Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Содержание диоксида серн в газе

    Во многих производствах образуются технологические и отходящие газы с невысоким [0,5—2,0% (об.)] содержанием диоксида серы (производство серной кислоты, цветных металлов, газы нефтепереработки, агломерационных фабрик, топочные газы ТЭЦ и т. д.), которые недопустимо выбрасывать в атмосферу как из санитарных соображений, так и в связи с необходимостью извлечения ценного и остродефицитного сырья —серы. Непосредственно перерабатывать диоксид серы из сбросных газов в серную кислоту экономически невыгодно из-за низкого содержания в них 50г [122]. Большинство из существующих способов концентрирования диоксида серы (или очистки газов от ЗОг) основано на использовании различных химических процессов и имеют ряд недостатков высокую стоимость и большой расход реагентов, необратимое (в ряде случаев) поглощение диоксида серы, низкую экономическую эффективность [122, 123]. Это стимулирует поиск новых рациональных методов очистки. [c.329]


    Отходящие газы из цеха серной кислоты при расчетной степени конверсии 98% все же содержат 0,14%, или 1400 млн SOj. Эта концентрация является недопустимой для новых цехов обжига, вследствие чего используют процесс двойного катализа (процесс фирмы Байер) [576], называемый иногда процессом с промежуточной абсорбцией [225]. В этом процессе достигается степень конверсии 99,87о при оптимальной концентрации в питающем газе около 9% SO2, практический нижний предел концентраций равен 7,5%. Тогда остаточное содержание диоксида серы в выхлопном газе составляет 150—180 млн и соответственно увеличивается выход серной кислоты. [c.196]

    Нитрозность кислоты, орошающей продукционные башни, должна обеспечивать практически полную переработку диоксида серы в серную кислоту содержание ЗОа в газе, выходящем [c.261]

    Метод основан на окислении диоксида серы и оксидов азота раствором пероксида водорода. Суммарное содержание образовавшихся серной и азотной кислот устанавливают титрованием раствором щелочи. Содержание серной кислоты определяют хро-матным методом. По разности между общим содержанием кислот и содержанием серной кислоты устанавливают содержание оксидов азота в газе. [c.135]

    При обжиге концентратов сульфидов меди, цинка и других цветных металлов на металлургических заводах тоже получается диоксид серы, который используется для производства серной кислоты. Таким образом, производство цветных металлов из сернистых руд комбинируется с производством диоксида серы. До 25% серной кислоты получается из отходящих газов цветной металлургии, Значительная часть сернистых газов в цветной металлургии получается с содержанием ЗО2 менее 37о. Для использования в производстве серной кислоты эти газы необходимо концентрировать. Однако на ряде заводов цветной металлургии концентрирование газов еще не производится и они выпускаются в атмосферу. В настоящее время проектируется более полное использование сернистых газов цветной металлургии. Лучшим сырьем для производства диоксида серы служит сера, которая выплавляется из природных пород, содержащих серу, а также получается как побочный продукт в производстве меди, при очистке газов и т. п. Сера плавится при 113°С, легко воспламеняется и сгорает в простых по устройству печах. При сжигании серы в воздухе получается газ более высокой концентрации, чем при сжигании колчедана, с меньшим содержанием вредных примесей. Из серы вырабатывается около 35% производимой в СССР серной кислоты. [c.117]


    Анализ уравнения (6.44) показывает, что скорость окисления возрастает с увеличением констант скорости и равновесия и, кроме того, при повышении содержания в газе кислорода. Увеличению степени превращения способствует рост давления, при котором образуется ЗОз например, при Т = 713 К и Р = 0,1 МПа равновесная степень превращения р 0,98, а при давлении 5,0 и 10,0 МПа расчетное значение может составить соответственно 0,997 и 0,998. Это служит основой для внедрения циклических процессов получения серной кислоты под давлением и с применением технического кислорода. Данные о некоторых кинетических характеристиках окисления диоксида серы приведены в табл. 6.1. [c.212]

    Нефтяные и природные газы наряду с углеводородами могут содержать кислые газы — диоксид углерода (СО ) и сероводород (Н jS), а также сероорганические соединения — серооксид углерода ( OS), сероуглерод ( Sj), меркаптаны (RSH), тиофены и другие примеси, которые осложняют при определенных условиях транспортирование и использование газов. При наличии диоксида углерода, сероводорода и меркаптанов создаются условия для возникновения коррозии металлов, эти соединения снижают эффективность каталитических процессов и отравляют катализаторы. Сероводород, меркаптаны, серооксид углерода — высокотоксичные вещества. Повыщенное содержание в газах диоксида углерода нежелательно, а иногда недопустимо еще и потому, что в этом случае уменьшается теплота сгорания газообразного топлива снижается эффективность использования магистральных газопроводов из-за повышенного содержания в газе балласта. Если рассматривать этот вопрос с указанных позиций, то серо- и кислородсодержащие соединения можно отнести к разряду нежелательных компонентов. Однако такая постановка вопроса не исчерпывает всей полноты проблемы, так как кислые газы являются в частности высокоэффективным сырьем для производства серы и серной кислоты. Поэтому при выборе процессов очистки газов учитывают возможности достижения заданной глубины извлечения нежелательных компонентов и использования их для производства соответствующих товарных продуктов. В Канаде, например, сера в зависимости от содержания в газе сероводорода рассматривается как основной, сопутствующий или побочный продукт, и в зависимости от этого распределяются затраты на очистку газа и производство серы, а также регламентируются условия разработки и эксплуатации некоторых месторождений [22]. Известны случаи, когда сероводородсодержащий природный таз добывают с целью производства серы, очищенный газ после извлечения сероводорода закачивают обратно в пласт для поддержания пластового давления. В ряде стран мира (США, Канаде, Франции) открытие крупных месторождений природного сероводородсодержащего газа положило начало широкому развитию в 50-х годах добычи и очистки такого газа и производству серы из этого сырья. В Канаде из сероводородсодержащего газа получено около 5,3 млн. т серы (по состоянию на начало 1978 г. доказанные запасы серы составляли 105 млн. т) [23]. [c.135]

    В котельном агрегате сжигают 125 кг угля состава, мае. % углерод — 69,6 сера — 5,5 вода — 4,0 азот — 0,8. При этом расходуется 241,4 кг кислорода. В печной афегат подают 69,3 кг кислорода и сжигают 40 кг серы. В отделение очистки из котельного афегата поступает дымовой газ в количестве 341,4 кг с температурой 350 °С, содержащий 13,8 кг диоксида серы, 5 кг воды и 3,6 кг оксидов азота. Дымовые газы смешивают с отходящим из контактно-нитрозного отделения газом. Этот газ, рециркулируемый на очистку с температурой 40 С, содержит 0,98 кг диоксидов серы и 0,5 кг оксидов азота. В отделение очистки подают 30 кг жидкого триоксида серы и 45 кг 98 %-ной серной кислоты, содержащей 0,42 мол. д. 80з. Очистку газов ведут при температуре 25 °С. Извлечение 80з из газа, подаваемого в аппарат 14, составляет 99,99 %, а содержание его в абсорбенте на выходе аппарата возрастает до 0,52 мол. д. В отходящем из абсорбера 14 газе не более 2,686 10 мол.д. 80з. [c.243]

    Сульфит-бисульфитные методы позволяют перерабатывать извлекаемый компонент в серную кислоту, элементарную серу, сжиженный диоксид серы и сульфаты. Чаще всего для извлечения ЗОг используют сульфиты натрия и аммония, позволяющие очищать газы с любым содержанием сернистого ангидрида. При его поглощении сульфитными растворами при 35-45°С в соответствии с реакциями (14.2) и (14.3) образуются бисульфиты  [c.392]

    Нормальная эксплуатация воздухоподогревателей обеспечивается в том случае, если температура дымовых газов на выходе из них на 10-15 °С выше точки росы. Это гарантирует отсутствие конденсации влаги на поверхности трубок и образования слабой серной кислоты (за счет диоксида серы в дымовом газе), приводящей к интенсивной коррозии. Точка росы, в свою очередь, зависит от содержания серы в жидком топливе (или сероводорода - в газовом топливе)  [c.535]


    Снижение выбросов диоксида серы с дымовыми газами происходит за счет сокращения удельных расходов топлива, повышения степени использования в общем объеме потребляемого топлива заводского и природного газов и приготовления для собственных нужд жидкого топлива с пониженным содержанием серы. Все кислые газы, получаемые в процессах переработки нефти и очистки нефтепродуктов, перерабатываются на установках Клауса с выработкой серы или серной кислоты. По 190 [c.190]

    Элементную серу получают из самородных руд, а также из газов, содержащих диоксид серы или сероводород (газовая сера). Элементная сера — один из лучших видов сырья для производства серной кислоты. При ее сжигании образуется газ с большим содержанием 50г и кислорода, не остается огарка, удаление которого связано с большими затратами. В самородной сере присутствует лишь незначительное количество мышьяка, что существенно упрощает схему контактных сернокислотных систем, поскольку отпадает необходимость специальной очистки газов от мышьяка. [c.45]

    Содержание серного ангидрида в обжиговом газе зависит от температуры обжига сырья, концентрации кислорода в обжиговом газе, конструкции печи и от некоторых других факторов, определяющих скорость процесса окисления диоксида серы и [c.63]

    Принципиальная схема производства серной кислоты из колчедана может быть оформлена различно на схеме, приведенной на рис. П1-1, раскрыто технологическое содержание производства. В частности, видно, что оно представляет собой схему с открытой цепью, т. е. является проточной схемой, где газ последовательно проходит все аппараты. Схема включает 7 основных операций. Операция 1 — обжиг сырья в процессе обжига содержащийся в флотационном колчедане пирит вступает во взаимодействие с кислородом воздуха по реакции (3-3). В результате образуются диоксид серы, содержащий 12—15% ЗОг, и огарок РегОз. Диоксид серы охлаждают с использованием тепла для получения пара (операция 2), а затем освобождают от пыли (операция 3) и подвергают специальной очистке (операция 4 — охлаждение, промывка, сушка). Очищенный ЗОг нагревают теплом отходящих газов (операция 5) и в присутствии катализатора он окисляется до 50з (операция 6). После окисления газ охлаждают (операция 5) и направляют на абсорбцию 50з 98,3%-ной серной кислотой (операция 7). При этом триоксид серы реагирует с водой, образующуюся серную кислоту выводят нз процесса в качестве готового продукта. [c.106]

    Схема получения серной кислоты из сероводорода методом мокрого катализа представлена на рис. 50 [12]. Метод мокрого катализа получил свое название в связи с тем, что окисление диоксида серы на ванадиевом катализаторе проводят при значительном содержании в газе паров воды — около 7%. [c.137]

    Р1так, важнейшими тенденциями развития производства серной кислоты являются повышение концентрации диоксида и триоксида серы в технологических газах и уменьшение их содержания в отходящих газах применение давления циклическая система производства с использованием контактных аппаратов с кипящими слоями прочного термостойкого катализатора разработка и применение более активных катализаторов, имеющих пониженную температуру зажигания максимальное использование теплоты реакций на всех стадиях производства для выработки товарного водяного пара. [c.138]

    В первой главе приведен обзор перспективных тенденций развития производства серной кислоты, к числу которых относятся осуш,ествление сернокислотного процесса под давлением и разработка замкнутой кислородной технологии получения серной кислоты. Показано, что наиболее перспективно получение серной кислоты в системах с замкнутым газооборотом, в которых, за счет рециркуляции отработанных газов обратно на переработку обеспечивается полная экологическая безопасность сернокислотного производства по диоксиду серы, как в режимах нормальной эксплуатации, так и в период пуска. Применение чистого кислорода либо воздуха, обогащенного кислородом, в рамках таких систем позволяет увеличить концентрацию перерабатываемого газа и одновременно освободиться от балластного азота, содержание которого в газах существующих систем составляет около 80%. Это ведет к значительному уменьшению размеров технологического оборудования сернокислотного производства. [c.6]

    Элементный анализ нефти иа содержание углерода и водорода так же, как и для ТГИ, основан на сжигании ее или нефтепродукта до диоксида углерода (IV) и воды. По их количеству рассчитывается содержание С и Н. Метод определения содержания серы основан также на сжигании навески нефтепродукта в кварцевой трубке, а улавливании сернистого газа S0, и окисления его в серный газ SO,. Содержание азота определяют методом Дюма или Къельдаля. Содержание кислорода определяют по разности. [c.59]

    В свою очередь, в случае использования концентрированных газов их иногда разубоживают до содержания диоксида серы порядка 7-8%, оптимального для получения серной кислоты. [c.390]

    Высококонцентрщюванный по диоксиду газ получают путем термического разложения смеси сульфата и серного колчедана без доступа воздуха в псевдоожиженном слое циркулирующего огарка, создаваемом сернистым газом. Сульфат железа предварительно сушат и окисляют до оксисульфата при 500 °С ДТ/. Газ с содержанием диоксида серы 25 получен в печи кшящего слоя при совместном обжиге купороса и колчедана при 750 °С и отношении серы сульфатной к сере пиритной 0,35 / /. Дм увеличения концентрации газа к сульфату железа добавляют элементарную серу, при сгорании которой выделяется тепло, обеспечивающее необходимую температуру разложения /19, 20/. Высокая интенсивность и полнота диссоциацрш достигаются при одновременной подаче в реакционную зону сульфата железа и углекислого колчедана. Пигментный оксид железа и серосодержащие газы высокой концентрации образуются при обжш е частично дегидратированного купороса в токе горячих продуктов сгорания элементарной серы /13/. [c.13]

    В установке, работающей на пироксидной руде ПО Чиа-турмарганец на двух ступенях хемосорбера, достигается степень поглощения SO2 98%, а на трех ступенях — 99,2%- Обжиговые газы со средним содержанием диоксида серы в количестве 8,3% (об.) поступают на производство серной кислоты,, а марганцевую руду после 15-кратного использования и регенерации возвращают для нужд металлургической промышленности или изготовления искусственного МпОг- [c.29]

    Потоковый хроматограф был применен также для определения содержания диоксида серы в газах после моногидридного абсорбера в контактном цехе производства серной кислоты контактным способом [14]. Параметры, характеризующие стабильность работы хроматографа, в течение года практически не изменялись. В работе [14] показана также принципиальная возможность использования потоковых хроматографов для оценки работы контактного аппарата и для анализа обжиговых газов. [c.167]

    Контактный узел технологической схемы ДК/ЦА, эксплуатируемый Фирмой "Лурги" (ФРГ) по разработкам фщ)мы "Байер".представлен на рис. 5. Контактный узел работает по схеме 3+1 (три слоя катализатора на первой стадии катализа и один слой на второй стадии). Сернистый газ, поступающий на первую стадию катализа, нагревается в фортеплообменнике I, теплообменниках 2 после четвертого, первого и второго слоев катализатора. Сернистый газ после абсорбера первой ступени 4 нагревается в фортеплообменни-ке I и теплообменнике 2 после третьего слоя. Степень превраще -ния газа с исходным содержанием диоксида серы 9,0-9,5 % (объемные доли) после первой стадии катализа = 0,90-0,92 и ойцая 3 = 0,995. Одним из способов регулирования режима работы каталитического реактора 3 является изменение количества поддува исходного газа к газу после первого слоя. Оба фортеплообменника I небольшого размера и служат для предотвращения образования ксн-денсата серной кислоты и коррозии следующих за ними теплообменников 2. В данной схеме нагревание газа после первого абсорбера 4 в теплообменнике 2 после третьего слоя приводит к уменьшению теплопередачи и увеличению показателя общей поверхности теплообмена (ХА 5,8). [c.25]

    Как мы видим, зарубежные и отечественные схемы ДК/ДА отличаются организацией теплообмена, количеством слоев катализатора на обеих стадиях катализа и способами предотвращения коррозии трубок теплообменников. Схемы, где нагрев исходного газа осуществляется за счет охлаждения газа перед второй абсорбцией менее надежны, так как в случае коррозии трубок теплообменников существенно увеличивается содержание диоксида серы в отходящих газах. Защита теплообменных труб от коррозии и повышение техь ловой устойчивости системы возможны путем дополнительного подогрева газа после первой абсорбции в фортеплообменнике или рекуператоре за счет водяного пара, высокотемпературного газа или проведения первой стадии абсорбции в "горячем" режиме, то есть при температуре газа на выходе из абсорбера 95-140 °С. В отечественных системах для испарения тумана серной кислоты принято нагревать газ после первой абсорбции в фортеплообменниках газом, выходящим из каталитического реактора. [c.30]

    Нитрозность кислоты, орошающей продукционные башни, должна обеспечивать практически полную переработку диоксида серы в серную кислоту содержание SO2 в газе, выходящем из последней продукционной башни, не должно превышать 0,05%. С повышеинем ннтрозности орошения интенсивность переработки SO2 в башнях возрастает. Поэтому в современных башенных системах нитрозность кислоты, орошающей продукционные башни, достигает 15—19%. Однако с увеличением пит-розности кислоты интенсивность переработки SO2 повышается только до определенного предела, по достижении которого далее не изменяется. Таким образом, в производственных условиях нецелесообразно значительно увеличивать нитрозность кислоты, поскольку это может привести к увеличению потерь оксидов азота с отходящими газами. [c.275]

    Метод сжигания Гринфилда и Смита [13—15] сходен с методом Прегля. Сжигание органических веществ проводят в токе кислорода, используя в качестве катализатора оксид кобальта (II, III) , в то время как для разложения оксидов азота используется диоксид свинца. Газовый поток пропускают через кондуктометрическую ячейку, содержащую 99,83%-ную серную кислоту. Электропроводность такой концентрированной серной кислоты изменяется при наличии самых незначительных количеств воды, т. е. изменение электропроводности пропорционально содержанию воды в газе и косвенно содержанию водорода в органическом соединении. Газ, выходящий из ячейки, пропускают в другую кондуктометрическую ячейку, содержащую [c.532]

    На нефтеперерабатывающих заводах серную кислоту получают из технического сероводорода. По типовому проекту Гипрохим сырье—сероводородсодержащий газ —должно содержать не менее 84 % (об.) сероводорода допускается содержание углеводородов не более 2,5 % (об.) и азота, диоксида углерода и др. не более 13,5 % (об.). На установке вырабатывается серная кислота по ГОСТ 2184—П улучшенная с содержанием моногидрата Н2804 92,5—94 % (масс.) или техническая с содержанием моногидрата Н2504 не менее 92,5 % (масс.). Обычно на НПЗ для производства серной кислоты используют метод мокрого катализа. [c.113]

    Около 307о серной кислоты ь СССР производится из газа, полученного обжигом серного колчедана, состоящего из минерала пирита и примесей. Чистый пирит РеЗг содержит 53,5% 3 и 46,5% Ре. В серпом колчедане содержание серы обычно колеблется от 35 до 50%, железа —от 30 до 40%, остальное составляют сульфиды цветных металлов, карбонаты, песок, глина и др. Серный колчедан часто залегает в смеси с сульфидами цветных металлов, которые являются сырьем для производства меди, цинка, свинца, никеля, серебра и др. Для отделения сульфидов цветных металлов руду измельчают, разделяют флотацией на концентраты сульфидов цветных металлов и так называемые флотационные хвосты, которые состоят главным образом из пирита. На сернокислотных заводах флотационный серный колчедан обжигают для получения из него диоксида серы. [c.117]

    Сущность метода двойного контактирования — двойной абсорбции (рис, 1-21) заключается в том, что после 1-й ступени окисления SO2 в SOs (степень конверсии примерно 92—95%) газ поступает на 1-ю ступень абсорбции триоксида ссры 6. Не-окисленный диоксид серы, пройдя фильтр, где отделяются брызги серной кислоты и туман, нягрсвается к теплообменниках до температуры зажигания катализатора первого слоя 2-й ступени контактного аппарата и проходит дпа слоя контактной массы. При этом суммйрнля степень контактирования составляет 99,7—99,8%. Носле 2-й ступени колтактировапия газ поступает на абсорбцию, после которой содержание SOg в выхлопных газах составляет 0,03—0,04 объемн.%. что соответствует ПДК. [c.47]

    К ниэкоконцентрированным относят газы с содержанием не более 4% 502- Это топочные (энергетических и других установок) и выбросные газы металлургических, химических и других производств. На них приходится подавляющее количество диоксида серы. Однако их утилизация встречает экономические трудности. Для эффективного производства наиболее доступного товарного продукта (серной кислоты) концентрация 802 в этих газах недостаточна. [c.389]

    Поэтому естественно, что технический прогресс в вопросах очистки металлургических газов от соединений серы с выпуском серной кислоты в значительной степени связан с применением кислорода в технологических процессах. Использование последнего обеспечивает получение газов с повышенным содержанием 802 позволяет утилизировать все газы для производства серной кислоты, серы и других продзжтов увеличивает степень извлечения серы и сокращает выбросы ее диоксида непосредственно в сернокислотном производстве. [c.398]

    В лаборатории газообразный диоксид углерода получают разложением карбонатов кислотами (например, гидрокарбоната калия серной кислотой), а также термическим разложением гидрокарбоната натрия (110-120 °С) или карбоната магния (540 °С). Диоксид углерода в промышленности получают термическим разложением известняка или выделяют чаще всего абсорбционным методом из продуктов горения топлива или из промышленных газов, например так называемых конвертированных газов для синтеза аммиака. Диоксид поставляется в жидком состоянии в стальных баллонах (давление в баллоне 56 МПа) либо в твердом виде (сухой лед). Диоксид углерода пищевой содержит 99,96 мол. % основного вещества. Фирма Mateson (США) вьшускает диоксид углерода для исследовательских целей (resear h grade) чистотой 99,995 мол. %. Простой способ снизить содержание более летучих примесей в баллонном диоксиде углерода состоит в испарении части содержимого баллона. [c.911]

    Один из лабораторных способов получения и очистки оксида азота состоит в медленном (по каплям) прибавлении 40% водного раствора нитрита натрия к раствору сульфата железа (II). Выделившийся газ очищают промывкой раствором КОН и концентрированной серной кислотой, осушают охлаждением твердым диоксидом углерода и пентаоксидом фосфора и вымораживают с помощью жидкого азота. Неконденсируюшиеся газы откачивают ваку-> мным насосом. Реализован более совершенный способ очистки оксида азота, получаемого с использованием последней реакции в баллонах под давлением 3,4 МПа. Очистку от влаги и диоксида азота проводят методом вымораживания с фильтрованием на металлической сетке при температуре 143 °С. При этом обеспечивается высокая чистота продукта, не ниже 99,9 мол. %, поскольку очистка не связана с применением химических веществ. Инертные газы и азот отделяют методом низкотемпературной сублимации. Фракционная дистилляция и возгонка твердого оксида азота в вакууме дают возможность получить газ с содержанием примесей 10 мол. %. [c.912]

    Гросскопфом [31] описан колориметрический метод определения водорода в газах, основанный на образовании воды при взаимодействии с кислородом. Исследуемый газ пропускали через трубку, содержащую последовательно слой гопкалита, предназначенный для поглощения содержащихся в газе паров воды, слой металлического катализатора (платина, палладий или никель), способствующего окислению водорода до воды, и, наконец, керамическую мембрану, пропитанную смесью диоксида селена с моногидратом серной кислоты и активированную парами углеводородов. На присутствие паров воды указывало изменение цвета такой мембраны от исходного желтого до красного. По ширине окрашенной в красный цвет зоны можно определять содержание от О до 5% водорода (или паров воды) при использовании 0,5 л образца исследуемого газа. [c.356]

    Процесс АШП внедрен на Медногорском медно-серном комбинате взамен классической медно-серной плавки. При плавке кусковой медной пиритной руды состава, % Си — 1,6-2,3 Ъл — 1,2-2,5 8 — 44-48 Ре — 35-37 8Ю — 2-6 без расхода углеродистого топлива на обогащенном дугье проплав по руде составил до 62 т/(м сут), содержание меди в штейнах при десульфуризации до 90-95 % достигало 30 %. Прямое извлечение серы в элементарную серу без внутрипечного восстановления составило 40 2 %. При внутрипечном восстановлении диоксида серы природным газом оно возросло до 58 %, а при восстановлении вводимым в шихту коксом при его расходе около 10 % — до 65 %. [c.329]

    Содержание в газе ЗОз и оксидов азота при совместном их присутствии определяют следующим образом. Диоксид серы и оксиды азота окисляют перекисью водорода до Н2304 и НМОз, общее содержание этих кислот определяют титрованием щелочью, после чего количество серной кислоты находят хроматометрическим методом, а содержание азотной кислоты — по разности. [c.292]

    Разрабатывали сухой метод получения пиросульфита аммония прямым синтезом в газовой фазе из влажного ЗОз и ЫНз. Возможно использование обжигового сернистого газа, прошедшего обычную для контактного производства серной кислоты очистку от примесей (пыли, селена и мышьяка), а также отходящих газов контактного производства 1 2804 [13, с. 135-143]. На основе результатов полузаводских испытаний установки (рис. 40) рекомендован способ получения гранулированного пиросульфита аммония на основе отходящих газов производства серной кислоты с применением реакционного аппарата КС [180]. Установлено, что для получения качественного продукта, содержащего до 90% и более (NH4)2S205, в реакторе необходимо поддерживать избыток диоксида серы в пределах 0,15-0,2% (при содержании в газе на входе 0,8-1% ЗОз). [c.149]


Смотреть страницы где упоминается термин Содержание диоксида серн в газе: [c.48]    [c.54]    [c.23]    [c.109]    [c.41]    [c.3]    [c.103]   
Смотреть главы в:

Контактное отделение сернокислотного цеха -> Содержание диоксида серн в газе




ПОИСК





Смотрите так же термины и статьи:

Диоксид



© 2025 chem21.info Реклама на сайте