов углерода. Очистка от диоксида углерода. Конвертированный газ содержит 17-18% СО2 и 0,3-0,5% СО. Первая примесь — балласт для синтеза аммиака, вторая — яд катализатора. Эти примеси надо удалить. Удаление сорбцией требует специфичных сорбентов (два удаляемых компонента), необходимых в большом количестве (содержание СО2 - до 20%). В настоящее время используется два специфических способа очистки от оксидов углерода. [c.404]

    Активный уголь, пропитанный тем или иным селективным растворителем, приобретает избирательные свойства последнего и при этом обеспечивает глубокую очистку даже при небольшом содержании примеси. Очень эффективен активный уголь, пропитанный моноэтаноламином [53]. Его используют для удаления двуокиси углерода из различных технологических потоков разнообразных горючих, природных и коксовых газов, воздуха, азота, низших олефиновых и парафиновых углеводородов. Норма моноэтаноламина составляет от 18 до 35% общей массы импрегнированного угля, зернение угля может изменяться в очень широком интервале — от 0,05 до 5 мм, линейная скорость газа при очистке обычно составляет 6 м/мин. [c.300]

    В схеме 3 сочетают двухступенчатую моноэтаноламиновую очистку газа от двуокиси углерода с промывкой газа жидким азотом для удаления СО. В системе очистки раствором моноэтаноламина (МЭА) предусмотрен замкнутый конденсатный цикл, в результате чего содержание в газе окиси азота не превышает допустимой нормы. Это позволяет исключить стадию каталитического гидрирования окиси азота и ацетилена. [c.10]

    Для удаления двуокиси углерода из конвертированного газа по этой схеме применяют обычные абсорбционные методы. Глубокая конверсия окиси углерода на низкотемпературном катализаторе (остаточное содержание окиси углерода 0,2—0,6%) позволила заменить традиционные методы очистки газа от окиси углерода стадией гидрирования до метана. [c.15]

    Смесь газов подвергают очистке и ректификации. Первой стадией очистки газа является удаление из него ароматических углеводородов в скрубберах, орошаемых поглотительным маслом поступающий в скрубберы газ предварительно сжимается до 16 ат. Затем газ идет на очистку от углекислого газа в скрубберы, орошаемые раствором щелочи, и скрубберы, орошаемые водным раствором едкого натра. Далее газ проходит адсорберы с активированным углем, где поглощаются следы паров углеводородов тяжелее С2Н5. По выходе из скрубберов с активированным углем газ состоит из этана, этилена, метана, водорода и окиси углерода. Эту смесь газов направляют на разделение при помощи глубокого холода на установки Линде. [c.81]

    Полученный в результате реакции газ может быть загрязнен следами H2S, НС1, О2 и N2. Газ очищается путем последовательного пропускания его через промывную склянку, наполненную концентрированным раствором ЫаНСОз стеклянную трубку с кусочками пемзы, пропитанными раствором USO4, и нагретую до 300—400° кварцевую трубку с металлической медью. Для очистки двуокиси углерода от N2 газ вымораживают, медленно пропуская его через широкую U-образную стеклянную трубку, погруженную в сосуд Дьюара, наполненный жидким воздухом. Откачав масляным насосом N2 из системы, в остатке получают чистую двуокись углерода в твердом состоянии. Вынув затем U-образ-ную трубку с твердой СО2 из сосуда Дьюара и слегка нагрев ее, получают X. ч. СО2. Для удаления следов воды двуокись углерода пропускают через длинную осушительную колонку, наполненную фосфорным ангидридом. [c.55]

    Одновременно с сероводородом, из газа можно удалить двуокись углерода, однако присутствие последней в углеводородном газе снижает активность цеолито по сероводороду иа 5—10%. Очистка газов на цеолитах от примесей является очень глубокой. Так, в пропане остаточное содержание соединений серы после очистки на цеолитах составляет 0,0042 г/м , а двуокиси углерода 0,0091 г/м . Для удаления из природного газа меркаптанов, сульфидов, дисульфидов, тиофена и других в качестве адсорбента применяют цеолит КаХ. Синтетические цеолиты способны адсорбировать 15—20% тиофена. Адсорбционная емкость цеолита МаХ по зтилмеркаптану при 25 °С составляет 0,13 г/г. [c.45]

    Процессы абсорбции этаноламинами, рассмотренные в двух предыдущих главах, можно считать идеальными для очистки природного, нефтезаводского и синтез-газов, содержащих сероводород и двуокись углерода в качестве единственных примесей, подлежащих удалению из газа. Для очистки газов, содержащих сероокись углерода, сероуглерод, цианистый водород, органические кислоты, азотистые основания и прочие примеси, абсорбция этаноламинами имеет ограниченное применение, поскольку этаноламины необратимо реагируют с некоторыми примесями и регенерация загрязненных растворов представляет серьезные трудности. Очистка каменноугольного газа, который содержит такие примеси и во многих странах является важным промышленным и коммунальным топливом, требует применения процессов, не имеющих указанного недостатка. Присутствие в каменноугольных газах аммиака естественно привело к изучению возможности использования его для очистки этого газа от кислых компонентов, а в идеальном случае — для извлечения максимальных количеств как кислых газов, так и самого аммиака. Ниже приводятся концентрации неуглеводородных примесей (в % объемн.), обычно присутствующих в каменноугольных газах. [c.67]

    Наиболее логично классифицировать каталитические процессы газоочистки по типу протекающих реакций окисление, гидрирование, гидролиз и т. д. Одпако четко провести такую классификацию не всегда возможно, так как при отдельных процессах протекают одновременно различные реакции и в ряде случаев весьма трудно установить, какая именно реакция преобладает. Поэтому обычно процессы различают или по виду удаляемых примесей, или по характеру химической реакции. Именно этот не всегда последовательный принцип и принят нри дальнейшем изложении материала. Важнейшие применяемые в промышленности процессы каталитической очистки газа охватывают а) превращение органических сернистых соединений, содержащихся в топливных, нефтезаводских и синтез-газах, в сероводород или кислородные соединения серы б) удаление окиси углерода из синтез-газа или инертных газов путем превращения в двуокись углерода или метан в) превращение ацетилена, содержащегося в олефиновых газовых потоках, в этилен методом избирательного гидрирования наконец, г) окисление и восстановление многочисленных нежелательных органических и неорганических соединений, содержащихся в отходящих газах промышленности. Процессы, предназначенные для каталитического окисления сернистых соединений (как сероводорода, так и органических), подробно рассмотрены в главе восьмо , так как эти процессы тесно связаны с сухой очисткой окисью железа и поэтому в большей мере относятся к сухим окислительным, процессам очистки от серы. [c.325]

    При очистке газов и жидкостей в промышленных масштабах очень важным является одновременное удаление паров воды, двуокиси углерода, а тйкже сернистых соединений. По сравнению с другими адсорбентами активность цеолитов по двуокиси углерода при повышении температуры снижается менее резко. При значительном содержании СО, осушку газа и адсорбцию можно вести при атмосферном давлении, при малом, как, например, в воздухе, адсорбцию целесообразнее вести при повышенном давлении. При этом цеолиты СаА несколько лучше адсорбируют СЮ а по сравнению с цеолитом КаА. [c.111]

    Следующая стадия очистки заключается в отмывке ароматических углеводородов в скруббере бензолом, подаваемым навстречу потоку газа. Затем газ, свободный от ароматических углеводородов, подвергается очистке от сероорганических соединений и сероводорода при прохождении через щелочную абсорбционную установку. Сера может быть удалена из скрубберной жидкости, а 0бедне1нная щелочная жидкость возвращается в установку. Дальнейшая очистка заключается в удалении в специальном боксе остатков сернистых соединений окислами железа и в последующей отмывке двуокиси углерода в абсорбере. Для этой цели могут применяться различные типы оборудования, например установки типа Бенфилд , Ветрокок и Ка-такарб . Очистка заканчивается удалением воды и осушкой гликолем в абсорбционных колоннах. [c.157]

    Режим регенерации следующий. При снижении давления из раствора выделяется от /3 до /3 растворенной в нем двуокиси углерода и одновременно испаряется вода. На испарение воды и выделение СОа из раствора расходуется тепло. Для удаления оставшейся двуокиси углерода требуется довести парциальное давление СО2 над раствором до 0,014 МПа. Последнее достигается за счет дополнительного испарения воды из раствора при нагревании регенерированного раствора в кипятильнике. Температуру в регенераторе поддерживают выше 100 °С, так как температура кипения раствора К2СО3 при атмосферном давлении существенно выше температуры кипения воды. Связанная в бикарбонат двуокись углерода еще более повышает температуру кипения раствора. При более глубокой очистке газа растет расход пара на регенерацию. Расход пара также растет и с понижением парциального давления СОа в исходном газе. Горячий раствор карбоната калия обладает коррозионными свойствами, поэтому в раствор добавляют ингибиторы коррозии (0,1— 0,3% КаСгаО, или ааВ40, ЮНаО). Кроме того, в раствор вводят и кремнийорганические противопенные присадки. [c.121]

    Газ парокислородной конверсии метана для производства синтез-газа также содержит излишнее количество оксида углерода (IV), который должен быть удален из него. Поэтому заключительной стадией процесса конверсии природного газа в обоих случаях является очистка конвертированного газа от оксида углерода (IV). Методы очистки от других примесей, так называемая тонкая очистка газа, были рассмотрены в главе XI. Наиболее распространенный метод удаления оксида углерода (IV) из конвертированного газа — этаноламинная очистка. В ее основе лежит хемосорбция оксида углерода 20% -ным раствором моноэтаноламина (МЭА). Образующиеся при этом карбонат и бикарбонат МЭА нестойки и при нагревании выше 100 С диссоциируют с выделением оксида углерода (IV) и регенерируют раствор МЭА  [c.225]

    Недостатками МЭЛ является тот факт, что он образует с серо-окисью углерода устойчивое при высоких температурах соединение— дизтилкарбамид [ O(NH H2 H2)2]. что ведет к потерям мина, а также то, что давление его паров относительно высоко, поэтому после стриппинга необходимо промывать кислые газы для удаления захваченных паров МЭЛ. Моноэтаноламин обычно используется для удаления серосодержащих примесей из природного газа, тогда как диэтаноламин (ДЭЛ), не образующий диэтилкарб-амида, применяется для очистки нефтезаводокого газа, содержащего некоторое количество карбонилсульфида. Диэтаноламин менее летуч, поэтому его потери невелики. Находит применение и ди-пропаноламин. [c.143]

    Способность цеолитов адсорбировать молекулы определенных размеров широко используют для очистки и разделения нефтепродуктов очистки газов и жидкостей, удаления двуокиси углерода, сероводорода и других сернистых соединений, повышения октанового числа бензинов (на 5—26 пунктов) в результате удаления н-алканов. В настоящее время цеолиты широкр применяют для выделения к-алканов из нефтяных фракций —от бензиновых до газойлевых включительно с содержанием н-алканов около 20% (масс.). Выделенные нормальные парафиновые углеводороды используют при производстве белковых веществ, моющих средств и других продуктов нефтехимического синтеза. Чистота н-алканов, полученных разделением на цеолитах, значительно выше, чем при выделении другими методами (более 98% при разделении цеолитами и 90—96% при разделении карбамидом). Одновременно с н-алканами получают денормализат — смесь изопарафиновых и циклических угл ёводородов. [c.253]

    Получение. В колбу (см. ри,с. 2,а, стр. 13) наливают 30%-ный раствор сульфата, меди, а в капельную воронку насыщенный раствор цианида алия. Включив вакуум-насос, эвакуируют установку и к (раствору в колбе постепенно прибавляют раствор цианида калия. Сразу начинается выделение дициана. Скорость выделения дициана регулируют добавлением раствора цианида калия. Бсл.и реакция замедляется, реакционную колбу нагревают на водяной бане. Выделяющийся газ, содержащий до 20% двуокиси углерода проходит через конденсатор, охлаждаемый в бане со льдом и постушает в колонки, содержащие плавленый хлорид кальция и пятиокись фосфора. Высушенный газ поступает в конденсатор, погруженный- в сосуд Дьюара с охлаждающей омесью из твердой углекислоты и ацетона, имеющей температуру около —55 С, где он конденсируется в твердом состоянии. Несконденсированные газы (двуокись углерода, воздух) откачивают с помощью насоса. Для удаления несконденсярованных газов, -растворенных. в твердом дициане, конденсатор нагревают так, чтобы находящийся в. нем дициан расплавился и превратился в жидкость при этом растворенные газы выделяются. Снова переводят дициан Б твердое состояние, охлаждая конденсатор до —55 °С, и откачивают газ над твердым дицианом. Описанную операцию выделения и откачивания растворенных яесконденсирован-ных газов повторяют 2—3 раза. В случае необходимости проводят дополнительную очистку газа с помощью прибора для фракционированной дистилляции в вакууме (см. рис. 91, стр. 260). [c.259]

    Окись углерода, сохраняемая в баллонах, мож вт содержать примеси СО2, 62, Н2, СН4, N2 и ре (СО) Б. Вначале удаляют, двуокись углерода промывкой раствором КОН и пропусканием газа через колонии с влажным КОН. Для удаления кислорода и карбонила железа газ пропускают с небольшой скоростью через трубку, наполненную восстановленной металлической медью (сетка или проволока) м нагретую до 600 °С, или через трубку с активной м-едью при температуре 170—200 °С (ом. стр. 146). Для окончательной очистки от пр имесей На, СН4 и N2 сухой газ конденсируют при температуре жидкого азота и цод-вергают многократной фракционированной дистилляции (ом. стр. 241). Полную очистку окиси углерода от О2, Нг, СН4 й N3 можно осуществлять методам газо-адсорбционной хроматографии (ом. стр. 59—76 и 97). [c.244]

    Очистка водорода. Сравнительно недавно в литературе был описан [12]. процесс окончательной очистки водорода при помощи молекулярных сит. Сырой водород концентрацией 99,3% подвергают дополнительной очистке. до чистоты выше 99,99% прп помощи низкотемпературного процесса, при котором конденсируются и адсорбируются многочисленные примеси. Последняя ступень очистки заключается в удалении окиси углерода и азота адсорбцией на молекулярных ситах. Состав исходного газа и очищенного потока сриведен ниже (в % мол.). [c.87]

    Кроме высокой адсорбционной способностп но сероводороду цеолиты обладают еш е одним свойством, имеющим первостепенное значение для производства они селективно извлекают сероводород из его смесей с двуокисью углерода. При мольном соотношении в газовой фазе НзЗ С02 = 1 1 адсорбированная фаза обогащается сероводородом до 90% (мол.) [33]. В процессе одновременной очистки газа от сероводорода и двуокиси углерода в первый период происходит полное удаление обоих компонентов из газов, затем двуокись углерода в адсорбированной фазе начинает вытесняться сероводородом, вследствие чего ее содержание в выходящем из адсорбера потоке газа резко возрастает и дал<е превосходит концентрацию СО2 в исходном газе. В то же время сероводород продолнсает количественно поглощаться вплоть до момента проскока. [c.413]

    Уже с 1967 г. все основные компании Канады начали широко применять цеолиты для очистки сжиженных газов. Очистка пропана и бутана успешно решена с номощью цеолитов NaX на трех крупных канадских установках [65]. Диаметр гранул использованных цеолитов составляет 1,5 мм. Каждая установка имеет производительность около 3 тыс. м сжиженных газов в сутки, диаметр адсорберов равен 0,9—1,2 м, а высота — от 2 до 3,6 м. В исходном пропане содержание HjS достигает 1,5%. Продукты практически полностью очищаются от сероводорода, метил- и этилмеркаптанов степень удаления сероокиси углерода зависит от длительности цикла, в начале стадии очистки удаление практически полное. Контроль за качеством продукции осуществляется автоматическим микро-колометрическим детектором ( OS, меркаптаны) и портативным абсорбционнопотенциометрическим прибором (общая сера). [c.423]

    На схеме 9 показано получение технологического газа газификацией каменного угля (или других видов твердого топлива). Газ, полученный в результате переработки этого вида сырья, подвергают многоступенчатой очистке от пыли в циклонах, скруббере, орошаемом водой, и мокропленочном электрофильтре. Затем с помощью раствора моноэтаноламина газ очищают от сероводорода и частично от двуокиси углерода. Эта очистка предшествует стадии конверсии окиси углерода. Газ после конверсии СО очищают известными абсорбционными способами двуокись углерода поглощается водой, окись углерода — медно-аммиачным раствором. Для окончательного удаления СО2 после медно-аммиачной очистки газ промывают раствором аммиака при давлении 302,8-10 —313,6-10 Па (310— 320 кгс/см2). Чтобы обеспечить требуемую степень чистоты азоте-водородной смеси, перед синтезом аммиака проводят каталитическое гидрирование кислородсодержащих примесей в аппаратах пред-катализа (давление процесса 294-10 —313,6-10 Па 300— 320 кгс/см ). [c.20]


Смотреть страницы где упоминается термин Очистка газов углерода, удаление из газов: [c.254]    [c.319]    [c.220]    [c.220]    [c.370]    [c.111]    [c.315]    [c.223]    [c.86]    [c.246]    [c.251]    [c.84]   
Справочник азотчика Том 1 (1967) -- [ c.0 ]

Справочник азотчика Т 1 (1967) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте