Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы гидрирования молекулярным водородом

    Последняя стадия определяет скорость всего процесса. Для реализации этой стадии необходимо, чтобы, во-первых, разряд водородных ионов протекал беспрепятственно (или во всяком случае егче, чем разряд восстанавливаемых частиц) и, во-вторых, присоединение атома водорода к частиц(з Ох совершалось с меньшими затруднениями, чем рекомбинация двух водородных атомов. Эти условия лучше всего должны выполняться на металлах групп платины и железа, а также на других металлах, у которых рекомбинация водородных атомов или является замедленной стадией, или протекает с малой скоростью. Накопление водородных атомов на поверхности этих металлов в ходе их катодной поляризации способствует быстрому протеканию реакции гидрирования. Электрохимическое восстановление при подобном механизме становится сходным с процессом каталитического гидрирования с той разницей, что атомы водорода в первом случае поставляются током, а во втором — диссоциацией молекулярного водорода иа поверхности катализатора. В согласии с уравнением реакции (21.15) для илотности тока, идущего на реакцию восстановления, можно наиисать следующее выражение  [c.438]


    Молекулярный водород но существу инертен при крекинге углеводородов над алюмосиликатным катализатором, который, в свою очередь, в очень малой степени вызывает изомеризацию парафинов. Когда же к алюмосиликатному добавлен или нанесен на него катализатор гидрирования-дегидрирования и в систему подается водород, каталитический комплекс становится бифункциональным и происходят глубокие превращения. Прямые цепи [c.346]

    Значение переноса водорода было также доказано пропусканием смесей изобутенов и н-бутенов, разбавленных молекулярным водородом, над соответствующим катализатором гидрирования [c.332]

    Промежуточное взаимодействие одного из субстратов с катализатором может существенно понизить энергетический барьер реакции, устраняя запрет по орбитальной симметрии. Например, прямое взаимодействие молекул органических соединений с молекулярным водородом (гидрирование) запрещено по орбитальной симметрии точно так же, как реакция На с СЦ (см, с, 286), Однако На может взаимодействовать с переходными металлами, например с палладием, поскольку запрет не распространяется на взаимодействие с -орбиталями. Образующийся гидрид палладия без труда взаимодействует с органичен скими молекулами с освобождением металлического палладия. На этом основано широкое использование палладия как катализатора гидрирования, [c.309]

    Эта реакция носит название гидрирования. Гидрирование ведется водородом на металлических катализаторах. Катализаторы переводят молекулярный водород в активный атомарный. Такими катализаторами являются платина, палладий, никель, медь и кобальт. Катализаторы применяются в мелкораздробленном состоянии. Иногда катализаторы наносят на носитель — асбест, активированный уголь, кизильгур, пемзу, каолин, углекислый кальций. Платина и палладий ведут реакцию при комнатной-температуре, никель — при температуре около 150—200°, медь— при 200—240°. За последнее время большое знач ение приобрел [c.104]

    Влияние изменения состава лигандов на катали.э. При катализе по лигандному механизму активность катализаторов и характер процесса могут сильно изменяться за счет изменения состава лигандной оболочки. Для гомогенных комплексных катализаторов такие эффекты хорошо известны и широко используются. В последнее время Хидекель в своих работах по синтезу и исследованию каталитических систем — аналогов ферментов для жидкофазных реакций обнаружил подобные явления при катализе различных реакций гидрирования молекулярным водородом на платине и на других металлах У1П группы. Введением различных органических и неорганических веществ с резко выраженными донорными и акцепторными свойствами в одних случаях удается получать весьма активные катализаторы гидрирования углеводородов, в других случаях — высоко селективные катализаторы мягкого гидрирования непредельных карбонильных соединений в соответствующие непредельные спирты. Основной механизм действия таких добавок, вводимых в жидкую фазу,— алкоголятов щелочных металлов, хинонов и др.,— по-видимому, сводится к образованию на поверхности лигандных соединений, содержащих наряду с субстратом (Из и гидрируемое соединение) лигандные активаторы, создающие новые более сложные и более совершенные каталитические системы, напоминающие биокатализаторы с сокатализаторами [40]. Эти явления в то же время сходны и не всегда отличимы от разных случаев модифицирования. В этом плане весьма интересны данные по сильной металлоидной активации платины для газовых реакций, полученные в последнее время в нашей лаборатории при изучении действия металлических катализаторов с поверхностью, очищенной в ультравакууме. Поучительный пример сильной активации наблюдается при реакции СО2 + Н2СОН2О. После нескольких опытов самоактивация снижает температуру реакции с 1200 до 400° С. По-видимому, она связана с частичным восстановлением СОхем водородом до С, образующего поверхностный карбид платины. [c.61]


    Катализаторы гидрирования молекулярным водородом [c.91]

    Один из двух основных путей такой активации состоит в диссоциативном взаимодействии субстрата и катализатора. Для процессов гидрирования молекулярным водородом роль катализаторов часто играют металлы, способные образовать нестойкие гидриды, на которых адсорбируется водород (хемосорбция). Гомолитический разрыв молекулы водорода по реакции [c.8]

    Катализаторы гидрирования как обратимые водородные электроды, Применение электрохимических методов к исследованию катализаторов гидрирования в жидкой фазе позволило установить, что данные катализаторы, насыщенные водородом, ведут себя как обратимые водородные электроды. Водородный электрод — окислительно-восстановительный электрод, на котором устанавливается равновесие между электронами металла, ионами водорода в растворе и растворенным молекулярным водородом. Активность последнего фиксируется известным парциальным давлением водорода в газовой фазе. Термодинамически равновесный обратимый водородный потенциал на границе катализатор — раствор опреде-деляется суммарным процессом [c.185]

    Хотя в настоящее время разработаны различные пути снижения скорости коксообразования (гидрирование молекулярным водородом ненасыщенных углеводородов — предшественников кокса, модификация катализаторов окислами щелочных металлов Се, К, использование цепных ингибиторов коксообразования, например меркаптанов, и т. п.), все еще остается необходимой окислительная регенерация катализатора. Она осуществляется путем выжигания кокса воздухом, смесью воздуха с азотом или паровоздушной смесью основными продуктами такой газификации углеродистых отложений являются СО, СО2, Н2О. [c.95]

    В результате присоединения Н2 к алкену образуется алкан. Эта реакция, называемая гидрированием, не протекает при обычных температурах и давлениях. Одной из причин низкой реакционной способности водорода по отношению к алкенам является большая энергия связи Н2. Для проведения реакции гидрирования необходим катализатор, способствующий разрыву связи Н—Н. Чаще всего в реакции гидрирования применяются гетерогенные катализаторы-тонкоизмельченные металлы, на поверхности которых происходит адсорбция Н2. Действие таких гетерогенных катализаторов в реакции Н2 с алкенами подробно описано в разд. 13.6. Молекулярный водород также реагирует в присутствии катализаторов с алкинами, образуя с ними алканы, например  [c.423]

    В настоящее время предложено большое число каталитических систем, осуществляющих реакции гидрирования молекулярным водородом различных ненасыщенных соединений алкенов, алканов, диенов, ароматических и гетероциклических соединений, альдегидов, кетонов, нитросоединений. Путем подбора соответствующих катализаторов и условий реакции удается достичь высокой степени селективности и осуществить реакции с получением асимметричных соединений. [c.541]

    ВОДОРОДА ПАРА-ОРТО-ПРЕВРА-ЩЕНИЕ (пара-орто-конверсия) — превращение молекул водорода в зависимости от условий из одной формы в другую. Существование двух модификаций молекулярного водорода связано с различной взаимной ориентацией ядерных спинов атомов и, следовательно, с различными значениями вращательных квантовых чисел. В молекулах параводорода (л-На) ядерные спины антипараллельны и вращательные квантовые числа четные. В молек лах ортоводорода (0-Н2) спины параллельны и квантовые числа нечетные. Пара- и ортоводороды имеют разные теплоемкости, теплопроводности упругости пара, температуры плавления и др. На равновесное соотношение между числом орто- и пара-молекул и механизм превращения значительно влияет температура, наличие атомарного водорода, катализатор, природа растворителя и др. Пара-орто-превращение характерно также для дейтерия и трития. Способность молекул водорода к орто-пара-превращению используют для изучения механизма изотопного обмена водорода, гидрирования, каталитического окисления водорода и др. [c.57]

    Можно выделить три метода восстановления функциональных групп I) гидрирование молекулярным водородом с использованием гетерогенных или гомогенных катализаторов 2) гидрирование путем переноса водорода с использованием в качестве донора водорода органических соединений 3) селективное восстановление с применением комбинированных катализаторов типа переходный металл — гидрид металла. [c.250]

    Для гидрирования тройной связи может быть использован водород в момент выделения (литий или натрий в жидком аммиаке). Применимо также гидрирование молекулярным водородом над палладиевым катализатором на карбонате кальция или скелетным никелем. Алкены в этих условиях не гидрируются. [c.84]


    Одна из важных реакций — присоединение водорода. Алкены не способны присоединять ни молекулярный водород, ни водород в момент выделения (например, образующийся при действии цинка или олова на кислоту). Присоединение осуществляется лишь в присутствии катализаторов гидрирования, которыми служат платиновые металлы, никель и др. [c.107]

    С. А. Фокин (1905) показал, что процесс электровосстановления некоторых непредельных органических соединений легче всего протекает на металлах платиновой группы, которые, как известно, являются типичными катализаторами при гидрировании указанных веществ молекулярным водородом. В дальнейшем ряде работ по электровосстановлению было доказано, что если использовать в качестве электродов металлы, хорошо адсорбирующие водород, многие органические соединения восстанавливаются действительно адсорбированным водородом. Однако необходимо помнить, что и в этом случае процесс протекает гораздо сложнее, чем при обычном гидрировании, и включает промежуточные, в частности электрохимические, стадии. [c.632]

    Процесс гидрирования включает стадию активации молекулярного водорода, реагирующего с активным соединением с образованием гидридного комплекса, который обычно и играет роль катализатора. [c.138]

    Гомогеннокаталитические реакции составляют лишь небольшую долю каталитических реакций, используемых при получении промежуточных продуктов. Значительно большую роль при синтезе промежуточных продуктов играет гетерогенный катализ, особенно катализ в паровой фазе. Круг каталитических гетерогенных реакций чрезвычайно обширен и разнообразен, причем столь же разнообразны применяемые катализаторы. Так, металлы платиновой группы, медь и окислы железа, никеля, хрома, молибдена и др. служат катализа торами в процессах гидрирования молекулярным водородом окислы ванадия молибдена, вольфрама, железа, марганца, меди, серебра, кобальта, никеля используются в качестве катализаторов различных реакций окисления для реакций дегидратации применяются окислы алюминия, кремния, тория, хрома и вольфрама. Известны также смешанные катализаторы, например металлоорганические, железный катализатор с промоторами А12О3, ZпO и 510.2 (Для синтеза аммиака), металлы, покрытые пленками окислов, схмеси Т1С1з г А1(СгНд)з и др. [c.42]

    Гидрогенизация различных горючих веществ - твердых топлив, тяжелых нефтепродуктов, смол - является многоступенчатым процессом, включающим гидрирование исходного сырья и последующий крекинг сырья под давлением водорода. Поскольку молекулярный водород сам по себе мало активен, процесс осуществляют в присутствии катализаторов, при нагревании и высоких давлениях. Наличие указанных факторов и использование растворителя значительно облегчают переработку твердых топлив, представляющих собой высокополимерные вещества. На первой (начальной) стадии происходит растворение органической массы угля (ОМУ). Полученный угольный раствор является исходным сырьем для гидрогенизации. Проводимая в дальнейшем переработка угольного раствора аналогична осуществляемой при гидрогенизации тяжелых нефтепродуктов и смол. При этом получается преимущественно смесь насыщенных водородом соединений с меньшей молекулярной массой, чем у исходного топлива. В зависимости от условий проведения процесса и глубины превращения органической массы угля методом гидрогенизации можно получать высококачественные моторные топлива (бензины, дизельные, реактивные, котельные), сырье для химической промышленности (ароматические углеводороды, фенолы, азотистые основания), а также газы, содержащие водород и преимущественно насыщенные углеводороды С1-С4. [c.130]

    Специфично и имеет особое значение как метод удаления защитной группы (см. 1.2) гидрирование бензиловых эфиров карбоновых кислот на палладиевых катализаторах при температуре 20 °С и атмосферном давлении. Продуктами реакции являются соответствующая карбоновая кислота и толуол. Бензиловые эфиры гидрогенолизуются легче, чем восстанавливаются двойная углерод-угле-родная связь и нитрогруппа, причем реагируют даже соединения, содержащие в молекуле атом двухвалентной серы. Вместо молекулярного водорода при дебензилировании могут быть использованы доноры водорода - цнклогексен и циклогексадиен, легко ароматизирующиеся на палладии реакцию проводят в инертной атмосфере с реагентами, взятыми в стехиометрическом отношении, в уксусной кислоте или этаноле в присутствии палладия (10 %), нанесенного на уголь  [c.74]

    Методы восстановления обычно разделяют на две группы восстановление молекулярным водородом в присутствии катализаторов - гидрирование и восстановление прочими неорганическими и органическими реагентами - химическое восстановление. Методы второй группы весьма разнообразны и различаются между собой природой восстановителя, экспериментальными условиями и механизмом реакций, областью применения. Каталитическое гидрирование, напротив, представляет, по существу, единый синтетический метод, базирующийся на применении простейшего и универсального восстановителя, ограниченного круга катализаторов и отличающийся значительной общностью техники эксперимента при широком диапазоне изменений отдельных параметров химического процесса. [c.13]

    Наряду с традиционными способами восстановления нитрилов различными реагентами (металлического натрия в присутствии спиртов, хлорида олова, гидридов металлов) в последнее время широко применяется каталитическое гидрирование молекулярным водородом. Преимуществом этого метода является высокая скорость, простота осуществления реакции и выделения продуктов восстановления. Избирательное гидрирование нитрилов при наличии в молекуле других функциональных групп, которые также могут быть восстановлены, зависит от его строения, условий проведения реакции и природы катализатора. В зависимости от режима процесса восстанавливается либо только нитрильная группа, либо нитрильная группа и кольцо (в случае ароматических и гетероциклических нитрилов). В случае если двойная связь и N-rpynna в молекуле нитрила удалены друг от друга на большее расстояние, чем у [c.98]

    Шидкофазные лабораторные реакторы обладают рядом отличий от газофазных, поэтому их целесообразно рассмотреть особо. Устройство аппаратов мало меняется от того, проводятся ли в них чисто жидкофазные или газо-жидкофазные реакции с твердым катализатором. Последний тип реакций, к которому относятся жидкофазное гидрирование, восстановление водородом, жидкофазное окисление молекулярным кислородом в настоящее время более распространен в технике, чем первый, к которому принадлежат реакции алкили-рования, дегидратации и этерификации. [c.414]

    Гидрирование или гидрогенизация (от лат. hydrogenium - водород) - реакция присоединения водорода к органическим соединениям — осуществляется обычно в условиях гомогенного или гетерогенного катализа. В промышленности наиболее распространено гетерогенное гидрирование молекулярным водородом. Катализаторами служат чаще всего металлы УШ грушш периодической системы, оксиды металлов, нередко с добавлением к ним и других компонентов. [c.26]

    Основной особенностью процесса перераспределения водорода является образование предельных углеводородов, характерных наличием третичного углеродного атома, что говорит за избирательное насыщение олефинов с третичной двойной связью. Такое специфическое воздействие на третичную двойную связь присуще лишь алюмосиликатам, так как из многочисленных работ Лебедева [7] следует, что в условиях обычного гидрирования молекулярным водородом сильнее насыщаются однозамещенные производные этилена. Избирательное насыщение олефинов с третичными двойными связями играет большую роль в накоплении углеводородов разветвленных форм в продуктах каталитического крекинга. Так, возникающие вследствие изомеризации олефины с третичными двойными связями немедленно насыщаются, исключаясь тем самым из процессов, проходящих на катализаторе. [c.333]

    Возможно, каталитическое гидрирование молекулярным водородом арил-ди- и полисульфидов замещенного фенола. Так, в присутствии сульфидного катализатора С0М0/А12О3 при Т= 100 °С, Р = 5.3 МПа в растворе толуола протекает реакция [c.78]

    Как уже говорилось, при окислении и восстановлении происходит отдача или присоединение электронов. Однако не все реакции, в которых в молекулу вводится водород, можно представить как реакции переноса электронов. Часто гидрированием называют присоединение молекулярного водорода (в присутствии катализаторов, при различных температурах и давлениях), а восстановлением — реакции присоединения водорода (или замещения на водород) в момент его выделения ( п 51а1ит пазсепс ) в ионизированных средах. [c.230]

    Определенный интерес представляет вопрос о соотношении скоростей процессов каталитического гидрирования и электрогидрирования. Каталитическое гидрирование проводится при пропускании в раствор, в котором находятся электрод-катализатор и гидрируемое органическое вещество, газообразного водорода. Иногда можно встретить утверждение о том, что каталитическое гидрирование и электровосстановлеыие протекают с разными скоростями, так как при каталитическом гидрировании адсорбированный водород образуется при диссоциации молекулярного водорода и в момент образования энергетически отличается от атомарного водорода, возникающего за счет разряда ионов гидроксония. Однако убедительные доводы в пользу этого предположения не были получены. [c.283]

    При гомогенном гидрировании активация молекулярного водорода и реакция происходят в растворе субстрата и катализатора -соединения переходного металла. Важнейший из таких катализаторов - хлоротрис(трифенилфосфин)родий КЬС1(РРЬз)з (катализатор Уилкинсона). Комплексы переходных металлов, по-видимому, повторяют каталитические свойства этих металлов, но действуют в гомогенной системе, что значительно облегчает исследование механизма катализа. [c.17]

    Ренея содержит разное количество адсорбированного водорода. Так, 1 г N1 Ренея, нагретого до 200° С, содержит водорода 1—2 мл, тогда как нагретого до 100° С —10—14 мл. Дегазация проводилась в вакууме (остаточное давление 3 мм рт. ст.). К1-катализатор, лишенный большей части адсорбированного им водорода, быстрее отш епляет серу пз серусодержащих органических соединений путем прямого взаимодействия с ней, чем катализирует реакцию каталитического гидрирования их молекулярным водородом по связям С—3—С. Данные, приведенные в табл. 101, показывают направление превращений сернистых соединений в таком обезводороженном N1 Ренея. [c.421]

    В настоящее время известно лишь небольшое число раство-рон, обладающих редкой способностью активировать молекулярный водород и благодаря этому вызывать восстановление органических и неорганических соединений, а также протекание дей-терообмс на и орто-iiapa конверсии водорода. Для того чтобы подчеркнуть то физическое состояние, в котором находятся подобные каталитические системы, и отличить послед5 ие от обычных твердых катализаторов гидрирования, их назвали гомогенными катализаторами. [c.177]

    Исследоваиия каталитической гидрогенизации в гомогенных жидких растворах приобрели в настоящее время важное значение, так как получаемые результаты освещают с новой стороны механизм каталитической активации молекулярного водорода. Другими словами, подобные гомогенные катализаторы представляют интерес пе только потому, что они позволяют открыть или осуществить на практике новые или трудно выполнимые реакции, но также благодаря тем возможностям, которые представ-лянэтся этими системами для выяснения химизма катализа. Как было отмечено выше, поч1и все катализаторы гидрирования являются твердыми телами. Однако природа этих твердых те т очень мало известна и еще в меньшей стенени известны их поверхностные свойства. В противоположность этому природа молекулярных частиц, находящихся в растворе, сравнительно хо-poHJo установлена. Поэтому весьма вероятно, что со временем удастся найти связь между особенностями каталитического гидрирования н гомогенных системах и известными химическими свойствами участвующих в них молекул, ионов или комплексов. [c.177]

    Интенсивность любой из этих реакций может изменяться в весьма широких пределах в зависимости от продолжительности, температуры и парциального давления водорода. Потенциально при соответсгвуюш ем выборе катализатора и условий водород способен тем или иным способом взаимодействовать с любым углеводородным компонентом пефти практически при любых температуре и давлении. Обьгано температура промышленных процессов не превышает приблизительно 540° С, а давление — около 700 ат. Как правило, с повышением температуры усиливаются реакции гидрокрекинга, т. е. реакции, при которых происходит разрыв связей углерод — углерод, например деалкилирование, разрыв колец, разрыв цепей. Если парциальное давление водорода недостаточно высокое, то одновременно происходит также разрыв связей углерод — водород, сопровождаюгцийся выделением молекулярного водорода и образованием алкенов и ароматических углеводородов. Хотя интервалы температур, при которых проводят термический крекинг и гидрирование, практически совпадают, применение катализаторов и малая продолжительность реакций, а также присутствие водорода подавляют нежелательные термические реакции, которые неизбежно протекали бы при обычных условиях. Повышение давления благоприятствует образованию связей углерод — водород и пасыгцению кратных связей углерод — углерод. При достаточно низких давлениях алканы претерпевают дегидрирование до алкенов и циклизацию в ароматические углеводороды цикланы дегидрируются до алкенов и ароматических углеводородов, а пятичленные цикланы изомеризуются и дегидрируются до ароматических. Практически при любых условиях гидрирования в той или иной степени происходит изомеризация углеводородных целей и колец. Выбор надлежащих условий и применение достаточно активных катализаторов позволяют достигнуть преобладания любой из рассмотренных реакций, т. е. высокой избирательности превращения углеводородов в целевые продукты. [c.127]


Смотреть страницы где упоминается термин Катализаторы гидрирования молекулярным водородом: [c.118]    [c.52]    [c.109]    [c.215]    [c.291]    [c.235]    [c.192]    [c.39]    [c.186]    [c.83]    [c.196]   
Смотреть главы в:

Практические работы по органической химии Выпуск 4 -> Катализаторы гидрирования молекулярным водородом




ПОИСК





Смотрите так же термины и статьи:

Водород молекулярный

Гидрирование молекулярным водородом



© 2025 chem21.info Реклама на сайте