Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение переходных элементов

    Первоначально Д. И. Менделеев назвал железо, кобальт и никель переходными элементами. Как изменилось понятие переходные элементы в наше время Какие основные признаки характеризуют это понятие Дайте современное определение переходных элементов. [c.157]

    Метод применим лишь для определения переходных элементов [c.20]

    ОПРЕДЕЛЕНИЕ ПЕРЕХОДНЫХ ЭЛЕМЕНТОВ [c.576]


    Некоторые элементы часто обнаруживают отклонения от кривых, построенных по другим ионам. Эти отклонения обычно присущи определенным переходным элементам. Их можно проиллюстрировать на примере перераспределения хрома между клинопироксеном и основной массой (рис. 6.11). Многие ионы переходных металлов имеют несферическую форму и подвержены воздействию кристаллического поля, что описывается и обсуждается в следующем разделе. Таким образом, хотя заряд и радиус иона являются важными факторами, определяющими распределение элементов, существуют другие энергетические факторы, которые также необходимо принимать во внимание. [c.138]

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]

    Переходными называются элементы, ионы которых характеризуются одним из состояний (0<л <10). Согласно этому определению переходными следует считать все элементы побочных подгрупп (Б групп) больших периодов, начиная с подгруппы скандия (5с +—с( ), и включая подгруппу цинка (2п +—ё °). В соответствии с максимальной насыщаемостью -орбиталей в каждом большом периоде находятся 10 переходных элементов. Положение -элементов в таблице Д. И.. Менделеева обусловлено тем, что вместо ожидаемой последовательности насыщения электронами (и—1) -, п5-орбиталей реализуется начиная с IV периода последовательность пз, п—1)й. [c.489]


    Общие сведения. Цинк, кадмий, ртуть являются последними представителями -переходных элементов в периодах. Это обстоятельство, а также специфика полностью завершенной ( °) орбитали накладывают на химию этих элементов определенные особенности. С одной стороны, они еще похожи на своих предшественников по периоду, с другой — в большей мере, чем другие -элементы, похожи на элементы главной группы (НА). Например, сульфат цинка очень похож на сульфат магния, а его карбонат — на карбонат бериллия. Общими для всех элементов главной и побочной подгрупп второй группы являются близость оптических спектров и сравнительно низкие температуры плавления металлов. С медью, серебром и золотом элементы подгруппы цинка роднит следующее. Как и элементы подгруппы меди, они дают комплексы с МНз, галогенид- и цианид-ионами (особенно 2п и С(1). Из-за сильного эффекта взаимной поляризации их оксиды окрашены, достаточно непрочны. Электрохимические свойства в ряду 2п—Сё—Нд изменяются аналогично их изменению в ряду Си—Ад—Аи. Они легко дают сплавы. [c.555]

    Физические и химические свойства. Титан, цирконий и гафний, как и все переходные элементы,— металлы. Они существуют в двух полиморфных модификациях при низкой температуре их решетка гексагональная плотноупакованная (к.ч. 12 а-модификация), при высокой — объемно-центрированная кубическая (к.ч. 8 -модификация). При таких больших координационных числах имеющихся валентных электронов недостаточно для образования обычных валентных связей, поэтому у них реализуется металлическая связь, основанная на обобществлении валентных электронов всеми атомами. Отличительная особенность металлической связи — отсутствие направленности, вследствие чего в кристалле возможно значительное смещение атомов без нарушения связи. Этим объясняется высокая пластичность всех трех металлов, в первую очередь их а-модификаций. Наиболее пластичен титан, гафний наиболее тверд и труднее поддается механической обработке.,/Образование о.ц.к. структур у -модификаций, по всей вероятности, связано с некоторой локализацией связи появление определенной направленности, характерной для ковалентной связи, объясняет большую твердость и меньшую пластичность -модификаций титана, циркония и гафния. [c.211]

    Нормальный атом вершины в полигональных или полиэдрических молекулах предоставляет для скелетного связывания 3 внутренние орбитали. Однако некоторые полиэдрические кластеры имеют, по-видимому, несколько или все аномальные вершины, предоставляющие определенное число внутренних орбиталей, отличное от 3. Так, например, некоторые кластеры переходных металлов, расположенных в конце соответствующих рядов переходных элементов в периодической системе, такие, как [ЯК (СО),5] , имеют атомы вершин, предоставляющие для кластерного связывания только 2 внутренние орбитали. С другой стороны, некоторые кластеры, переходных металлов, находящихся в начале соответствующих рядов переходных элементов, такие, как [Мо Х ] , имеют [c.145]

    Формамид обладает необычной диэлектрической постоянной (110), существенно превосходящей диэлектрическую постоянную воды. Этот растворитель находится в жидком состоянии в удобной для работы области температур (2,5-193 °С) и имеет низкое давление паров при комнатной температуре. По вязкости он превосходит ДМФ (3,3 сП по сравнению с 0,80 сП для ДМФ). В отличие от ДМФ формамид лишь эпизодически применялся в качестве растворителя электролитов, причем область рабочих потенциалов в формамиде оказалась уже, чем в ДМФ. Более высокая диэлектрическая постоянная вообще не дает особых преимуществ формамиду перед ДМФ, так как диэлектрическая постоянная последнего также достаточно велика, чтобы обеспечить адекватную проводимость растворов. В основном с помощью формамида можно варьировать условия опыта путем изменения определенных свойств растворителя. Формамид - хороший растворитель для различных неорганических соединений, включая хлориды, нитраты и сульфаты ряда переходных и щелочноземельных металлов. Подобно воде, формамид растворяет более полярные органические соединения и смешивается с водой он очень гигроскопичен и легко гидролизуется с образованием уксусной кислоты и аммиака. Формамид использовался и качестве растворителя при полярографии на КРЭ некоторых переходных элементов и ряда органических соединений. [c.21]

    Переходная функция Л (/) может быть также использована для определения отклика элемента или системы на произв.ольное входное воздействие. Если и I) — функция времени, изображение которой и (з), то изобра ение ( ) выходной величины согласно ур авнению (2.52) и соотношению (2.55) имеет вид [c.45]

    Комплексообразование. Сейчас уже можно определенно утверждать, что образование гипервалентных соединений с атомами элементов, содержащих вакантные s,p,d или f-орбитали является характерным химическим свойством стабильных нуклеофильных карбенов [16, 17, 49]. Установлено, что особенно легко это взаимодействие протекает с атомами переходных элементов, в частности с тяжелыми металлами. [c.294]


    Атомы ванадия, ниобия и тантала имеют характерное для переходных элементов строение их валентные электроны расположены в двух внешних слоях, в периферийном слое— два электрона (у ниобия — один). С предпоследнего слоя в определенных условиях эти элементы отдают еще до трех электронов (ниобий — до четырех). Валентность ванадия, ниобия и тантала в соединениях бывает II, III, IV и V. Валентность V в обычных условиях наиболее стабильна. Электронные формулы элементов подгруппы ванадия  [c.3]

    Полевые обследования и результаты лабораторного определения содержания элементов-поллютантов в растениях показали, что площадь первой зоны составляет в среднем 1,7 тыс. га. На территории техногенной пустыни естественный растительный покров отсутствует в изреженных посадках находятся сильно угнетенные береза, ива, осина с обожженными листьями и сухими вершинами. Протяженность переходной к фоновой зоне значительно варьирует для разных элементов и почти в 10 раз превышает площадь первой зоны. Общая площадь зафязнения почв и растений достигает около 19 тыс. га. [c.144]

    Неметаллические простые вещества построены из молекул, в которых атомы группируются либо по 2, либо по 4—8 в одной молекуле и имеют валентности, направленные в пространстве строго определенным образом. В твердом виде многие из этих веществ представляют собой молекулярные кристаллы, в которых молекулы вытянутой, сферической и других форм образуют структуру с довольно рыхлой упаковкой. Отличительной особенностью металлов являются следующие присущие только им свойства электропроводность, теплопроводность, специфический блеск, ковкость и тягучесть, а для их структуры характерна изотропность, т. е. отсутствие особых свойств вдоль избранных направлений. Если атомы считать шарами, то структура большинства металлов характеризуется плотнейшей упаковкой шаров. С точки зрения. металлического характера физическая природа непереходных и переходных элементов сильно различается. Высокие температуры плавления и кипения последних объясняются наличием у них прочных связей. Вблизи границы, отделяющей металлы от неметаллов, элементы отличаются своеобразным строением кроме того, их специфические физические свойства представляют глубокий научный интерес, а также открывают широкие перспективы для практического использования. [c.87]

    Электропроводность и теплопроводность. Высокая электропроводность является одним из характерных свойств металлов (табл. 3.11). Большинство металлов имеет величину удельного сопротивления порядка (5—10)-10 Ом-см. Как правило, большое влияние на сопротивление оказывают примеси. Однако в настоящее время способы получения чистых металлов хорошо разработаны, поэтому можно думать, что в табл. 3.11 представлены достоверные величины, относящиеся к чистым металлам. Из всей периодической системы выделяются металлы подгруппы 1Б, имеющие самые низкие величины сопротивления, затем следуют А1, Са, Ыа, Мд, Т1. В пятом периоде н далее для непереходных элементов характерны высокие значения сопротивления, однако для переходных это не является правилом. Большим сопротивлением обладают висмут и поло-ннй, называемые полуметаллами , а из числа переходных элементов — лантан, цирконий, гафний. Однако в целом перечисленные различия в свойствах не удается связать определенной закономерностью ни с положением в периодической системе, ни со структурой металлов. [c.130]

    НО в соединениях переходных элементов определенный вклад вносит ориентация (1-орбиталей. Водные растворы электролитов, образующиеся при растворении ионных соединений в растворителе, проявляют особые свойства, которые играют важную роль в различных областях химии. [c.176]

    Факторы, определяющие устойчивость комплексов в зависимости от природы катиона. Если сравнить устойчивости комплексов, имеющих одинаковые лиганды и различные центральные катионы, то здесь также наблюдаются определенные закономерности. Для ионов непереходных элементов, а также для ионов переходных элементов, не имеющих d-электронов (d°), и для трехзарядных ионов лантаноидов стабильность комплексов возрастает по мере повышения заряда центрального катиона, а в случае одинаковых зарядов катионов — по мере уменьшения ионного радиуса. [c.243]

    Предпринято много попыток объяснить механизм каталитического действия, анализируя свойства катализатора и характер катализируемых им реакций, и это в определенной мере помогло поиску катализаторов. В табл. 5.8 приведены катализаторы типичных реакций, разделенные на соединения непереходных и переходных элементов периодической системы. [c.285]

    Таким образом, помимо общего для всех элементов периодической системы вертикального сходства (аналогия свойств в подгруппах) определенное значение приобретает горизонтальное сходство (горизонтальная аналогия) между переходными элементами, соседствующими в периоде. Горизонтальная аналогия проявляется, например, в свойствах двухзарядных ионов переходных элементов Зй-серии, а почти все элементы этой вставной декады образуют в водных растворах двухзарядные ионы. Свойства солей, в состав которых входят эти ионы, оказываются во многом похожими (например, железный, никелевый и медный купоросы). Разумеется, мы не увидим подобной аналогии в свойствах, скажем, производных элементов от магния до серы в степени окисления +2. [c.204]

    После публикации 1904 г. Вернейль направляет свои усилия на получение сапфира. Тогда не было известно, какой элемент обусловливает синий цвет этого камня, однако ему пригодились сведения о том, что природным камням этот цвет придает совместное присутствие окислов железа и титана [9]. В это время Вернейль работал консультантом фирмы Л. Хеллер и сын в Нью-Йорке и Париже. В его сапфирах содержались добавки 1,5% окиси железа и 0,5% окиси титана вместо окиси хрома, используемой в рубинах. Синяя окраска кристаллов обусловлена довольно сложным механизмом. Обычно цвет драгоценных камней связан с поглощением света характерной длины волны определенным элементом, особенно так называемыми переходными элементами, такими, как железо, кобальт, никель и хром. Если из спектра белого света удалить определенную полосу цветов, то свет, попадающий в глаз, будет окрашен в так называемый дополнительный цвет. Например, рубины потому красного цвета, что хром в кристаллической решетке корунда поглощает зеленый свет. Чтобы сапфир приобрел синий цвет, необходимо поглощение желто-оранжевого света. Такое поглощение имеет место, когда происходит электронный скачок внутри кристалла от атомов железа к атомам титана. Поэтому для окраски кристалла в синий цвет требуется совместное Присутствие железа и титана. [c.34]

    Анионный обмен может служить для выделения некоторых переходных элементов, которые далее определяют полярографически или при помощи рентгеновской флуоресценции [1767]. Прямые определения Fe, Ni, А1 и Si в металлическом Dy осуществляются и более простыми, например колориметрическими, способами, однако с гораздо худшей чувствительностью [859]. [c.248]

    Переходные элементы и элементы IB подгруппы (класс 4). В эту группу, содержащую более чем 50 элементов (включая 4/- и 5/-элементы), входит большинство металлов. В то время как для некоторых металлов, а именно для Mg, Zn, d, S , Y, Ru, Rh, Pd, Os, Ir и Pt, известно лишь по одной кристаллической модификации, большая часть металлов претерпевает структурные превращения при изменении температуры и(или) давления. Кроме того, остаются определенные неясности в отношении [c.446]

    Особо следует подчеркнуть условный характер отнесения состояния атома к определенной конфигурации. И не только конфигурации, но и квантовых чисел I и 8, которые сохраняются весьма приближенно. Так, уже относительно атома гелия нужно вьшснить почему его основному состоянию следует приписать конфигурацию а не, например, 152х. Энергетический интервал между этими конфигурациями настолько велик, что элементарный вариационный расчет не оставляет сомнений. Однако уже для атомов первого ряда переходных элементов дело обстоит значительно сложнее, так как конфигурации и Зй " 4х заметно перекрываются. Для никеля, например, основным состоянием является состояние 3 4х 4. Его энергия всего на 205 см ниже энергии состояния 3 4 /)з. Вычислить энергию атома с такой точностью трудно. Погрешность метода Хартри — Фока (энергия корреляции) на два порядка больше. Решующую роль играет не сама энергия корреляции, а то, насколько сильно она зависит от заполнения внешних оболочек. Как правило, метод Хартри-Фока дает верные конфигурации основных состояний. Но известны и обратные примеры. Так, для атома циркония (7 = 40) [c.183]

    Одной из наиболее ценных идей, которая, по-видимому, должна быть введена в стереохимию вслед за первыми применениями теории валентной связи, является утверждение, что при определении структур молекул соединений непереходных элементов не-тюделенные, или свободные пары электронов так же важны, как и связывающие пары. Однако следует отметить, что при определении стереохимии соединений переходных элементов свободные пары, вероятно, не играют такой же роли, как в случае непереходных элементов. У атомов переходных элементов свободные пары и одиночные неспаренные электроны находятся в предпоследнем п — 1) -подуровне, т., е. на негибридных металлических атомных орбиталях, тогда как у непереходных элементов они расположены на внешнем квантовом уровне, т. е. на гибридных орбиталях. Действительно, октаэдрическая конфигурация комплексов переходных металлов не зависит от числа несвязывающих электронов. Так, ион Мо(СМ)б имеет додекаэдрическую форму несмотря на то, что валентная оболочка атома молибдена содержит девять электронных пар. [c.199]

    Определению магнитных свойств комплексов переходных элементов уделено большое внимание Их изучение дало ценную информацию о стереохимии, типах связи в комплексах и о степени окисления центрального иона металла. Прежде чем выяснять, каким образом эту информацию удалось получить, нужно рассмотреть типы магнитного поведения комплексов. [c.271]

    Более точное соответствие между валентными возможностями группировок, образованных непереходными и переходными элементами, устанавливает введенное Хоффманном определение изоло-бальных групп, т. е. групп, для которых число, свойства симметрии, форма и энергии граничных орбиталей примерно одинаковы. [c.352]

    Как правило, -элементы не дают бинарных соединений определенного состава с водородом (кроме I, II и III групп). Весьма характерны для них карбиды, нитриды, фосфиды, бориды и т. п. Переходные элементы могут образовывать соединения, не имеющие аналогов среди соединений непереходных элементов, типа [Ре(СО)5]2, [Fe( 0)2(N02)], K[Nb( 0)5], Ks [Fe( N)sNO], (я-С.5Н5)2ре. Для тяжелых переходных 5 -элeмeнтoв характерны кластерные соединения, в которых наряду с ковалентными связями имеют место связи металл—металл (М—М) типа (ТабС1б)2С12- [c.499]

    К А. относятся твердый кислород (а-модификация) при Т< 24 К. а-Мп(Т = 100 К), Сг(Г , - ЗЮ К), а также ряд РЗЭ с Tv от 10 К (у Се) до 230 К (у Tb) оксиды переходных элементов, включая ряд ферритов-шпинелей, ферритов-гранатов и ортоферритов многие фториды (FeF,, NiFj п др), сульфаты (FeS04, MnS04 и др), сульфиды, карбонаты. В состав всех А. входят ионы по крайней мере одного переходного металла (Fe, Ni, Со, РЗЭ или актинидов). Для определения атомной магн структуры А. используют явление дифракции нейтронов на атомах (ионах) маги, подрешеток. [c.183]

    Четвертый период (К-Кг) содержит 18 элементов. После щелочного металла К и щел.-зем. Са ( -элементы) следует ряд из 10 т.наз. переходных (5с-2п), или -элементов (симврлы синего цвета), к-рые входят в подгруппы 6. Больщинство переходных элементов (все они-металлы) проявляют высшие степени окисления, равные номеру группы, исключая триаду Ре-Со-К), где Ре в определенных условиях имеет степень окисления +6. а Со и N1 максимально трехвалентны. Элементы. от Са до Кг относятся к под-грулпа.м а (р-элементы), и характер изменения их св-в во многом подобен изменению св-в элементов второго и третьего периодов в соответствующих интервалах значений 2. Для Кг получено неск. относительно устойчивых соед., в осн. с Р, [c.483]

    В атомкх переходных -элементов подгрутщ 5 достраиваются незавершенные оболочки с п, на единицу меньше номера периода. Конфигурация внеш. оболочек у них, как правило, П5 все -элементы-металлы. Аналогичная структура внеш. оболочки -элементов в каждом периоде приводит к таму, что изменение их св-в по мере возрастания г не происходит резко. Четкое различие проявляется в случае высших степеней окисления, при к-рых -элементы обнаруживают определенное сходство с р-элементамИ соответствующих групп П.с. [c.485]

    ПАР применяют в качестве металлохромного индикатора при кочтлексонометрич. титровании катионов разл. переходных элементов (переход окраски от красной к желтой при прямом титровании) и косвенном титриметрич. опреде-лени 1 анионов [титрант-р-р соли РЬ(П)], а также в качестве реагента для фотометрич. определения мн. металлов, в частности Си, Ga, In, Ti, Pb, V, Nb, Ta, U, o, Pd. [c.526]

    Оксиэтилидеидифосфоновая кислота является эффективным комплексообразователем и применяется для устранения жесткости воды 1—3], стабилизации перекисных соединений и поверхностно-активных веществ 11—8], травления алюминия и его сплавов [9], В аналитической химии это соединение используется прн определении тария [10] и переходных металлов для маскирования бериллия и титана при определении некоторых элементов, в частности, алюминия в технологии разделения редкоземельных элементов [И], для разделения нептуния и плутония [12]. [c.150]

    Относительно электронной конфигурации тория пока еще не высказано какое-либо определенное утверждение. По-видимому, для тория в основном его состоянии расположение электронов сверх конфигурации радона можно принять 7s или 5 6d7s [131, 647, 1774, 1816, 1820, 1896, 1925]. Однако до настоящего времени еще точно не установлено, у какого из элементов актиноидного ряда появляется первый 5/-электрон [409, 513, 880, 944, 1169, 1747, 1774, 2019]. Это и некоторые другие обстоятельства пока не позволяют утверждать, что именно торием начинается второй ряд переходных элементов [5, 153, 952]. По-видимому, этот вопрос будет окончательно разрешен после открытия 104-го элемента. [c.10]

    Вполне очевидно, что эта классификация слишком поверхностна, чтобы охватить все известные соединения, и к тому же она обладает существенным недостатком она заранее предполагает определенный тип связи. Однако и чисто геометрическая классификация, основанная на известных кристаллических структурах, имела бы в основном тот же вид. Класс (а) включает структуры, подобные структурам сложных оксидов (табл. 17.9), аналогия с которыми проявляется даже в том, что ряд сложных сульфидов адаптирует ту же модифицированную форму перовскитной структуры, которая характерна для оксидов типа Ос1РеОз. Класс (а) до известной степени плавно переходит в класс (в) при изменении характера связи от ионного к ковалентному или ковалентно-металлическому. В классе (а) в качестве ионов А и В выступают обычно электроположительные элементы первых А-подгрупп или определенные представители Б-подгрупп периодической системы (например, 1п +, В1 +). В тиосолях (класс (б)) А может быть щелочным металлом. Ад. Си(1), ЫН4, Т1(1), а В —неметаллом (51, Аз, ЗЬ) или переходным металлом в высокой степени окисления (У , Мо ). В соединениях класса (в) оба металла, как правило, из Б-подгрупп (Си, Ag, Нд, 5п, РЬ, Аз, ЗЬ, В1), но включают также некоторые переходные элементы, например Ре. [c.526]

    В некоторых случаях довольно трудно провести четкую гра-ПИ1Ш между истинно. металлическими сплавами, и гомеополяр-ными соединениями, особенно если последние содержат элементы Б—VII Б-подгрупп (As, Sb, Se, Те). Оказывается также не совсе.м удобно слишком жестко придерживаться деления эле.ментов на группы Aj, Аг, Bj и Вг. Мы постараемся пользоваться более гибкой класси щкацией, с тем чтобы рассматривать сразу целые семейства структур с общими структурными особенностями. Размерный фактор играет важную роль при определении воз.можности образования так называе.мых фаз Лавеса — структурно близких соединений М 2пг, М Сиг и MgN io. Со структурной точки зрения эти фазы, по-видимому, наиболее близки к о-фазам, образованным переходными элементами. Поэто.му фазы Лавеса, образующиеся при сочетании [c.471]

    Особое внимание привлекли комплексные соли соединений переходных элементов, например группы платины (Сг, Ре, Со, N1, Си), обладающие рядом особенностей. Их строение и структуру не удавалось объяснить с помощью ионных представлений и для интерпретации их свойств были предложены различные теоретические подходы. Одним из таких подходов явилась координационная теория комплексных соединений, предложенная Вернером в 1895 г. Идея координации, рассматривающая структурную единицу как группу с центральным ионом металла, окруженным определенным числом лигандов, в настоящее время получила широкое распространение. В принципе любую химическую частицу, образованную центральным ионом металла и лигандами, гзыъгют комплексом. [c.219]

    Многие органические соединения, а также их комплексы с переходными элементами снижают перенапряжение водорода на ртутном электроде. В результате возникают каталитические водородные токи, величина которых в строго контролируемых условиях пропорциональна концентрации катализатора — вещества, снижающего перенапряжение водорода. Катализаторами могут быть многие азот- и серосодержащие органические соединения. Несмотря на все перечисленные сложности, полярография пригодна дпя количественного определения многих органических соединений в весьма сложных объектах. Есть и прямые методы определения электроактивных веществ (определяют следы С Н,К02 в анилине), и косвенные методы, основанные, например, на измерении степени подавления полярографических максимумов. Так можно оценивать молекулярные массы продуктов гидролиза крахмала ипи определять степень загрязнения различных вод природными и синтетическими ПАВ. Современные фармакопеи многих развитых стран рекомендуют полярографические методы определения лек хпвенных прещтов — алкалоидов, гормонов, антибиотиков, витаминов. [c.189]


Смотреть страницы где упоминается термин Определение переходных элементов: [c.321]    [c.618]    [c.313]    [c.86]    [c.64]    [c.204]   
Смотреть главы в:

Химия Издание 2 -> Определение переходных элементов




ПОИСК





Смотрите так же термины и статьи:

Определение и общие характеристики переходных элементов

Элемент, определение

Элементы переходные



© 2025 chem21.info Реклама на сайте