Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепло и его химическое значение

    При соприкосновении накаленной металлической поверхности или проволоки с горючей смесью последняя воспламеняется. Такое зажигание называется зажиганием накаленной поверхностью. Зажигание не происходит, если температура накаленной поверхности ниже некоторого значения. Предельная температура называется температурой зажигания накаленной поверхностью. Температура зажигания при таком способе значительно выше температуры самовоспламенения, возникающего при адиабатическом сжатии или других способах нагрева всей или большей части газовой смеси. Из-за большого градиента температуры в слое смеси, соприкасающемся с накаленной поверхностью, температура, близкая к температуре накаленной поверхности, локализуется в очень узком слое газовой смеси. Кроме того, хотя и выделяется тепло химических реакций в соприкасающейся с накаленной поверхностью части газовой смеси, теплопередача от этой части к накаленному металлу препятствует дальнейшему значительному росту температуры слоя смеси. Если даже температура локальной части смеси достигает температуры самовоспламенения, зажигание может и не произойти по указанной причине. Температура зажигания накаленной поверхностью тем больше, чем меньше площадь накаленной поверхности. На рис. 4.1 приведены значения температуры зажигания смеси природного газа с воздухом посредством накаленной никелевой полосы [1]. Как видно, температура зажигания смеси снижается с увеличением ширины полосы накаленного металла. На рис. 4.2 приведены значения температуры зажигания потока [c.62]


    Положение максимума Т при отсутствии отвода тепла определяется согласно формуле (3. 23). Основная роль в распределении температур принадлежит химическим реакциям и конвекции тепла, поэтому можно считать, что на величину х не влияет отвод тепла. Подставив значение X из формулы (3.23) н уравнение (3.31), получим следующую формулу для Т  [c.391]

    При данном значении г начальная температура реагирующей смеси 2000 не зависит от а. Уменьшение а, вызывающее пропорциональное умень- поо шение количества рециркулирующих газов, вследствие увеличения удельной реакционной поверхности / д /Ур.см способствует усилению нагрева газов за счет тепла химического реагирования и значительно интенсифицирует воспламенение. Поэтому с уменьшением а температура частицы и газовой среды резко возрастает, период индукции воспламенения уменьшается (кривые 1,2 нЗ на рис. 16-1 и 16-2). [c.355]

    ТЕПЛО И ЕГО ХИМИЧЕСКОЕ ЗНАЧЕНИЕ [c.73]

    При массовом производстве химических продуктов исключительно важное значение приобретает повышение эффективности использования сырья и энергии, интенсификация процессов и разработка новых технологических схем, а также снижение содержания вредных примесей в сточных водах и отходящих газах путем совершенствования технологических процессов. Большое практическое значение имеет разработка энерготехнологических процессов, при которых тепло химических реакций используется для получения энергии, потребляемой в самом процессе либо выдаваемой иа сторону в виде электроэнергии или энергетического пара. [c.15]

    При использовании таких систем в качестве рабочего тела в замкнутом газотурбинном цикле газ исходного состояния с минимальной газовой постоянной сжимается в компрессоре, нагревается в регенераторе и нагревателе до максимальной температуры цикла. При этом происходит диссоциация газа с поглощением тепла на химические реакции, увеличение числа молей и газовой постоянной до максимального значения. После расширения в турбине газ, охлаждаясь в регенераторе и холодильнике, рекомбинирует с выделением тепла химических реакций и уменьшением числа молей и газовой постоянной до минимального значения. Далее газ поступает в компрессор, сжимается, и цикл повторяется [11]. Большая газовая постоянная рабочего тела в турбине по сравнению с газовой постоянной рабочего тела в компрессоре позволяет уменьшить долю мощности, затрачиваемую на сжатие газа в компрессоре, до 30— 45%, приводит к увеличению коэффициента полезной работы и росту эффективного к. п. д. цикла по сравнению с циклами на инертных газах за счет существенного уменьшения необратимых потерь в цикле. [c.8]


    Наиболее широкой областью практического применения кипящего слоя являются химические процессы разложения и синтеза. Сохранение изотермичности режима — одно из основных условий избирательного протекания реакции с образованием желательных продуктов и предупреждением или уменьшением роли побочных реакций, приводящих к нежелательным продуктам. При определении скорости превращений в реакторах с кипящим слоем наряду с данными по переносу тепла приобретают значение данные по переносу вещества. При проектировании реактора с кипящим слоем необходимо иметь количественные закономерности, характеризующие перенос тепла и вещества в таком реакторе. [c.25]

    Выбор рационального типа теплоносителя и экономически выгодной системы нагрева определяется характером химического или другого теплового процесса. При выборе теплоносителя небходимо прежде всего учитывать рабочую температуру процесса и в соответствии с этим подобрать оптимальную температуру теплоносителя. Оптимальная температура теплоносителя определяется оптимальной разностью температур между температурой теплоносителя 1 и температурой нагреваемого сырья 2- Значение оптимальной разности температур зависит от условий теплопередачи в теплопотребляющем аппарате и в источнике тепла с учетом стоимости площади нагрева обоих теплообменников. Обычно в качестве параметра, определяющего оптимальную разность температур, выбирают либо стоимость 1 м поверхности нагрева, либо кубатуру оборудования, отнесенную к 1 м поверхности нагрева, либо вес 1 поверхности нагрева и т. д. [c.249]

    Реакционная способность присадок и ее роль в механизме противоизносного действия. При значительных скоростях скольжения и больших удельных давлениях, характерных для большинства современных узлов трения, на площадях контакта происходит значительное генерирование тепла, интенсифицирующее развитие различных химических процессов на трущихся поверхностях. В этих условиях большое значение наряду с адсорбционной способностью присадок приобретает их химическая активность. С ней связана способность присадок предотвращать задир трущихся поверхностей, между которыми по разным причинам нарушается масляная пленка [276.  [c.258]

    Теоретически существует другая возможность (кроме той, что указана в пунктах 3—5) использования экспериментальных результатов если ход Исследуемого явления удается описать в виде системы уравнений, то, решая ее для новых условий, можно определить ход явлений в этих условиях. В случае физико-химических процессов система уравнений, описывающих явление (например, кинетику реакции, тепло- и массообмен и т. д.), — это обычно система дифференциальных уравнений, которые не удается решить аналитически. Отсюда следует, что метод подобия имеет важное значение, хотя все чаще удается решать сложные системы уравнений благодаря использованию ЭВМ. [c.23]

    Химические реакции почти всегда сопровождаются выделением (поглощением) тепла, и температура изменяется по мере протекания процесса. В экспериментальных исследованиях необходимо по возможности поддерживать изотермические условия, чтобы опыты не усложнялись вследствие изменения скорости реакции с изменением температуры. Влияние температуры можно определить путем постановки опытов, проводимых при нескольких различных постоянных температурах. В лаборатории удается поддерживать почти изотермические условия благодаря большой наружной поверхности, приходящейся на единицу объема аппарата в небольших установках, и в результате того, что теплопередача в этих установках всегда может быть обеспечена и не лимитируется экономическими соображениями. С другой стороны, в крупных промышленных агрегатах практически осуществимая скорость теплопередачи строго ограничена. Таким образом, при проведении промышленных процессов большое значение приобретают как проблемы, так и вопросы кинетики теплопередачи. Иногда проблемы теплопередачи настолько важны, что агрегат можно рассматривать скорее как теплообменник, чем как реактор. Процесс ведут адиабатически в тех случаях, когда температура изменяется лишь в пределах рабочего режима, т. е. не понижается настолько, что скорость реакции становится слишком низкой, и не повышается так, что процесс нельзя регулировать. [c.89]

    Максимально интенсифицировать технологические процессы, что достигается путем развития рабочей поверхности, поверхности теплообмена, фильтрации, контакта фаз и др., а также путем интенсификации тепло- и массообмена. Большое значение имеет разработка процессов на принципиально новой физико-химической [c.4]

    Следует отметить, что понятие пределы взрыва применяется в трех различных значениях. Во-первых, о пределах взрыва говорят тогда, когда определяется то давление (при определенной температуре), ниже которого не может произойти самопроизвольный взрыв. В этом случае взрыв имеет чисто тепловую природу. При экзотермической реакции может наступить такое состояние, когда отвод тепла из реагирующей системы будет меньше, чем теплота химической реакции. Это будет приводить к возрастанию температуры реагирующей системы и к резкому нарастанию скорости химической реакции по закону = Такое тепловое автоускорение реакции приведет к взрыву. [c.216]


    При диффузии газа в жидкость, с которой он химически взаимодействует, может происходить повышение температуры вблизи поверхности абсорбента, во-первых, из-за экзотермичности физической абсорбции, а во-вторых (в еще большей степени), вследствие экзотермичности химической реакции. При достаточно большом увеличении температуры это может отразиться на скорости абсорбции вследствие воздействия на растворимость, коэффициент диффузии и скорость реакции. В последующих расчетах принимается, что потери тепла с поверхности жидкости в газовую фазу отсутствуют. Разумеется, при наличии таких потерь повышение температуры поверхности будет менее значительным, поэтому полученный результат дает завышенное, по сравнению с действительным, значение температурного роста. [c.61]

    Сопротивление химической реакции является основным фактором медленной реакции. Для быстрой реакции сопротивление диффузии может резко сократить скорость процесса, которая зачастую бывает ограничена количеством переносимого тепла. При близких значениях сопротивлений, упомянутых выше, масштабный переход затруднен. [c.230]

    Независимо от типа катализаторов первичным актом химического превращения, протекающего на их поверхности, является адсорбция реагентов, поэтому активность гранулы катализатора зависит не только от химического состава активных компонентов, но и от структуры кристаллической решетки, конфигурации и размера пор и их распределения. Существенное значение имеют также эффекты, связанные с транспортом массы и тепла необходимо учитывать влияние возникающих градиентов концентраций и температур. Таким образом, необходимо детальное изучение адсорбционных процессов, сопутствующих химическим реакциям. [c.21]

    При увеличении количества циркулирующего катализатора через котел регенератора необходимо следить за перепадом, давления в последнем, не допуская его подъема за максимальное значение шкалы, так как это может привести к прекра-, щению циркуляции катализатора через котел регенератора, и, как следствие, к нарушению режима регенератора (вызовет подъем температуры). Одновременно ведется постоянное наблюдение за расходом воздуха в транспортную линию котла регенератора, так как уменьшение расхода воздуха может привести к завалу транспортной линии котла и самого котла ре- генератора катализатором. В случае ненормальной работы котла регенератора для снятия тепла в регенератор в небольшом количестве впрыскивается химически чистая вода. Количество воздуха, вводимого в регенератор, определяется из расчета количества кокса, подлежащего выжигу в регенераторе. [c.151]

    Кинетическая и потенциальная эксергии, очевидно, совпадают по своим значениям с соответствующими видами энергии, физическая эксергия, это часть эксергии, которая является результатом несовпадения температуры и давления рассматриваемого вещества с температурой То и давлением Ро окружающей среды. Эксергия, возникающая из-за различия составов, называется химической эксергией Есн- При анализе ХТС важнейшими являются две составляющие эксергии физическая и химическая, сумма которых — это так называемая термическая эксергия ( <). В общем случае эксергии материальных потоков (Е) п потоков тепла ( г) рассчитываются по следующим выражениям  [c.189]

    Применение мембран особенно удобно для разделения азеотроп ных смесей. В этой связи все больший интерес проявляется к разделению испарением жидкости на поверхности мембраны. Трудность состоит в обеспечении подвода большого количества тепла к поверхности мембраны для испарения жидкости. Альтернативой этому методу является разделение предварительно испаренной жидкости. Но промышленного значения эти способы в химической технологии пока не получили. [c.21]

    В последнее время в химической технологии для разделения компонентов все большее значение приобретает кристаллизация из-за меньшей энергоемкости по сравнению с ректификацией, так как теплота кристаллизации обычно намного меньше тепло- [c.24]

    Тепло, используемое в печи Qo, определяется как разность теплосодержаний продукта при выходе из печи и при поступлении в печь и обусловлено технологическим процессом. Если при нагреве продукта протекает также химическая реакция, то в значение Qo необходимо включить также тепло, выделяющееся в результате реакции. [c.63]

    Сама химическая реакция протекает практически мгновенно н при взаимодействии с газообразным серным ангидридом лимитируется его диффузией, завершаясь в пограничной пленке жидкой фазы. Это ввиду высокой экзотермичности реакции способствует местным перегревам и образованию побочных продуктов (олефины, карбонильные соединения, смолы), которые вызывают потемнение и ухудшение качества ПАВ. Поэтому важное значение имеет способ проведения реакции, обеспечивающий отвод тепла и устранение местных перегревов с надежным регулированием температурного режима (разбавление 50з инертным газом, интенсивное перемешивание, проведение реакцни в пленке). [c.320]

    В обеих технологических схемах примерно одинаковы выход газа и значения термического коэффициента полезного действия. Выход газа составляет 84—87% от первоначального количества химического тепла сырья 13—16% его теряется в процессе в виде ароматических углеводородов, серы, углерода и пр. [c.143]

    Тепловая инерционность слоя. Высокая скорость химического превращения в зоне реакции обеспечивается достаточно высокой температурой. Заметим, что тепловая энергия в зоне реакции, движущейся в направлении фильтрации газа, складывается из энергии реакции и энергии, накопленной слоем катализатора. Перепад температур в зоне реакции оказывается выше адиабатического разогрева. Накопление значительного количества тепла слоем возможно только при достаточно большой тепловой инерционности слоя (т. е. при достаточно большом отношении теплоемкости слоя катализатора к теплоемкости реакционной смеси). Большая тепловая инерционность слоя обеспечивает медленную, сравнительно со скоростью подачи реакционной смеси, миграцию высокотемпературной зоны реакции. Медленная скорость миграции возможна и по другим причинам. Нанример, вследствие большой теплопроводности слоя или большого значения адиабатического разогрева. Однако, эти факторы при небольшой тепловой инерционности слоя не могут обеспечить разогрев зоны реакции выше адиабатического. Для технологической реализации процесса переключений медленная скорость миграции реакционной зоны чрезвычайно существенна. [c.99]

    Обозначения Т, Гщ, Го — температуры слоя, на входе в слой и начальная с, Сщ, Со — соответствующие значения концентрации реагента в газовой смеси в слое на входе и начальное ц — линейная скорость потока газовой смеси, отнесенная к полному сечению слоя W T, с) —скорость химической реакции АГа — адиабатический разогрев смеси при полной степени превращения I, L —текущая и общая длина слоя катализатора Я — эффективный коэффициент продольной теплопроводности слоя Сел — средняя объемная теплоемкость слоя катализатора Ср — средняя объемная теплоемкость реакционной смеси е — пористость слоя катализатора у = = Ср + Ссл D — эффективный коэффициент диффузии реагента в газовой смеси. Эта модель удовлетворительно описывает процессы в адиабатическом слое катализатора при таких предположениях градиенты температур внутри зерен катализатора незначительны химические процессы па внутренней поверхности зерен и диффузионные процессы внутри пористых зерен квазистационарны по отношению к процессам переноса в газовой фазе процессы межфазного тепло- и массообмена настолько интенсивны, что температура и. концентрация реагента в твердой и газовой фазе неразличимы. [c.100]

    Различные химические и фазовые превращения характеризуются разными по величине и знаку показателями тепловых э ектов. При этом процессы эндотермические, идущие слева направо с поглощением тепла, характеризуются положительными значениями Д Ягэа. а процессы экзотермические, идущие слева направо с выделением тепла,— отрицательными значениями ДЯ298- [c.7]

    В связи с температурной зависимостью статических и динамических деформационных свойств высокополимеров очень интересна устойчивость этих веществ к действию низких и высоких температур. Следует учитывать, что термин устойчивость имеет широкое распространение. Он применяется по отношению к стойкости к старению, к действию тепла, химических агентов, масел, пониженных температур. При испытании, например на теплостойкость, образец выдерживается некоторое время при определенной температуре ) и затем определяются механические, физические, а также химические свойства при комнатной температуре. Изучаются, следовательно, не только важнейшие свойства при повышенных температурах, но и после тепловой обработки. Подобным же образом проводятся испытания на маслостойкость и стойкость к действию химических агентов. Большинство испытаний на морозостойкость проводится иначе. Определяется изменение состояния материала не после длительной выдержки образцов при -низких температурах, а непосредственно при низких температурах. Таким образом, когда в предыдущих работах приводились значения сопротивления разрыву или других деформационных свойств при повышенных температурах, это не обязательно характеризовало теплостойкость с точки зрения вышеописанных определений. Несмотря на это, подобного рода определения при повышенных температурах с точки зрения практического применения резины являЪтся необходимыми. [c.76]

    Из рис. УП-22 и УП-23 видно, что при максимальном количестве влаги, удаляемой упаркой (М = 0,6), влажность плава на выходе из трубчатого реактора равна 0,8%. Количество воды, удаляемой в этом аппарате за счет тепла донейтрализации, уменьшается при возрастании степени нейтрализации. Следует отметить, что наиболее эффективно тепло химической реакции используется для удаления воды при низких значениях влажности (менее 10%). С учетом этого целесообразным является режим при мольном отношении ЫНз НзР04л 0,6, где низкая [c.228]

    Типичные кривые гранулирования представлены на рис. 1-14, [3, с. 93]. С увеличением Тот значения опт уменьшаются и диапазон допустимой влажности шихты становится меньше. Тем не менее выгоднее вести процесс при повышенных температурах, поскольку выход товарной фракции при этом увеличивается (рис. 1-15) [36]. Предлагается вестй процесс в так называемой точке гранулирования , находящейся на диаграмме 1 опт—7 опт на кривой материально-теплового баланса вблизи ее пересечения с кривой грануляции [35]. Точка гранулирования не обязательно соответствует максимально возможной температуре гранулирования и обусловлена конкретными условиями тепло-мас-сообмена, складывающимися в системе в зависимости от производительности технологической линии, климатических условий и физико-химических свойств компонентов шихты и гранулированного продукта. Следует, однако, учитывать и возможности искусственного повышения температуры шихты, путем использования тепла химических реакций в смеси, введения в гранулятор острого пара или топочных газов, предварительного подогрева компонентов и др. [c.34]

    Условия процесса могут быть постоянными по всему сечению реактора только при хорошем поперечном перемешивании реагирующей смеси. Последнее обычно описывается эффективным коэффициентом поперечной диффузии Е . В неподвижном слое поперечное перемешивание вызывается разделением и слиянием потоков при обтекании твердых частиц. Анализ этого процесса с помощью метода случайных блужданий приводит к значению радиального числа Пекле Ре = vdJE , равному — 8. В многочисленных экспериментальных исследованиях в неподвижных слоях без химических реакций были найдены числа Пекле от 8 до 15 причем при Ке > 10 число Пекле не зависит от числа Рейнольдса. Это подтверждает предположение о том, что поперечное перемешивание является чисто гидродинамическим эффектом. Числа Пекле для переноса тепла те же, что и для переноса вещества, а это говорит о пренебрежимо малой роли твердых частиц в процессе поперечной теплопроводности. С уменьшением числа Рейнольдса ниже 10 число Пекле сначала возрастает, но затем начинает уменьшаться, так как при [c.263]

    Подготовительные операции УЗК занимают 24 — 34 ч. В отличие от непрерывных нефтехимических процессов, в реакционных камерах УЗК химические превращения осуществляются в нестационарном режиме с периодическими колебаниями параметров процесса, прежде всего температуры, во времени. Продолжительность термолиза в жидкой фазе изменяется от максимального значения с начала заполнения камеры до минимального к моменту переключения на подготовительный цикл. На характер изменения темпера — турного режима по высоте и сечению камеры оказывает влияние эндотермичность суммарного процесса термолиза, а также величина потерь тепла в окружающую среду. Это обстоятельство обусловли — вает непостоянство качества продуктов коксования по времени, в том числе кокса по высоте камеры. Так, верхний слой кокса характеризуется высокой пористостью, низкой механической прочностью и высоким содержанием летучих веществ (то есть кокс недококсован). Установлено, что наиболее прочный кокс с низким содержанием летучих находится в середине по высоте и сечению камеры. [c.59]

    Граничные условия — это условия на поверхности, ограничивающей объем, в котором происходят химические превращения и сопровождающие их процессы переноса вещества, тепла и гидродинавлические явления. Для химических процессов в качестве граничных условий обычно задаются значения концентрации, температуры, производные этих или других величин (переменных процесса), а также линейные комбинации в виде многочлена из переменной и ее производной. [c.9]

    Какой критерий позволяет судить о самопроизвольном характере реакции Представления о самопроизвольном осуществлении реакций и о химическом равновесии обсуждались в гл. 4, но там мы принимали на веру приводившиеся значения констант равновесия. Теперь мы увидим, как эти константы связаны с другими измеряемыми свойствами реакции. Протекание большинства самопроизвольных реакций сопровождается вьщелением тепла. В качестве примера можно сослаться на такие общеизвестные явления, как взрывы и реакции горения. Но насколько обоснованным оказался бы общий вывод, что все самопроизвольные реакции сопровождаются выделением тепла Почему одни реакции осуществляются настолько полно, что после их протекания практически не остается реагентов, тогда как другие приостанавливаются при образовании смеси реагентов и продуктов Можно ли предсказать заранее, каким из этих двух способов будет вести себя интересующая нас реакция Как влияет на самопроизвольное протекание реакции количество имеюгцихся реагентов или продуктов  [c.6]

    Значительное выделение тепла АНт С 0) при образовании галидов натрия можно рассматривать как критерий их устойчивости относительно простых веществ, а возрастание этой величины в ряду Nal—NaBr—Na l—NaF — как свидетельство увеличения химического сродства галогенов к натрию с уменьшением их порядкового номера (различие в агрегатном состоянии галогенов не отражается на ходе значений ДЯгэя). Оба вывода отвечают действительности. [c.52]

    Для сложных неоднородных структур трудно определить процессы переноса вещества и тепла от химического процесса. При строгом расчете скорости реакции в пористом зерне надо знать полную геометрию пористой структуры, а не только функции распределения пор по радиусам и общее число неоднородностей. Так, например, точный расчет возможен для правильных, бидисперсных структур. При наличии структуры, состоящей из длинных макропор с короткими микропорами, эффективный коэффициент диффузии равен коэффициенту диффузии в макропорах. Для сложных неправильных структур значения эффективного коэффициента диффузии, определяемые соответствующими уравнениями переноса, в отсутствие реакции и при ее протекании различны они зависят от глубины работающего слоя катализатора. Еще более отличаются один от другого стационарный и нестационарные эффективные коэффициенты диф- фузки. [c.474]

    Особенно велико современное эконом1>п1еское значение нефти и газа. Нефть и газ - уникальные и исключительно полезные ископаемые. Продукты их переработки нужны и для мирного труда, и для обороны государства. Их применяют праь тически во всех отраслях промышленности, на всех видах транспорта, в военном и гражданском строительстве, сельском хозяйстве, быту, энергетике и т.д. За последние несколько десятилетий из нефти и газа стали в больших количествах вырабатывать разнообразные химические материалы, такие как пластмассы, синтетические волокна, синтетический каучук, лаки, краски, моющие средства, минеральные удобрения и многое другое. Не зря нефть называют черным золотом . Природный газ это не только высококачественное топливо для выработки электроэнергии, тепла, он широко применяется в различных отраслях промышленности. XX в. назьгаают веком нефти и газа. Не случайно, что проблеме обеспечения страны запасами нефти и газа во всем мире уделялось и продолжает уделяться исключительно серьезное внимание. Нефть и газ определяют не только экономику и технический потенциал, но часто и политику государства. [c.8]

    Хотя хорошо спроектированная структура способна противостоять ветровой нагрузке, остается риск разрушения химического предприятия от землетрясения. Эта проблема обсуждается в книге [Waltham,1978]. Там приводится технический обзор с обширной библиографией по проблемам, связанным с землетрясениями, вулканическими извержениями, подвижками, оползнями и обвалами. Хотя в принципе все они могут сказаться на системах под давлением, приводимое ниже обсуждение сосредоточено на землетрясениях как на наиболее вероятной причине разрушения. Могут иметь значение и другие явления подвижек земной поверхности, не обсуждаемые в работе [Waltham, 1978]. Это таяние вечной мерзлоты - грунтов, которые постоянно заморожены в отсутствие человеческой деятельности и представляют собой хорошие фундаменты. Однако при передаче им тепла от предприятия они превращаются в грязь. [c.110]

    Анализ изменения температуры во времени в разных точках по длине адиабатического слоя показывает, что такое изменение имеет характерный вид 5-функции, причем максимум температуры по направлению к выходу из регенератора возрастает. Тогда при определенных условиях в центральной части адиабатического слоя в нестационарном режиме горения кокса могут возникнуть значительные динамические тепловые забросы. Такой результат и был получен в работах [146, 161], где показано, что помимо начальных условий на максимум температуры в слое сильно влияет скорость подачи газового потока. При уменьшении расхода газа (увеличении времени контакта) температура слоя из-за динамических забросов может превзойти максимальное асимптотическое значение, соответствуюшее величинам Т , х° и Механизм появления забросов, по-видимому, следующий в область высоких температур из частично регенерированных участков слоя катализатора поступает реакционная смесь с достаточно высоким содержанием кислорода, результатом чего является ускорение химической реакции и увеличение тепловыделения. Выделяющееся в горячей зоне тепло вызывает рост температурного максимума до тех пор, пока тепловые потери на нагрев соседних участков не скомпенсируют тепловыделение. По-видимому, можно реализовать такие условия выжига кокса, при которых в слое появятся так называемые горячие пятна и в результате произойдет спекание катализатора. [c.87]

    Расчет тепло- и массоиереноса в неподвижных слоях катализатора с химической реакцией производится, как правило, в предположении равномерного распределения потока реагирующей смеси ио поперечному сечению слоя [1, 2]. Все операции ведутся с величиной и = Пц/е, являющейся неким фиктивным транспортным значением скорости потока в каналах между частицами. Здесь Но — средперасходная скорость потока перед слоем, е — порозность слоя. Несмотря на то что реальный профиль скорости в каналах между частицами существенно неравномерный, как это показали, например, исследования с помощью лазерно-доилеровского измерителя скорости [3], такое приближение оказалось оправданным для расчета каталитических процессов в неподвижном слое. [c.46]

    Если и = onst и I7 = onst, то, как показано в [17], в скользящем режиме распределение тепла в слое зависит только от интегральных характеристик процесса интегральной скорости, интегральной положительной скорости, интегральной отрицательной скорости, среднего значения коэффициента теплопроводности Я, и среднего значения скорости химической реакции. Для случая, когда времена подачи газовой смеси в положительном и отрицательном направлениях одинаковы, удалось детально проанализировать стационарную задачу при протекании одной реакции. В дальнейшем удобно будет вести рассуждения в терминах степени превращения [c.110]


Смотреть страницы где упоминается термин Тепло и его химическое значение: [c.220]    [c.705]    [c.281]    [c.85]    [c.191]    [c.294]    [c.140]    [c.26]   
Смотреть главы в:

Молекулярные основы жизни -> Тепло и его химическое значение




ПОИСК







© 2025 chem21.info Реклама на сайте