Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

СОСТОЯНИЕ РАВНОВЕСИЯ В ГЕТЕРОГЕННЫХ СИСТЕМАХ

    Во многих важных равновесных системах, как, например, в рассмотренной выше системе водород-азот-аммиак, все вещества находятся в одинаковом фазовом состоянии. Такие равновесные системы называются гомогенными. Но равновесие может устанавливаться и между веществами, которые находятся в разных фазовых состояниях, и в таком случае говорят о гетерогенном равновесии. В качестве примера рассмотрим разложение карбоната кальция  [c.48]


    Так как состояние равновесия в данной гетерогенной системе определяется только концентрацией СОг, то для смещения равновесия в [c.48]

    Для того чтобы произошел переход из одного состояния в другое, необходимо лишь изменить концентрацию раствора, температуру, pH или ввести в систему электролит. Изменяя условия существования системы, можно получать либо истинные (гомогенные) растворы с молекулярной степенью дисперсности, либо гетерогенные системы, частицы которых представляют собой агрегаты, состоящие из множества молекул. Такие частицы, подобно электронейтральным частицам в лиофобных коллоидных системах, называют мицеллами. Однако в отличие от мицелл коллоидных систем они термодинамически стабильны и не изменяются до тех пор, пока под действием внешних факторов не сместится равновесие, в котором находилась система. Устойчивость мицелл характеризуется скоростью диссоциации, т. е. средним временем пребывания молекулы в мицелле. [c.399]

    Состояние равновесия гетерогенной системы при данных давлении и температуре характеризуется определенным соотношением между концентрациями компонентов в обеих фазах. [c.257]

    Как и ранее, в качестве основных параметров гетерогенного равновеспя примем температуру, давление и концентрацию в различных фазах. Отметим сразу же, что среди указанных параметров состояния главную роль мы отводим температуре и концентрации, так как будем рассматривать в дальнейшем системы, образованные конденсированными фазами, для которых роль давления сравнительно невелика. Поэтому вариантность системь , определяемая при помощи правила фаз, в этих случаях снижена на единицу. Зная зависимость между параметрами состояния, можно не только определить состояние равновесия гетерогенной системы, но и предсказать характер фазовых превращений при изменении температуры, давления и концентрации в определенном направлении. [c.254]

    Предположение о механизме гетерогенной реакции (например, протекает ли она в газовой фазе или на поверхности раздела фаз) не является обязательным для вывода закона действующих масс в гетерогенных системах, поскольку термодинамика позволяет судить о равновесии процесса лишь по исходному и конечному состоянию системы. [c.243]

    Условием равновесия гетерогенной системы, состоящей и нескольких ко.мпонентов, является равенство факторов интенсивности, характеризующих состояние каждой из фаз. Факто- [c.136]


    При выводе закона действующих масс полагали, что все составляющие реакции находятся в газообразном состоянии. В гетерогенной системе некоторые вещества находятся в жидком или твердом состоянии. Однако в химической реакции принимают участие пары твердых и жидких веществ, которые в состоянии равновесия находятся при давлении насыщения, соответствующем температуре, при которой происходит реакция. Парциальные давления сухих паров, сосуществующих с конденсированными фазами этих веществ, не зависят от давления других веществ реакции и остаются постоянными до тех пор, пока полностью не исчезнут конденсированные фазы. При исчезновении в ходе реакции некоторого количества этих паров оно немедленно восстанавливается в результате испарения или сублимации конденсированных веществ. [c.144]

    Диаграмма состояния воды. Условия равновесия гетерогенной системы могут быть наглядно представлены графически. Подобные графики называются диаграммами состояния, или фазовыми диаграммами. [c.135]

    Таким образом, равновесное состояние в гетерогенной системе не является предельным для обычной теории переноса, в которой в качестве движущей силы диффузии принимается градиент концентрации. С этой точки зрения теория неравновесной термодинамики представляется более точной, поскольку, согласно этой теории, движущими силами являются градиенты химического потенциала и равновесие является естественным пределом, к которому стремится гетерогенная система при со. Вообще говоря, в таких системах разрыв могут претерпевать и потоки переносимых через границу компонентов. Однако можно сказать, что при любом механизме переноса вещества через границу потоки по обе стороны границы автоматически выравниваются и начиная с некоторого, обычно весьма близкого к началу процесса, момента поток компонента становится не- [c.227]

    В случае процесса, проходящего в гетерогенной системе и сопровождаемого химической реакцией, расчет наблюдаемой скорости превращения требует, как указано выше, учета параметров, имеющих решающее значение как для скорости химической реакции, так и для массопереноса. Для этого можно использовать различные методы. Один из них основан на изучении превращения в установившемся режиме, т. е. в состоянии динамического равновесия. Предположим, что реакционная система состоит из твердой фазы и жидкости (газа), в ядре потока которой концентрация исходного вещества постоянна и равна С. Исходное вещество диффундирует к межфазной поверхности и достигает там концентрации С . Скорость химической реакции на межфазной поверхности является функцией этой концентрации. При установившемся режиме количество исходного вещества, которое должно прореагировать в единицу времени на единице межфазной поверхности, равно количеству исходного вещества, перенесенному в зону реакции в результате диффузии. Для реакций первого порядка справедлива следующая зависимость [c.247]

    Фазовые равновесия в гетерогенных системах. Правило фаз Гиббса. Гетерогенными фазовыми равновесиями называются равновесия, устанавливающиеся в физических процессах перехода веществ из одной фазы (простой или смешанной) в другие фазы (простые или смешанные). Такие равновесия наблюдаются при кипении жидкости под постоянным давлением (жидкость пар), плавлении кристаллов (твердое жидкость), при выделении кристаллов из насыщенного раствора соли (жидкость—твердое—пар) и т. д. Термодинамическое равновесие в гетерогенных системах характеризуется сколь угодно длительным сосуществованием нескольких фаз в условиях постоянства давления и температуры при этом концентрации веществ в каждой фазе и парциальные давления не изменяются, т.е. 1 i dn.i = О, и как показано в гл. VII, 8, химический потенциал любого компонента I во всех фазах а, р, у... одинаков, т. е. р, = = [У. =. ... В целом многофазная гетерогенная система в состоянии истинного равновесия имеет минимальное абсолютное значение изобарного потенциала. [c.156]

    При изучении равновесия гетерогенных систем мы сталкиваемся с двумя принципиально различными случаями. Если в систему входит хотя бы одна фаза, состав которой изменяется в процессе приближения к равновесию, то для этой фазы может быть найдена константа равновесия, которая и определяет конечное равновесное состояние всей системы. Это имеет место, например, в случае системы, состоящей из индивидуальных веществ в конденсированном состоянии и газов. [c.347]

    В системах из одного компонента гетерогенные процессы сводятся к переходу его из одной фазы в другую без изменения химического состава фаз. Сюда относятся процессы плавления, испарения, возгонки и противоположные им процессы отвердевания (кристаллизации) и конденсации. Все эти процессы взаимно обратимы, и в действительности переходы отдельных молекул (или ионов) происходят всегда и в ту и в другую сторону. Наблюдаемое же нами течение процесса в одну сторону является лишь результатом преобладания скорости этого направления над скоростью противоположного направления, а наблюдаемая скорость является суммарной скоростью процесса и по величине равна разности скоростей прямого и обратного процессов. Соотношение между скоростями прямого и обратного процессов определяется тем, в какой мере данное состояние системы отличается от состояния равновесия. Чем ближе обе фазы к взаимному равновесию, тем меньше суммарная скорость процесса, так как тем ближе друг к другу скорости прямого и обратного процессов. [c.487]


    Равновесие в системе, состоящей из двух или большего числа фаз называется фазовым или гетерогенным. К фазовым равновесиям относятся равновесия типа ti тг, тч ж, т г, Ж1ч Ж2, ж г. Гетерогенная система будет находиться в состоянии равновесия при выполнении условий  [c.321]

    С учетом сделанных предположений в состоянии термодинамического равновесия все фазы гетерогенной системы должны обладать одинаковой температурой и одинаковым давлением и химические потенциалы каждого компонента во всех фазах должны быть равны. Уравнение (27.6) содержит условие термического равновесия, (27.7) — механического равновесия и (27.8) — равновесия между веществами. [c.141]

    В 27 было показано, что состояние гетерогенной системы полностью определено условиями равновесия (27.6)—(27.8) вместе с дополнительными условиями (27.3)—(27.5). Остается только выяснить, возможны ли и если возможны, то при каких условиях, изменения состояния, при которых зафиксированы только уравнения (27.5)—(27.8), в то время как энтропия и объемы фаз и всей системы в целом изменяются. Так как химические потенциалы, согласно (26.2), [c.146]

    Из элементарных курсов общей химии и физики известно, что вследствие сильно развитой межфазной поверхности гетерогенные дисперсные системы обладают большим избытком свободной поверхностной энергии и, следовательно, являются в принципе неустойчивыми. Позднее мы еще обсудим этот вопрос и покажем, что данное утверждение, которое во многих случаях не вызывает возражений, не настолько правильно, чтобы его абсолютизировать. Возникает вопрос, в какой мере законно применение термодинамических зависимостей к фазовым равновесиям в подобных системах. Гетерогенная дисперсная система может приобретать за счет замедляющих кинетику факторов известную устойчивость, позволяющую ей существовать в дисперсном состоянии достаточно долгое время. В течение этого времени вследствие молекулярного переноса (например, благодаря диффузии) устанавливается такое распределение ее компонентов в объеме и около межфазной поверхности, которое практически соответствует равновесию. Очевидно, что возникающее при этом состояние можно анализировать на основе соответствующих термодинамических представлений. В дальнейшем при рассмотрении вопроса об устойчивости лиофобных коллоидов мы увидим, что такая устойчивость действительно существует и именно этим объясняется широкое распространение подобных систем в природе и технике. Если какая-либо жидкость диспергирована в газе или п другой жидкости, то состояние относительного равновесия, о котором мы говорили выше, придает частицам термодинамически устойчивую форму — форму с наименьшей поверхностью, которая в простейшем случае является сферической. Не будем приводить других аргументов в пользу приложимости термодинамики равновесных систем к дисперсным гетерогенным системам и перейдем к рассмотрению самой термодинамики гетерогенных систем. [c.75]

    Фаза. Понятие фазы в скрытой форме было введено в науку Гиббсом в связи с выводом правила фаз. Последнее же выражает количественный термодинамический закон, всегда подтверждаемый опытом. Поэтому строгое определение понятия фазы может быть дано только при глубоком анализе тех физических предпосылок, которые лежат в основе вывода правила фаз. Большая заслуга в уточнении этого важнейшего понятия теории гетерогенных равновесий принадлежит Ван-дер-Ваальсу и А. В. Сторонкину. Обычно фазу определяют как однородную часть (имеется в виду однородность по составу и по физическому состоянию) гетерогенной системы, отделенную от других частей поверхностью раздела. Такое определение фазы, основанное лишь на внешнем, хотя и обязательном, признаке сосуществующих фаз, следует признать недостаточным. Недостаточность данного определения особенно очевидна, когда фаза находится в сложной системе в раздробленном состоянии. В этом случае вышеприведенное определение понятия фазы не позволяет дать ответ на вопрос, принадлежат ли дан-194 [c.194]

    Термодинамика микрогетерогенных систем. Изложенные выше представления недостаточны для того, чтобы объяснить все термодинамические свойства дисперсных систем. Это особенно заметно в переходной области дисперсности, где осуществляется непрерывный переход от гетерогенных систем к системам молекулярной степени дисперсности. В соответствии с тем, что было сказано выше, при повышении дисперсности, т. е. при увеличении числа частиц и уменьшении их размеров, возрастает полная межфазная поверхность, а вместе с ней и полная поверхностная энергия. Иными словами, чем более высокодисперсна система, тем дальше она от состояния равновесия и, следовательно, тем более термодинамически неустойчива. Но в то же время известно, что состояния с максимальной (молекулярной) степенью дисперсности термодинамически устойчивы. [c.89]

    Фазовые равновесия. Общие закономерности, которым подчиняются равновесные гетерогенные системы, состоящие иа любого числа фаз и любого числа веществ, устанавливаются правилом фаз Гиббса. Руководствуясь правилом фаз, строят диаграммы, которые позволяют наглядно следить за состоянием системы при нагревании, охлаждении и при изменении ее состава. В фармации, пользуясь диаграммами состояния, можно определять оптимальные условия приготовления лекарственных форм с заданными свойствами. Изучение фазовых равновесий позволяет грамотно решать вопросы, связанные с очисткой лекарственных веществ перегонкой с водяным паром и разделением веществ ректификацией. С помощью фазовых диаграмм можно решать вопросы совместимости при изготовлении лекарственных форм и возможности химического взаимодействия между отдельными компонентами. [c.10]

    На практике при работе с химически реакционноспособными системами зачастую приходится иметь дело с гетерогенными системами, которые могут существовать, например в различных афегат-ных состояниях, и в которых возможно перераспределение различных химических компонентов между сосуществующими фазами. При изучении химических процессов в таких системах химическая термодинамика позволяет ответить на ряд важнейщих вопросов, таких, например, как максимально возможное число разных фаз, сосуществующих в данных условиях, соотнощение количеств веществ в различных фазах после установления в системе равновесия и т.д. Данная часть учебного пособия посвящена обсуждению основных вопросов, наиболее часто встречающихся на практике при рассмотрении равновесий в гетерогенных системах и в многокомпонентных смесях. [c.126]

    Рассматриваемые в химии системы могут быть гомогенными и гетерогенными. Система является гомогенной, если удельная величина каждого экстенсивного параметра во всех ее частях одинакова или является непрерывной функцией координат. Последнее наблюдается, если система находится в поле действия каких-либо сил (например, атмосфера Земли) или не пришла в состояние равновесия. [c.153]

    Из (IX.104) и (1Х.105) следует, что сопряженные интенсивные и экстенсивные параметры гетерогенной системы всегда изменяются симбатно, за исключением давления и объема, которые всегда изменяются в противоположных направлениях. Это положение справедливо, если система находится в состоянии устойчивого равновесия если протекающие в системе процессы вызывают изменения состояния фаз, и, наконец, если при этом в каждой паре сопряженных параметров, за исключением той, которая изменяется, один параметр постоянен. [c.224]

    Согласно выводу неравенства (1Х.103) — (IX.105) являются необходимыми, но не достаточными условиями устойчивости относительно непрерывных изменений состояния. В самом деле, может представиться такой случай, когда эти неравенства будут выполнены, а состояние гетерогенной системы будет неустойчивым. Так, если одна или несколько фаз становятся неустойчивыми [при этом знаки соответствующих неравенств (IX. 100) изменяются на обратные], ТО гетерогенная система в целом также становится неустойчивой. Однако при этом левая часть неравенства (1Х.103) может сохранить свой положительный знак. Таким образом, можно утверждать, что если гетерогенная система находится в состоянии устойчивого равновесия и если протекающие в ней фазовые процессы вызывают изменение состояния фаз, то условие (1Х.103) и его следствия (IX.104) и (1Х.105) непременно выполняются. [c.224]

    Чтобы определять летучести конденсированных тел, следует принять во внимание, что в состоянии равновесия в гетерогенной системе вещество имеет одинаковые изобарно-изотермические потенциалы во всех сосуществующих фазах. Таким образом, в соответствии с уравнением (12) летучесть одного и того же вещества в различных фазах при равновесии оказывается одинаковой. Поэтому летучесть жидкости (или твердого тела) равна летучести ее насыщенного пара. Отсюда летучесть жидкости (и твердого тела) можно вычислить на основании данных относительно насыщенного пара, находящегося в равновесии с конденсированной фазой. [c.18]

    Рассмотренные случаи сдвига равновесия иллюстрируют только характер изменения термодинамических переменных во время возвращения выведенной из равновесия системы в состояние исходного равновесия. В случае гетерогенных фазовых равновесий представляет интерес рассмотрение принципа смещения равновесия от одного состояния равновесия к другому вдоль линии фазового равновесия вследствие некоторого возмущения, подобного рассмотренным выше. [c.228]

    Гетерогенные системы. Для реакций, в которых лишь часть веществ газообразна, выражение константы равновесия упрощается при данной температуре парциальные давления реагентов, находящихся в конденсированном состоянии, постоянны и не зависят от количества реагентов при условии, что реагенты не образуют растворов. Это позволяет объединить парциальные давления с величиной Кс (Кр) в общую константу. Так, например, для реакции [c.121]

    В гетерогенных системах возможны как химические реакции, так и переходы веществ из одной фазы в другую (агрегатные превращения, растворение твердых веществ и др.). Равновесию гетерогенных систем отвечает равенство химических потенциалов каждого компонента во всех фазах, а также минимальное значение изохорного или изобарного потенциалов или максимальное значение энтропии всей системы при определенных условиях. Если в систему входит хотя бы одна фаза, состав которой изменяется в процессе приближения к равновесию, то равновесное состояние фазы и всей системы характеризуется константой равновесия, например в системах, состоящих из индивидуальных веществ в конденсированном состоянии и газов. В системах, состоящих из индивидуальных веществ в конденсированном состоянии, в которых состав фаз в ходе процесса не изменяется, а процесс идет до полного исчезновения одного из исходных веществ (например, полиморфные превращения веществ), понятие константы равновесия неприменимо. [c.161]

    Термодинамические условия равновесия. В равновесной гетерогенной системе температура во всех фазах должна быть одинаковой, так как в противном случае система не будет находиться в состоянии теплового равновесия. Это же относится и к давлению, так как в противном случае система не будет находиться в механическом равновесии. [c.109]

    В гетерогенных химических системах при постоянных термодинамических параметрах установилось состояние равновесия  [c.89]

    В. И. Касаточкина, который рассматривает графитацию как гомогенный процесс. Положения о фазовых состояниях гомогенной системы были развиты В. А. Каргиным и Г. Л. Слонимским [96] по отношению к полимерам. Под фазой они понимают гомогенную систему, находящуюся в термодинамическом равновесии. Гомогенная система, в которой нет поверхностей раздела между ее частями, может быть химически неоднородной. Понятие фаза не отождествляется с понятием агрегатное состояние . Так, твердые стеклообразные тела термодинамически являются жидкими фазами к твердым фазам относятся только кристаллические тела. Гомогенность понимается без учета неоднородностей, обусловленных молекулярным строением тела, и аморфный полимер считается гомогенным телом, а микрокристаллический полимер, в котором имеются неупорядоченные области, — гетерогенным. При этом авторы утверждают, что внутренние напряжения в полимере отражаются на форме кристаллов и ограничивают их рост. Пластинчатые и игольчатые формы вызывают меньше напряжений и потому быстрее растут. Развивающаяся кристаллизация приводит к минимуму внутренних напряжений и к наилучшим условиям для их релаксации, т. е. к уменьшению внутренней энергии. [c.203]

    В случае равновесия в гетерогенных системах газ — жидкость, газ—твердая фаза, жидкость—твердая фаза коэффициенты активности твердых и жидких компонентов, выраженные через парциальные давления, равны давлениям насыщенных паров жидкости и твердого тела при данной температуре. Состав фаз в этом случае определяют, считая активности твердых веществ в выражении закона действующих масс постоянными состояние ргавновесия между фазами задается правилом фаз. [c.21]

    Если вся система реакций (1.37), (1.38) обратима и близка к состоянию равновесия, то состав катализатора, вне зависимости от исходного, целиком определяется термодинамическими условиями равновесия. В этом случае, если состав катализатора, например окисла, является функцией давления одного из компонентов, например кислорода, то, в соответствии с условиями гетерогенного равновесия, для всей области температур Т и парциальных давлений Р, за исключением точки равновесия с определенными Т ш Р, катализатор будет представлять собой одну фазу. Если реакция проводится в точке равновесия, то катализатор может быть двухфазным, однако практическое осуществление такого случая невероятно. Иное дело, если протекающие в системе реакции, например реакции контактного окисления органических соединений, практически необратимы, тогда фазовый состав работающего катализатора целиком определяется кинетическими, а не термодинамическими параметрами. При проведении обратимых реакций в условиях, далеких от равновесия (что большей частью бывает на практике), фазоЬый состав катализатора также не определяется термодинамикой. [c.50]

    С ов1ременная теория физической адсорбции связана с именами Лангмюра, Поляни, Брунгауэра, Эммета, Гибса и др. Лангмюр разработал теорию адсорбции применительно к тазам, в основу которой положены следующие допущения процесс адсорбции заканчивается при образовании мономолекулярного насыщенного слоя адсорбированного вещества адсорбированные молекулы не взаимодействуют друг с другом. Гетерогенная система может находиться как в равновесном состоянии, когда ее состав и термодинамические параметры остаются постоянными во времени, так и в неравновесном. В последнем случае па1ра метры системы самопроизвольно изменяются, (в результате система приходит в состоящие равновесия. Процесс адсорбции всегда сопровождается процессом десорбции. В случае равенства скоростей этих процес- [c.256]

    Так как в радикально-цепном крекинге происходит обрыв цепей на стенках вообще, то вопрос о гетерогенном зарождении цепей в термическом крекинге приобретает принципиальное значение. Опираясь на положение о том, что некаталитические стенки не могут изменять состояние равновесия системы (так как в противном сл д1ае можно было бы осуществить вечный двигатель второго рода), было показано (98] что с процессом обрыва цепей на стенках непременно сопряжен процесс гетерогенного зарождения цепей на поверхности одновременно с рекомбинацией радикалов проис ходит и обратная реакция гетерогенной диссоциации продукта рекомбинации на радикалы. Таким образом, гетерогенное зарождение цепей и гетерогенный обрыв цепей тесно связаны, вопреки прежним представлениям о независимости этих процессов. Гетерогенное зарождение цепей было экспериментально доказано в ряде работ [99—102]. [c.47]

    Однако рассчитанная из экспериментальных данных для 25°С константа равновесия оказывается равной 5,8. Это значение не согласуется с теорией [ура)Внение (307)]. Очевидно, система не может прийти к равновесию и всегда находится вдали от него. Реакция идет в одном направлении до тех пор, пока не израсходуется одно из веществ, стоящих слева в уравнении реакции. Такое поведение системы часто наблюдается для гетерогенных реакций, которые не доходят до состояния равновесия, а заканчиваются, как только израсходуется одно из исходных веществ. В случае реакции (304),также может оказаться, что при небольшом количестве СаСОз это вещество израсходуется раньше, чем будет достигнуто состояние равновесия. [c.257]

    При рассмотрении равновесия фаз в гетерогенных системах конечной целью анализа является установление строгих взаимосвязей между параметрами, характеризующими состояние рассматриваемой системы. Общетермодинамическое рассмотрение вопроса (гл. IX) не позволяет характеризовать фазовые соотношения в конкретных системах, поскольку полученные общие выражения требуют решения задачи в явном виде, чего нельзя сделать, не привлекая Л10дельных представлений, С другой стороны, факт существования взаимосвязей между параметрами состояния при равновесии фаз дает основания и подсказывает пути для экспериментального решения вопроса. В этом случае также важно установление закономерностей, опирающихся лишь на самые общие представления [c.254]

    Равновесия в гетерогенных системах, в которых не происходит хим ического взаимодействия между компонентам , а протекают лишь процессы перехода компонентов из одной фазы в другую (или в другие), называются фазовыми равновеоиями. Кипение, замерзание и внезапное проявление ферромагнетизма — все это связано с изменением состояния системы без изменения х,им1ичвокого состава. Любая гетерогенная система характеризуется определенным числом фаз, компонентов и числом -степеней свободы. [c.153]

    Представляют интерес гетерогенные равновесия для гидратированных солей. Например, если кристаллический сульфат меди uS04-5H20 положить в эксикатор, снабженный манометром, и поместить эксикатор в термостат, то можно изучить диссоциацию такого соединения. При 50° С давление над тонким слоем пятиводного сульфата меди остается постоянным и равным 47 мм рт. ст. до тех пор, пока соль не потеряет двух молекул воды. Тогда давление резко падает до 30 мм и снова остается постоянным, пока соль не потеряет еще две молекулы воды. После этого оно снова резко снижается до 4,4 мм рт. ст. и остается постоянным до полной дегидратации. На рис. 36 показаны последовательные стадии дегидратации соли при медленном удалении водяных паров из сосуда так, чтобы система практически непрерывно находилась в состоянии равновесия. Равновесные состояния системы на различных стадиях дегидратации выражаются следующими тремя уравнениями  [c.120]


Смотреть страницы где упоминается термин СОСТОЯНИЕ РАВНОВЕСИЯ В ГЕТЕРОГЕННЫХ СИСТЕМАХ: [c.50]    [c.20]    [c.75]    [c.162]    [c.155]   
Смотреть главы в:

Физико-химический анализ гомогенных и гетерогенных систем -> СОСТОЯНИЕ РАВНОВЕСИЯ В ГЕТЕРОГЕННЫХ СИСТЕМАХ




ПОИСК





Смотрите так же термины и статьи:

Гетерогенное равновесие

Гетерогенные системы, состояние ионного равновесия

Общие понятия о диаграммах состояния и методы изучения гетерогенных равновесий силикатных систем при высоких температурах

Основы учения о фазовых равновесиях и диаграммах состояния гетерогенных систем

Равновесие в гетерогенных системах

Равновесие системе

Система гетерогенная

Системы состояние



© 2025 chem21.info Реклама на сайте