Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние температуры и давления на коррозионные процессы

    Существенное влияние на скорость газовой коррозии оказывают образующиеся продукты коррозии, их физико-химические н механические свойства. В больщинстве случаев коррозия протекает в окислительной среде при этом на поверхности металла в качестве продукта коррозии образуется окисная пленка. Впрочем, тонкая окисная пленка на металле обычно появляется уже при комнатной температуре. Свойства образующейся окисной пленки решающим образом влияют на дальнейший ход коррозионного процесса. В случае резкого торможения процесса вплоть до, полного прекращения коррозии говорят о наступившей пассивности поверхности металла Термодинамика газовой коррозии. Термодинамическая возможность процесса газовой коррозии с образованием окисной пленки определяется величиной изменения свободной энергии системы. Существует удобная форма определения термодинамической возможности протекания коррозии за счет окисления металла, которая сводится к сравнению упругости диссоциации полученного продукта реакции окисления с парциальным давлением кислорода в газовой фазе. [c.46]


    Далее по уменьшению значимости влияния следуют такие факторы, как содержание и парциальное давление кислых компонентов, а также температура транспортируемой среды. Согласно [3], характер коррозионных процессов существенно изменяется в зависимости от соотношения парциальных давлений кислых компонентов в системе при повышении парциального давления сероводорода увеличиваются количество проникающего в сталь водорода и скорость общей коррозии при возрастании парциального давления углекислого газа увеличивается скорость общей коррозии стали (рис. 3). [c.11]

    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    При изучении закономерностей коррозионных процессов не раз отмечалось влияние скорости движения агрессивной среды на интенсивность и характер коррозии, не менее существенное, чем влияние температуры, давления, состава среды и других факторов. [c.36]

    Материалы для изготовления сосудов и аппаратов высокого давления следует выбирать в соответствии со спецификой их конструктивного исполнения, изготовления и эксплуатации, а также с учетом возможного изменения исходных физико-механических свойств материалов, находящихся под коррозионным воздействием обрабатываемой среды в условиях данного химико-технологического процесса. Так, при обработке водородсодержащих веществ на работоспособность аппарата оказывает особое влияние водородная коррозия, а при рабочих температурах выше 350 °С — ползучесть материала (стали). Кроме того, всегда нужно стремиться к низкой стоимости оборудования. Поэтому при выборе материалов предпочтение [c.118]

    Большое влияние на скорость коррозии оборудования оказывает температура при ее повышении увеличивается не только коррозионная активность фенола, но и содержание сероводорода в системе вследствие разложения сероорганических примесей в сырье. Поэтому температура в системе регенерации фенола должна быть как можно ниже. Для этого процесс в отпарных колоннах ведут в вакууме (остаточное давление 250—300 мм рт. ст.). [c.35]

    Тяжелая фаза образуется и скапливается в нижней части сосуда в процессе технологического цикла в виде стеклообразной массы переменного состава 5102, КагО и НгО. Степень коррозионного воздействия тяжелой фазы на материал сосуда однозначно не установлена. Имеются отдельные экспериментальные данные, свидетельствующие о возможном каталитическом влиянии силикатов на коррозионный процесс. В любом случае тяжелая фаза содержит повышенный процент щелочи по отношению к номинальной концентрации технологического раствора. Косвенным подтверждением повышения щелочности в нижней части сосуда в цикле может служить анализ отклонения фактической р—V—Т диаграммы цикла от расчетной. При фиксированном коэффициенте заливки сосуда начало гомогенизации и наклон прямолинейного участка диаграммы (см. рис. 63) зависят от состава раствора, в частности, от концентрации щелочи. Сравнивая р—У—Т зависимости для различных концентраций щелочи с фактическими значениями температуры и давления, можно оценить изменение средней концентрации щелочи в цикле. Анализ этот носит качественный характер из-за сложности точного учета неравномерности температурного поля в сосуде, концентрационных расслоений и других факторов. Однако в целом он показывает некоторое уменьшение щелочности в цикле, что может быть легко объяснено образованием тяжелой фазы с повышенной щелочностью в нижней части рабочей камеры и соответствующим обеднением щелочью основной массы раствора. [c.253]

    Жидкие металлы способны растворять металл, из которого изготовлена аппаратура, и переносить компоненты сплава из горячих зон Б холодные. В такой среде осуществляется химическое взаимодействие между жидким и твердым материалом, в результате которого образуются химические соединения — окислы, нитриды, карбиды и интерметаллические соединения жидкий металл диффундирует в поверхностные слои твердого тела, образуя новый сплав или соединения. Скорость растворения основного металла определяется скоростью отдельных стадий этого процесса, в том числе и скоростью растворения металла в горячих зонах и его отложения в холодных. Скорость коррозии зависит также от температуры, давления и скорости циркуляции жидкого металла. Иногда наблюдается избирательное растворение в жидком металле одного или двух компонентов сплава, сопровождаемое образованием язв или появлением межкристаллитной коррозии. Присутствие в жидком металле окислов и нитридов, полученных при соприкосновении его с воздухом или другими веществами, оказывает отрицательное влияние на коррозионную устойчивость металлической конструкции. [c.89]

    На равновесие реакций ионизации оказывает влияние температура и давление. Для заключения о возможности осуществления коррозионного процесса при изменении внешних параметров необходимо определить знак изменения изобарного потенциала. [c.35]

    Влияние давления и температуры. Установлено, что скорость развития коррозионного процесса находится в прямой зависимости от парциального давления СО2. Так, скорость коррозии углеродистой стали в агрессивной среде, содержащей только СО2, с ростом парциального давления от 1 до 5 кГ/см возрастает в 4 —5 раз. Влияние температуры на скорость коррозии более сложное. Повышение ее значительно увеличивает скорость коррозии за счет ускорения протекающих при этом реакций и возрастания степени диссоциации угольной кислоты. [c.394]


    На коррозию углеродистой стали влияет также давление воды. Увеличение давления не оказывает влияния на анодный процесс, но ускоряет катодный процесс практически при всех температурах. Максимальная скорость катодного восстановления кислорода наблюдается при 15 МПа. Изменение плотности катодного тока объясняется явлениями переноса в электролите—морской воде. По мнению авторов [6], электропроводность морской воды и коэффициент диффузии газа повышаются с давлением. В продуктах коррозии в начальные периоды коррозионного процесса находят гидроксиды Fe + и Fe + (гексагональная модификация) в соотношении 1 1 при последующем окислении растворенным кислородом образуется только РегОз-иНгО. [c.19]

    Коррозия является физико-химическим процессом и закономерности ее протекания определяются общими законами термодинамики и кинетики гетерогенных систем. Различают внутренние и внешние факторы коррозии. Внутренние факторы характеризуют влияние на вид и скорость коррозии природы металла (состав, структура и т.д.). Внешние факторы определяют влияние состава коррозионной среды и условий протекания коррозии (температура, давление и т.д.). [c.13]

    Кинетика процесса разрушения основного металла определяется скоростью отдельных стадий этого процесса, в том числе скоростью растворения металла в горячих зонах и его отложения в холодных. Скорость коррозии зависит также от температуры, давления и скорости циркуляции жидкого металла. Иногда наблюдается избирательное растворение в жидком металле одного или нескольких компонентов сплава, сопровождаемое образованием язв или появлением межкристаллитной коррозии. Наличие в жидком металле оксидов, нитритов и других соединений, полученных при контакте его с воздухом или другими газами, оказывает отрицательное влияние на коррозионную стойкость металлоконструкций. [c.542]

    Влияние температуры и давления на коррозионные процессы [c.29]

    Сложная полиметаллическая система гидропровода способствует возникновению коррозионных процессов. Ускоряющее действие на протекание коррозии оказывают высокое давление и повышенная температура жидкости. На эти процессы оказывают также влияние химический состав и свойства жидкостей. Существующие лабораторные методы испытания металлов на коррозию, естественно, дают лишь относительную оценку коррозионной агрессивности жидкости для гидросистем. Окончательный [c.500]

    В большинстве случаев протекание электрохимической коррозии характеризуется локализацией анодного и катодного процессов на различных участках корродирующей поверхности металла, что приводит к неравномерному или местному коррозионному разрушению металлической поверхности. На процессы электрохимической коррозии металлов существенно влияют как внутренние, так и внешние факторы. К внутренним факторам следует отнести термодинамическую устойчивость металла, состояние его поверхности, структурную неоднородность, влияние напряжений и др. К внешним факторам относятся факторы, связанные с составом коррозионной среды и условиями коррозии (температура, скорость движения среды, давление и др.). [c.318]

    Напряженное состояние материала аппарата вызывается давлением рабочей среды, влиянием высокой температуры, веса, ветра (для аппаратов, установленных на открытом воздухе), конструктивными особенностями и условиями эксплуатации. Кроме того, в материале могут оставаться внутренние напряжения, возникающие в условиях его производства, или вызванные технологией изготовления аппарата. На механическую прочность материала оказывают влияние температура и физико-химические свойства рабочей среды.. Толщина (и, следовательно, напряжение) материала в процессе службы может измениться вследствие коррозионного и эрозионного разрушения его поверхности. [c.47]

    Отечественный и зарубежный опыт эксплуатации коррозионно-опасных газоконденсатных месторождений показал, что основными факторами, оказывающими влияние на коррозионные процессы газопроводных сталей, являются температура газожидкостной среды, парциальные давления сероводорода и углекислого газа. [c.3]

    Скорость электрохимической коррозии металлов зависит от сложного комплекса физико-химических, тепловых, механических и других факторов, называемых внутренними и внешними. К внутренним факторам, помимо рассмотренных в гл. 1 термодинамической стабильности металлов и их строения, относятся структурные особенности сплавов, способность металлов и сплавов к пассивации, влияние механических напряжений на коррозионный процесс, характер обработки и состояние поверхности сплавов н др. Внешние факторы включают характер агрессивной среды, концентрацию водородных ионов, температуру и скорость движения потока раствора, давление, влияние блуждающих токов, микроорганизмов и др. [c.15]

    Изменение давления газовой среды над раствором может су-ш,ественно влиять на состав и концентрацию раствора, а следовательно, и на скорость коррозионного процесса. 600 Повышение давления осо- бенно сказывается на те- 00 чении процессов, идущих с кислородной деполяри- 1200 зацией (рис. 41), ввиду повышения растворимости кислорода в реакционной среде, и практически Рис. 41. Влияние давления на коррозию меди мало влияет на течение в 30%-ной HNO3 (температура 20, продол-процессов, идущих с во- жительность испытания 3 часа). [c.69]

    Характер поражений металлических конструкций в натурных условиях воздействия коррозионных сред чрезвычайно разнообразен. Получение достоверной информации о коррозионных процессах по образцам-свидетелям зависит от их вида, способа нагружения и состава коррозионной среды. Испытания образцов в натурных условиях проводят с целью определения влияния параметров рабочей среды (температура, давление, состав, скорость потока и т.п.) на коррозию металлов и принятия окончательного решения о [c.247]

    Вольшинство исследователей считают, что углекислота не обладает каким-либо специфическим воздействием на коррозию стали, а стимулирует ее только снижением pH среды вследствие образования и диссоциации угольной кислоты. Степень влияния углекислоты на коррозионные процессы в сточных водах также зависит от минерализации, состава воды, температуры и давления. Как известно, в промысловых коммуникациях системы ППД значения этих факторов изменяются в широких пределах. [c.369]

    Материалы для изготовления сосудов и аппаратов высокого давления следует выбирать в соответствии со спецификой их конструктивного исполнения, изготовления и эксплуатации, а также с учетом возможного изменения исходных физико-механических свойств материалов, находящихся под коррозионным воздействием обрабатываемой среды в условиях данного химико-технологического процесса. Так, при обработке водородсодержащих веществ на работоспособность аппарата оказывает особое влияние водородная коррозия, а при рабочих температурах выше 350 °С - ползучесть материала (стали). Кроме того, всегда нужно стремиться к низкой стоимости оборудования. Поэтому при выборе материалов предпочтение следует отдавать наиболее дешевым и менее дефицитным маркам стали, удовлетворяющим всем другим требованиям, вытекающим из условий эксплуатации оборудования (достаточной прочности, коррозионной стойкости, долговечности и т.д.). Известно, что углеродистые и низколегированные стали в несколько раз дешевле высоколегированных (теплоустойчивых, жаропрочных и коррозионно-стойких). [c.42]

    Одной из серьезных трудностей, которые необходимо учитывать при проектировании промышленной аппаратуры для гидрогенизационной очистки, является коррозия. Опубликована [48] весьма удобная диаграмма, наглядно показывающая предельные допускаемые значения температуры и парциального давления водорода для различных углеродистых и легированных сталей. Большое значение имеет не только стойкость конструкционных материалов к водородной коррозии, но и влияние реакционноспособных кислородных, сернистых и азотистых соединений. Опубликован обширный обзор по Высокотемпературной сероводородной коррозии [72], в котором особое внимание уделяется коррозии при условиях, существующих на установках каталитического риформинга и каталитического гидрообессеривания. Показано, что коррозия зависит главным образом от температуры и парциального давления сероводорода. Коррозионная стойкость углеродистой стали й хромомолибденовых легированных сталей оказалась приблизительно одинаковой. Нержавеющие стали, содержащие 12% хрома, обнаруживают несколько большую коррозионную стойкость, но поведение их не всегда одинаково. Нержавеющие стали 18-8 (18% хрома, 8% никеля) обладают превосходной коррозионной стойкостью и оказываются неудовлетворительными только при особо жестких условиях процесса. Исключительно стойки к коррозии под действием сероводорода алюминиевые покрытия. [c.150]

    Более специфичным для оборудования гидротермального синтеза является контроль за состоянием металла. Этот контроль также носит периодический характер и имеет целью выявить изменения в состоянии металла основных деталей несущего сосуда, возникшие в условиях протекания гидротермальных технологических процессов. Факторами влияния этих процессов на металл сосуда являются коррозионное воздействие, высокие давления и температуры, временная выдержка. [c.298]

    Для условий эксплуатации конструкционных сталей, характеризующихся наличием коррозионной среды, при повышенных температурах и давлениях может иметь место дополнительное резкое снижение пластичности до значений порядка - 10 2% [82, 83]. При равных значениях накопленной в процессе нагружения пластической деформации в силу значительного уменьшения критической деформации располагаемой пластичности значение составляющей накопленного квазистатического повреждения (1 , согласно уравнению (5.4), может быть многократно повышено, и это внесет соответствующий вклад в снижение долговечности материала. Этот же механизм дополнительного повреждения от действия коррозионной среды и повышенных температур по параметру времени нагружения оказывает соответствующее влияние на накопление и усталостной составляющей повреждения. При этом односторонне накопленная деформация и амплитудное значение циклической упругопластической деформации будут также зависеть от этих факторов, что скажется на снижении накопленного повреждения. Вместе с тем ведущей в общем накопленном повреждении останется роль снижения пластичности, входящей в знаменатели зависимо- [c.156]

    Влияние технологических параметров на интенсивность коррозионных процессов должно приниматься во внимание при проектировании конструкций и оборудования. Однако нередко возникает необходимость корректировки режимов эксплуатации уже на действующих объектах. В некоторых случаях бывает легче использовать какой-либо технологический прием, чем применять весьма дорогие средства зашиты от коррозии. Изменением технологических параметров (температуры, давления, состава и т. д.) можно добиться сушест-венного снижения скорости коррозионного процесса. [c.23]

    Третьей группой факторов, определяющих долговечность изделия, являются эксплуатационные. К ним относятся агрессивность среды, ее температура, давление, скорость перемещения, наличие активаторов или пас-сиваторов коррозионного процесса и др. Поскольку условип эксплуатации. из-за необходимости обеспечения требуемых технологических параметров менять практически невозможно, радикальными способами повышения коррозионно-механической стойкости в этом случае являются ингибирование рабочих сред и электрохимическая защита оборудования. Ингибиторы коррозии известны давно и широко применяются на практике. Однако не всякие ингибиторы коррозии могут быть эффективными ингибиторами коррозионной усталости. Целенаправленный синтез ингибиторов коррозионно-механического разрушения начат сравнительно недавно, поэтому число работ, посвященных их влиянию на коррозионную усталость металлов, крайне ограниченно. [c.4]

    На эффективную работу гальванических элементов, в том числе и коррозионных элементов, основное влияние оказывают три фактора — природа металла и его структура природа коррозиошюй среды физические условия, в которых протекает коррозионный процесс температура, давление и т. п. Причины, вызывающие образование коррозионных гальванических элементов, приведены в табл. 1.4.5. [c.53]

    Следующими по значимости факторами являются содержание и парциальное давление кислых компонентов и температура транспортируемой среды. Влияние соотношения парциальных давлений сероводорода и углекислого газа на характер и интенсивность коррозионного разрушения металла в электролите существенно. Согласно результатам исследований [135], в зависимости от соотношения парциальных давлений кислых компонентов в системе характер коррозионных процессов существенно изменяется при повышении дг1вления сероводорода увеличивается количество проникающего в сталь водорода и скорость общей коррозии при увеличении парциального давления СО2 возрастает скорость общей коррозии стали. [c.12]

    Сосуды (аппараты) нефтегазоперерабатывающих заводов, изготовленные из различных сталей, работают в большом диапазоне давлений и температур в контакте с разнообразными технологическими коррозионными средами. При этом возможны все основные виды коррозионных повреждений. Существующие на настоящее время модели коррозионных процессов, как правило, рассматривают только одну комбинацию сталь - среда - температура - давление - вид коррозии , протекающую во времени и не могут быть использованы для отражения коррозионной ситуации в сложной контролируемой системе. В то же время службам технического надзора для правильного планирования технического обслуживания, диагностирования и ремонта оборудования необходимо иметь информацию о коррозионной ситуации на заводе в целом. Это определило необходимость создания модели коррозионного состояния сложных технологических систем с учетом оценки влияния основных технологических параметров на коррозионное состояние аппаратов ОГПЗ, где проводится регулярный контроль их технического состояния, по результатам которого составляются акты обследования, хранящиеся в архиве. Данная форма хранения информации не вполне пригодна для анализа технического состояния промышленных объектов и абсолютно не пригодна для прогнозирования их работоспособности. [c.196]

    На скорость и механизм коррозионных процессов большое влияние могут оказывать внешние факторы — температуры, давление среды, напряжение, скорость потока жидкости илн газа, наличие трения, кавитации, облучения. Например, под влиянием напряжений возникают явления коррозионного растрескивания (в случае постоянных растягивающих напряжений) нлн коррозионной усталости (под воздействием переменных нагрузок). В случае возинкновения кавитации развивается коррозионная кавитация — разрушение вследствие микроударного и электрохимического воздействий агрессивной среды. Скорюсть коррозии конструкционных материалов под действием реакторных облучений может меняться по двум причинам вследствие изменения свойств самого материала, когда ускорение коррозии наблюдается в связи с ухудшением защитных свойств поверхностных пленок под действием облучения, 1 в связи с изменением свойств теплоносителя, когда, например, в ре- ультате разложения воды и образования атомарных кислорода и во-(орода изменяется pH среды и скорость коррозии. В практике хими [еская коррозия в основном наблюдается как газовая коррозия при вы- оких температурах и рассматривается в разделе жаростойких сталей. [c.259]

    При выборе ингибиторов СР для ОГКМ исследовали отечественные ингибиторы И-1-Д-1, И-З-ДМ и И-21-Д-1 в сравнении с импортным ингибитором ВИСКО 904 NIK, который применялся на ОГКМ [43, 96]. Изучение влияния ингибиторов на процессы коррозионного разрушения сталей проводили в условиях атмосферного, давления при температуре 80 °С и автоклавах (рис. 160) при повышенном давлении коррозионной среды Робщ = 5 МПа, рн з = 0,7 МПа, p oj = [c.369]

    Использование серийно изготовляемой типовой аппаратуры невозможно вследствие влияния различных факторог, например химического состава разделяемых углеводородных смесей, требований к степени чистоты зазделения, физических условий проведения процессов (очень высокие или, наоборот, низкие температуры и давления), климатических -и сейсмических условий размещения аппаратуры, взаимного размещения технологического оборудования, условий его монтажа и ремонта, коррозионной устойчивости конструкционных материалов. [c.99]

    В настоящее время в нашей стране и за рубежом интенсивно проводятся исследования в области гидротермального синтеза, перекристаллизации, облагораживания и обогащения кристаллических материалов в технологических средах, которые при повышенных термобарических параметрах в той или иной мере взаимодействуя с материалом кристаллизационной аппаратуры могут способствовать ее разрушению и загрязнению продуктов синтеза примесями. В связи с этим весьма актуальна проблема создания надежных систем защиты автоклавного оборудования от коррозионного влияния гидротермальных сред. Хотя при выращивании кварца из низкоконцентрированных щелочных растворов при температурах до 400 °С коррозия стальных автоклавов предотвращается за счет образования акмитовой пленки, все же необходим периодический контроль за состоянием внутренней поверхности кристаллизационной камеры, который может быть надежно выполнен лишь в сосудах с широкими горловинами. Такие автоклавы перспективны также для освоения процессов синтеза и других кристаллических материалов из агрессивных растворителей, поскольку одним из наиболее эффективных способов защиты сосудов высокого давления от коррозионного влияния технологических сред служат коррозионные футеровки плавающего типа, промышленная эксплуатация которых может проводиться лишь в сосудах с достаточно большим внутренним диаметром. [c.49]

    Для промышленной реализации метода произвидства адипиновой кислоты доокислением азотной кислотой продуктов воздушного окисления циклогексана необходимо было получить данные для выбора реакционной аппаратуры, обеспечивающей длительную непрерывную работу под давлением. Кроме того, требовалось выяснить вопросы коррозионной стойкости различных конструкционных материалов, а также установить влияние состава сырья и катализатора на основные параметры процесса, взаимную зависимость времени контакта реагентов и температуры на первой стадии доокисления и др. Для получения всех этих данных была создана опытная установка непрерывного действия производительностью 100 кг адипиновой кислоты в сутки. [c.187]

    О чрезвычайно большом влиянии кислорода на скорость коррозионного растрескивания аустенитной нержавеющей стали в чистой воде при повышенном давлении и температуре свидетельствуют данные Вильямса и Эккеля [159], которые установили, что для того, чтобы начался процесс коррозионного растрескивания стали в указанных выше условиях, необходимо наличие кислорода в воде в количестве [c.126]

    Начальным этапом оценки безопасности предприятия является анализ технологической специфики его отдельных элементов, а также идентификация характерных источников потенциальной опасности и классификация нежелательных событий (как связанных с технологическим процессом, так и с внешними факторами), способных привести к нерегламентированным (аварийным) выбросам опасных веществ и (или же) к скоротечным выделениям больших количеств энергии. На сегодня отсутствуют универсальные методы идентификации и ранжирования технологических объектов по степени опасности на предприятиях различного профиля. В этой связи были выделены некоторые общие принципы, заключающиеся в последовательном анализе потенциально опасных факторов первоначально в самих технологиях (концентрация больших объемов низкокипящих сжиженных газов, высокие давления, криогенные температуры, циклические нагружения, коррозионно активные или химически нестабильные вещества и т.п.), в анализе устойчивости технологических систем к отклонениям от регламентированных режимов при различного рода инициирующих событиях, включая влияние человеческого фактора, в выделении факторов, как способствующих, так и офаничивающих развитие аварии и (или) ее масштабы и, наконец, в обосновании физически реализуемых сценариев развития (исходов) аварий. [c.9]


Смотреть страницы где упоминается термин Влияние температуры и давления на коррозионные процессы: [c.26]   
Смотреть главы в:

Керамическая материалы для агрессивных сред -> Влияние температуры и давления на коррозионные процессы




ПОИСК





Смотрите так же термины и статьи:

Влияние коррозионных пар

Влияние температуры и давления среды на скорость протекания коррозионных процессов

Коррозионная температуры

Процессы коррозионные

Температура и давление процесса



© 2024 chem21.info Реклама на сайте