Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика ферментативного действия

    Исследования кинетики ферментативных реакций в стационарном режиме — один из наиболее распространенных способов изучения механизма действия ферментов. Это определяется рядом особенностей ферментативных реакций и прежде всего тем, что для ферментативных реакций стационарное состояние устанавливается весьма быстро. Для простейшей схемы ферментативного процесса с участием одного промежуточного соединения (схема Михаэлиса — Ментен)  [c.171]


    Одним из характерных проявлений жизни является удивительная способность живых организмов кинетически регулировать химические реакции, подавляя стремление к достижению термодинамического равновесия. Ферментативная кинетика занимается исследованием закономерностей влияния химической природы реагирующих веществ (ферментов, субстратов) и условий их взаимодействия (концентрация, pH среды, температуры, присутствие активаторов или ингибиторов) на скорость ферментативной реакции. Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать выяснению молекулярного механизма действия фермента. [c.134]

    Резюмируя, отметим, что наиболее рациональный, по мнению авторов, подход к анализу влияния эффекторов на кинетику ферментативного действия заключается в следующем. Уравнение (6.15) удобно записать в виде (6.8) с тем, чтобы эффективные величины V и /Ст(каж) най- [c.224]

    Кинетика ферментативного действия  [c.39]

    Кинетика ферментативного действия пероксидазы  [c.741]

    Можно надеяться на помощь физико-химиков в разрещении двух главных проблем кинетики ферментативного действия. Эти проблемы сводятся к выяснению а) механизма снижения активационного барьера при действии индивидуальных ферментов и б) организации ферментов в виде структур, которые обеспечивают осуществление последовательности реакций, протекающих в живой клетке. В последние годы достигнут значительный прогресс в экспериментальном исследовании этих вопросов, особенно первого, но совершенно отсутствуют теории, которые бы имели общее примененпе. [c.313]

    Окончательный перелом произошел после работ С. Зерен-сена [40], показавшего зависимость активности ферментативного действия от величины pH, и работ Л. Михаэлиса и сотр. [41], развивавших идеи Брауна и Анри относительно соединения фермента и субстрата и заложивших основы кинетики ферментативных реакций. Возникновение кинетики ферментативных реакций, которое, кстати, произошло задолго до того, как какой-либо из чистых ферментов стал доступен химическому изучению, окончательно прояснило то обстоятельство, что процесс ферментативного катализа зависит от соединения фермента с субстратом. В основе всех этих представлений лежала обитая идея, что соединение с ферментом вызывает известного рода активацию молекулы субстрата. [c.171]

    При изучении механизмов реакций в химии широко применяется кинетический метод. Попытки использования этого метода для исследования процессов, катализируемых ферментами, предпринимались еще в начале нашего века. Однако лишь в последние десятилетия кинетика ферментативного катализа развилась в самостоятельное научное направление со своими задачами и методами. Разумеется, здесь пока еще больше нерешенных проблем, чем законченных теорий. Однако уже теперь вырисовываются интересные перспективы применения методов ферментативной кинетики как в области теории механизма действия ферментов, так и при изучении взаимодействия с ферментами биологически активных веществ,-имеющих практическое значение (лекарственные препараты, гербициды, инсектициды и т. п.). В соответствии с этим настоящая книга имеет две задачи — осветить в сравнительно сжатой форме теоретические основы кинетики ферментативного катализа и проанализировать возможности и пути практического использования кинетического метода в изучении механизма действия ферментов. [c.3]


    Наиболее полную информацию о кинетике ферментативных реакций дает изучение их протекания в нестационарном режиме (см. гл. V). Исследование стационарной кинетики ферментативных процессов имеет ограниченное значение для понимания многостадийного механизма действия ферментов. Это связано прежде всего с тем,что в общем случае невозможно однозначно приписать экспериментально определяемые значения констант скоростей индивидуальным химическим стадиям (см. 1 гл. V и VI). Тем не менее кинетические параметры типа = = У/(Е](,и Кт.каж, которые, следуют из основного уравнения стационарной кинетики — из уравнения Михаэлиса (6.8), как показал Альберти с сотр. [1], позволяют оценить нижний предел константы скорости любой индивидуальной стадии ферментативной реакции [типа (6.9) или даже более сложного обратимого процесса (5.16)]. [c.268]

    Практический курс, предлагаемый вниманию читателя, может рассматриваться как руководство по обработке экспериментальных данных ферментативной кинетики. В основу данной книги положены лекции и практические занятия по кинетике ферментативных реакций. Так как понимание кинетических закономерностей и механизма действия ферментов невозможно без знания кинетических законов простых химических реакций, последним в книге также уделено существенное внимание. [c.3]

    Результаты применения описанного здесь метода для исследования кинетики ферментативного гидролиза различных эфиров холина при действии холинэстеразы будут изложены ниже. [c.148]

    Будет, однако, неоправданным считать, что механизм ферментативных реакций—это прямое развитие представлений обычного катализа, так как все ферменты являются белками, т. е. веществами высокомолекулярной природы, и их действие обычно строго специфично. Представляется возможным, что эти две особенности ферментов взаимосвязаны и что более глубокое исследование кинетики ферментативных реакций обнаружит такие особенности механизма, которые смогут объяснить как необходимость больших размеров молекул, так и высокую специфичность их действия. Данный раздел в основном будет посвящен описанию одной ферментативной реакции, когда изучение влияния pH на ход процесса привело по крайней мере к частичному разрешению поставленной проблемы. [c.721]

    При анализе зависимости антихолинэстеразных свойств фосфорорганических соединений от их химической структуры были приняты во внимание следующие соображения. Анализ показателей, характеризующих кинетику ферментативного гидролиза ацетилхолина, давал повод думать о том, что механизм действия исследуемых препаратов па холинэстеразу сводится к фосфорилированию последней. [c.443]

    Кинетика ферментативных реакций. Скорость реакций, катализируемых Ф., определенным образом завпсит от концентраций реагирующих веществ п условий среды. Характер этой зависимости определяется механизмом процесса. Общепринятым представлением об общем принципе действия Ф., независимо от конкретной природы Ф. и субстратов, является следующее. Фермент [Е] и субстрат [8] реагируют обратимо с образованием комплекса [ЕЗ], к-рый обладает более высокой реакционной способностью, чем исходный субстрат, и необратимо распадается с образованием продукта реакции (Р) и регенерацией исходного Ф. [c.207]

    Кинетика ферментативных реакций как метод изучения механизма действия индивидуальных ферментов и систем ферментов все больше привлекает внимание исследователей. Использовать принципы химической кинетики применительно к реакциям, катализируемым ферментами, начали уже довольно давно — много десятилетий назад. Однако по мере того, как становилось ясно, что механизм ферментативных реакций значительно сложнее механизма самых сложных небиологических реакций, ценность измеряемых экспериментально кинетических констант подвергалась все большему сомнению. Это в свою очередь служило мощ,ным стимулом для совершенствования теории и методов самой ферментативной кинетики. В результате эта наука сейчас достигла несомненных успехов, позволяющих достаточно плодотворно применять ее при изучении механизмов ферментативного катализа. Именно по этим причинам ни одна книга по ферментам не обходится сейчас ез глав по кинетике, хотя эти вопросы излагаются обычно достаточно кратко. [c.5]

    Эта книга предназначена в качестве учебного пособия в первую очередь для тех аспирантов, специализирующихся в области биохимии и родственных дисциплин, которые интересуются механизмом действия ферментов и знакомы с основами органической химии и биохимии, а также с элементами физической химии. В настоящее время имеются труды, в которых механизмы реакций описаны с позиций физической органической химии и которые можно использовать для анализа действия ферментов, а также ряд блестящих работ по кинетике ферментативных реакций. Тем не менее исследователь, не занимающийся специально механизмом действия ферментов, нуждается в кратком современном руководстве, в котором представления о ферментативном катализе были бы изложены с феноменологической точки зрения. В настоящей книге сделана попытку изложить этот материал, соблюдая по мере возможности равновесие между различными экспериментальными подходами и строго отделяя то, что доказано экспериментально, от гипотез. [c.8]


    Детальное исследование стационарной кинетики ферментативной реакции может дать важную информацию о механизме действия фермента. Рассмотрим особенности и логику исследования механизма реакций в стационарном режиме на примере изучения гидрогеназы — фермента, образующего и активирующего молекулярный водород. [c.36]

    Следовательно, dSIdt = О, т. е. не происходит превращения субстрата. Это кажущееся противоречие теории Михаэлиса и Ментен разъясняется, если кинетику ферментативного действия анализи- [c.40]

    Основная идея о принципах биокатализа возникла еще в начале нащего века благодаря трудам Брауна и Анри и позднее была развита Михаэлисом и Ментен, а также Бриггсом и Холденом. Идея заключается в том, что механизм каталитического действия ферментов состоит в общем случае в образовании между ферментом и субстратом промежуточных соединении, претерпевающих в ходе реакции последовательные превращения вплоть до образования конечных продуктов и регенерации фермента. Действительно, в простейшем случае описание кинетики ферментативной реакции укладывается в рамки так называемой двухстадийной схемы  [c.216]

    Стадии переноса протона в ферментативном катализе. Характерная особенность ферментативных реакций — участие в активных центрах многих ферментов в качестве каталитически активных групп сильных кислот и оснований. Основные закономерности кислотно-основного катализа в ферментативном действии рассмотрены в гл. П. Здесь оста- новимся на кинетике элементарной стадии переноса протона. [c.273]

    Клёсов А. А., Рабинович М. Л., Березин И. В. Кинетика ферментативных реакций в гетерогенных системах. I1L Зависимость гидролиза бактериальных клеток Mi ro o us lysodeikti us под действием лизоцима от [c.206]

    Ф. широко иримен. в нищ. иром-сти (хлебопечении, виноделии, пивоварепии, сыроделии, произ-ве чая, уксуса, спирта), микробиол. и фармацевтич. пром-сти, в медицине. См. также Ферментативных реакций кинетика. Ферментативный катализ, Регуляция ферментов. в Фершт Э., Структура н механизм действия фермевтов, пер. с аигл., М., 198U Диксов М., Уэбб Э., Ферменты, пер. е англ., т. 1 — 3, М., 1982. В. К. Антонов. [c.618]

    Дальнейщие подробности, относящиеся к применению теории графов в стационарной и предстационарной кинетике ферментативных реакций, изложены в цитированных выще оригинальных )аботах, в приложении 1 в [33] и в работе Гольдщтейна [115]. 3 кинетике ферментативных процессов метод направленных графов является удобным алгоритмом. Вместе с тем он позволяет выявить глубокую аналогию, существующую между процессами в сложных электронных цепях и ферментативными реакциями. Системы обоих типов работают на сигналах, связанных сходными функциональными зависимостями. В электронных цепях сигналами являются напряжения и токи, в ферментативных реакциях — концентрации и скорости стадий. Аналогом закона Ома служит закон действующих масс. Однако закон Ома требует учета разности напряжений на концах двухполюсников, а закон действующих масс учитывает концентрацию ферментного комплекса (аналог напряжения) лищь на входе двухполюсника (ветви графа). Это отличие определяет неприменимость графических правил, разработанных для электрических цепей, непосредственно к ферментативным реакциям и затрудняет прямое электрическое моделирование реакций [120, 121]. [c.473]

    Данная математическая модель была также использована для описания кинетики ферментативного гидролиза в проточном колонном реакторе непрерывного действия [49, 51]. Особенностью колонного реактора является то, что процесс гидролиза осуществляется под действием только прочно адсорбированных на поверхности целлюлозы ферментов. На первой стадии процесса происходит адсорбция целлюлаз на субстрате путем пропускания раствора ферментов через слой субстрата при пониженной температуре (чтобы исключить гидролиз). На второй стадии после повышения температуры (до 50° С) осуществляется собственно процесс гидролиза. При этом растворимые продукты реакции непрерывно отводятся из зоны гидролиза, а ферменты, будучи прочно адсорбированными на поверхности целлюлозы, остаются в объеме реактора. По мере гидролиза ферменты перемещаются на свежие порции субстрата [49, 51]. Таким образом, процесс можно реализовать в непрерывном режиме путем подачи новых порций сырья по принципу противотока [56]. [c.175]

Рис. 6.5. Влияние различных факторов на кинетику ферментативного гидролиза целлюлозы в реакторе периодического действия. Кинетические кривые получены расчетом на ЭВМ 1 — весь субстрат принят за кристаллический 2 — учтены все факторы 5 — не учтено ингибирование глюкозой 4 — не учтена инактивация целлобиозообразующих ферментов 5 — не учтено ингибирование целлобиозой 6 — весь субстрат принят за аморфный о — экспериментальные точки (глюкоза - - целлобиоза). Концентрация субстрата — 80 г/л, активность ферментов из Т.1опдгЬгасЬ.1аЫт — 14 ед. по фильтровальной бумаге на 1 г субстрата, 50° С, pH 4,5 Рис. 6.5. <a href="/info/728897">Влияние различных факторов</a> на кинетику <a href="/info/481324">ферментативного гидролиза целлюлозы</a> в <a href="/info/25689">реакторе периодического действия</a>. <a href="/info/6101">Кинетические кривые</a> <a href="/info/1452675">получены расчетом</a> на ЭВМ 1 — весь субстрат принят за кристаллический 2 — учтены все факторы 5 — не учтено <a href="/info/99793">ингибирование глюкозой</a> 4 — не учтена инактивация целлобиозообразующих ферментов 5 — не учтено ингибирование целлобиозой 6 — весь субстрат принят за аморфный о — <a href="/info/705590">экспериментальные точки</a> (глюкоза - - целлобиоза). <a href="/info/879417">Концентрация субстрата</a> — 80 г/л, <a href="/info/5968">активность ферментов</a> из Т.1опдгЬгасЬ.1аЫт — 14 ед. по <a href="/info/7778">фильтровальной бумаге</a> на 1 г субстрата, 50° С, pH 4,5
    Для всестороннего изучения морфолого-физиологических свойств и продуктов обмена, прежде всего, микробов все ранее предложенные способы их выращивания оказались малопригодными Более того, накопление однородной по возрасту большой массы клеток оставалось исключительно трудоемким процессом Вот почему требовался принципиально иной подход для решения многих задач в области биотехнологии В 1933 году А. Клюйвер и Л X Ц Перкин опубликовали работу "Методы изучения обмена веществ у плесневых грибов", в которой изложили основные технические приемы, а также подходы к оценке и интерпретации получаемых результатов при глубинном культивировании грибов С этого времени начинается третий период в развитии биологической технологии — биотехнический Началось внедрение в биотехнологию крупномасштабного герметизированного оборудования, обеспечившего проведение процессов в стерильных условиях Особенно мощный толчок в развитии промышленного биотехнологического оборудования был отмечен в период становления и развития производства антибиотиков (время второй мировой войны 1939 — 1945 гг, когда возникла острая необходимость в противомикробных препаратах для лечения больных с инфицированными ранами) Все прогрессивное в области биологических и технических дисциплин, достигнутое к тому времени, нашло свое отражение в биотехнологии Следует отметить, что уже в 1869 г Ф Мишер получил "нуклеин (ДНК) из гнойных телец (лейкоцитов), В Оствальд в 1893 г установил каталитическую функцию ферментов, Т Леб в 1897 г установил способность к выживанию вне организма (в пробирках с плазмой или сывороткой крови) клеток крови и соединительной ткани, Г Хаберланд в 1902 г показал возможность культивирования клеток различных тканей растений в простых питательных растворах, Ц Нейберг В 1912 г раскрыл механизм процессов брожения, Л Михаэлис и М Л Ментен в 1913 г разработали кинетику ферментативных реакций, а А Каррел усовершенствовал способ выращивания клеток тканей животных и человека и впервые применил экстракт эмбрионов для ускорения их роста, Г А Надсон и Г С Филлипов в 1925 г доказали мутагенное действие рентгеновских лучей на дрожжи, а в 1937 г Г Кребс открыл цикл трикарбоновых кислот (ЦТК), в 1960 [c.16]

    Формальная кинетика ферментативных реакцш 51. Механизм действия ферментов. .. [c.314]

    Таким образом, в настоящее время, помимо продолжающихся исследований кинетики действия ферментов, условий иротекания тех или иных ферментативных реакцш , наметилось новое на-дравление изучения строения ферментов и их активных центров, успехи которого позволяют надеяться, что в скором времени проблемы механизма ферментативного действия предстанут в совершенно новом освещении. [c.178]

    В гл. IV мы показали на двух примерах (см. стр. 148), что с помощью сефадекса G-25 можно определить число центров связывания в молекуле фермента, или сродство ферментов к различным реагентам, а также изучить влияние кофакторов на фермент (см. стр. 142). Аналогичным образом, измеряя способность к связыванию восстановленного ДПН, удалось найти эквивалентный вес семи дегидрогеназ (30 000— 40000) [20]. Иногда образуются стабильные комплексы фермента с реагентом, как, например, при действии свободной от цинка карбоксипептидазы на пептидный субстрат [21]. Этот комплекс, который с помощью гель-хроматографии можно отделить от избытка субстрата, уже не активируется ионами цинка. Очистка гель-фильтрацией на сефадексе G-50 является стандартным приемом при определении металла в карбоксипепти-дазе [22]. Лизоцим образует нерастворимый комплекс с продуктом, получающимся при действии этого фермента на- определенный гликопептид. Растворение этого комплекса (в растворе Na l) и последующий анализ с помощью гель-хроматографии на сефадексе (j-75, а затем на G-25 дает информацию о кинетике ферментативной реакции [23]. При добавлении цито-хромоксидазы к избытку цитохрома с и последующем разделении на сефадексе G-200 в некоторых случаях получают высокомолекулярную фракцию, содержащую эквимолярные количества обоих ферментов эта фракция есть по сути не что иное, как часть дыхательной цепи [24]. В некоторые ферменты цикла лимонной кислоты, для которых кофактором служит биотин, удалось ввести метку (С Ог) в результате реакции с соответствующими субстратами с последующей очисткой на сефадексе G-50 это дало возможность после деградации под действием проназы [c.214]

    Однако экспериментальное изучение кинетики ферментативных реакций и количественная оценка кинетических констант реакций, проводимых при определенных условиях (pH, температура, состав среды, действие ингибиторов, активаторов и т. п.), часто позволяют делать опеределенные заключения о химической природе промежуточных соединений и механизме отдельных стадий процесса. [c.8]

    Можно, однако, исследовать кинетику ингибирующего действия продукта реакции, не прибегая к предварительному его введению в реагирующую систему, а на основе измерения кинетики са-мотормозящейся ферментативной реакции во времени. Естественно, для этого должна быть использована интегральная форма кинетического уравнения реакции. [c.100]

    Исследование кинетики ингибирующего действия четвертичных солей алкиламмония позволило установить различия в свойствах холинэстеразы и ацетилхолинэстеразы. Первоначально на основании, по-видимому, ошибочных экспериментальных данных Адамс и Уиттекер [133] сделали заключение, что активный центр холинэстеразы сыворотки вовсе не содержит анионной группировки, в то время как в ацетилхолинэстеразе она имеется. Однако Бергман и Вурцель [127] в результате подробного изучения влияния ионов тетраэтиламмония и других ингибиторов на активность холинэстеразы плазмы показали, что последняя содержит анионную группировку. Блокирование этой группировки приводит к снижению каталитического эффекта. Интересно, что четвертичные соли алкиламмония тормозили ферментативный гидролиз не только катионных субстратов типа ацетилхолина, но также и субстратов, не содержащих катионного центра, например, алкилгалогенацетатов или ди-ацетина. Очевидно, такой эффект солей тетраалкиламмония связан с их влиянием на конфигурацию активной поверхности белковой молекулы. [c.193]

    Представление о фермент-субстратном комплексе было выдвинуто для объяснения зависимости скорости реакции от концентрации субстрата. Позднее наблюдение над тем, что кинетика поглощения катионов растительными тканями подчиняется уравнению Михаэлиса—Ментен, было принято за доказательство существования комплексов, переносящих катионы [12]. Метод кинетического анализа можно назвать методом исключения . Если кинетика реакции, вытекающая из предполагаемого механизма, не соответствует экспериментально полученным результатам, нужно отвергнуть исходное предположение. Однако иногда ряд возможных механизмов реакции приводит к одному и тому же уравнению скорости и потому нельзя сделать выбор между этими механизмами. Например, кинетические данные, укладывающиеся в теорию Михаэлиса — Ментен, соответствуют представлению о фермент-субстратном комплексе, но возможны и другие механизмы реакции. Так, Медведев [24] предложил теорию ферментативного действия, согласно которой комплекс, образуемый ферментом и субстратом, каталитически не активен. Медведев предположил, что скорость ферментативной реакции пропорциональна концентрации молекул фермента, участвующих в неэластических столкновениях, т. е. столкновениях, при которых происходит перенос кинетической энергии. [c.58]

    В начале XX в. Эмиль Фишер провел первые систематические исследования по изучению специфичности ферментов. Тогда же начали появляться работы, посвященные кинетике ферментативных реакций, и бьии сформулированы теории действия ферментов. Но лишь в 1926 г. впервые был получен очищенный фермент в кристаллическом виде. Это была уреаза, которую выделил из семян кана- [c.227]

    Можно назвать еще следующие направления, по которым развивается современная ферментология изучение роли и действия отдельных факторов, влияющих на процесс,—температуры, pH среды, ее окислительно-восстановительного потенциала, концентрации субстрата и фермента изучение кинетики ферментативных реакций исследование специфичности ферментов — важнейшего свойства, определяющего их биологическую роль и возможности практического использования химического строения и действия ингибиторов ферментов, обратимого и необратимого, специфического и неспецифического торможения ими реакций изучение строения и функций различных кофакторов, в первую очередь специфических коферментов, их роли в каталитическом процессе, в обмене веществ исследование особенностей ферментных белков — состава, числа цепей, гидродинамических и электрохимических свойств, химической структуры далее — строения активных центров, их числа, их низкомолекулярных аналогов изучение механизма действия ферментов действия полифермент-ных систем и, наконец, образования ферментных белков, в том числе их биосинтез и образование из предшественников префер-ментов). [c.46]

    Браунштейн, обстоятельно описывая процесс механизма действия ферментов, указывает, что первая стадия образования лабильного оомежуточного комплекса протекает энергичнее (быстрее других стадий). Ниже мы остано-АнтиВарвЬЗРныи. ви гся на кинетике ферментативных реак-кошлекс ций. [c.16]

    Следовательно, субъединнцы обладали более высокой степенью асимметрии, чем исходная ДНК (которая, находясь в свернутом состоянии, несомненно, отличается от субъединиц), а гибкие соединения (белок или неспаренные участки последовательности оснований) в надструктуре ДНК могут быть местом действия фермента. Кинетика ферментативного гидролиза указывает на одноцепочечный разрыв с образованием этих субъединиц (без индукционного периода), которые затем ведут себя как двухцепочечные молекулы [184]. [c.561]

    Только что описанный метод — изучение кинетики ферментативного гидролиза полинуклеотидов — применяется в основном для определения числа цепей в структуре [296, 297[. Метод основан на том, что одноцепочечная структура будет расщепляться ири гидролизе хотя бы по одной межнуклеотидной связи, в то время как для расщепления двухцепочечной структуры необходимо, чтобы разрыв произошел, по крайней мере, в двух местах. Если предположить, что существование индукционного периода при понижении молекулярного веса не является результатом первоначального разрыва водородных связей в особых участках молекулы, то с помощью кинетики гидролиза можно различить одно-, двух-, трехцепочечные структуры или структуры с большим числом цепей. Далее, результаты, полученные при действии панкреатической ДНК-азы на ДНК из зобной железы теленка, показали, что минимальное число нуклеотидов между разрывами в двух цепях, при котором сохраняется двухтяжная структура, равно примерно шести. Отсюда ясно, что для того чтобы молекулярный вес ДНК уменьшался, ферментативное расщепление каждой из цепей должно происходить внутри участка из шести нуклеотидных пар (рис. 8-26). [c.600]

    В книге рассмотрены формальная кинетика химических реакций в статических условиях и в потоке, общие закономерности распада и образования молекул, основы теории столкновений и переходного состояния, теории моно- и тримолеку-лярных реакций, кинетика реакций в растворах, теория цепных и фотохимических реакций, кинетика, химических реакций под действием излучений высокой энергии, современные теории гомогенных и гетерогенных каталитических реакций, кинетика ферментативных реакций и реакций образования высокомолекулярных соединений. Достаточно подробно дан вывод всех формул. [c.2]

    В этой связп следует упомянуть опыты некоторых биохимиков (П. Элоди), показавших, что ряд важных ферментов гликолиза — альдолаза, дегидрогеназа фосфоглицерпнового альдегида — усиливают свое действие при добавлении в среду некоторых неводных растворителей (диметилформамида), специфически воздействующих на третичную структуру белков (см. стр. 81). Этот результат показывает, что изучение ферментативного катализа в водных растворах может и не вскрыть максимальной потенции фермента как катализатора определенной реакции. При всем том изучение кинетики ферментативной реакции является наиболее общим методом исследования ферментов. [c.155]

    В целом уровень — это сфера действия специфических законов, выражаемых в виде системы относительно однородных понятий и гипотез. Экстраполяция законов и представлений одного уровня на другие требует очень осторожного подхода и тщательной проверки. Известно, какие серьезные изменения в теоретических основах физики вызвал переход от исследований с макроуровня на уровень изучения микромира создавались новые гипотезы и теории, коренным образом изменялось содержание старых понятий. Специфика живого одного уровня также несводима и не может быть объяснена только законами, действующими на предшествующем уровне закономерности роста и размножения клеток не могут быть полностью описаны в терминах кинетики ферментативных реакций закономерности роста полуля-ции не могут быть выведены только на основании представлений о характере деления одной клетки. Это все является следствием усложнения кооперативного взаимодействия простых элементов, образующих систему нового уровня сложности в иерархии структур. [c.18]


Библиография для Кинетика ферментативного действия: [c.435]   
Смотреть страницы где упоминается термин Кинетика ферментативного действия: [c.47]    [c.202]    [c.210]    [c.83]    [c.107]    [c.4]   
Смотреть главы в:

Биохимия растений -> Кинетика ферментативного действия




ПОИСК







© 2025 chem21.info Реклама на сайте