Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография Теоретическая часть

    Вслед за этой теоретической частью с учетом основных выводов из нее рассматриваются все важнейшие методы современного химического анализа, в которых так или иначе применяются органические реагенты, такие, как экстракция, хроматография, титриметрия, гравиметрия, фотометрия, анализ при помощи ионоселективных электродов и др. Эта часть книги отличается полнотой и вместе с тем компактностью подачи материала при достаточной ясности изложения. [c.6]


    Большое внимание уделяют приготовлению эталонной смеси. Нельзя без проверки применять выпускаемые промышленностью реактивы квалификации чистый для анализа или чистый . Часто для контроля чистоты недостаточно определения одного только показателя преломления. Точный анализ возможен с помощью газовой хроматографии и инфракрасной спектроскопии [195]. Дополнительная очистка эталонного вещества не требуется в том случае, если экспериментально определенные физико-химические константы совпадают с теоретическими значениями и температура кипения вещества, измеренная термометром с ценой деления 1Л0 °С, имеет отклонение, не превышающее 0,1 °С с учетом влияния колебаний атмосферного давления. Большинство веществ нуждается в химической очистке от сопутствующих примесей [210—212] и в последующей четкой ректификации при высоком флегмовом числе. При использовании недостаточно очищенных веществ возможно смещение калибровочной кривой По — содержание % (масс.), а также концентрирование сопутствующих примесей в головке колонны или кубе при испытаниях. Это может привести к искажению результатов измерения разделяющей способности колонн. [c.156]

    Наибольшее распространение в неравновесной газовой хроматографии получили теория эквивалентных теоретических тарелок А. Дж. П. Мартина и диффузионно-массообменная теория Дж. Дж. Ван-Деемтера. Последнюю часто называют теорией эффективной диффузии. Обе теории основаны на допущении, что хроматографический процесс протекает в линейной области изотермы адсорбции (в ГАХ) или изотермы распределения (в ГЖХ). Количественной мерой размывания в первом случае является высота Я теоретической тарелки, во втором — эффективный коэффициент диффузии О фф. [c.47]

    Рост использования газовой хроматографии тесно связан с поразительно быстрым увеличением объема литературы в этой области за последние пять лет. Прп этом форма публикаций самая разнообразная от отдельных статей до монографий (причем часто, судя по заглавию, чисто теоретического содержания), от научных записок периодического характера до законченного изложения работ авторов. [c.7]

    Естественно, что ионы образца, слабо взаимодействующие с ионообменником, при этой конкуренции будут слабо удерживаться на колонке и первыми вымываются с нее и, наоборот, более сильно удерживаемые ионы будут элюировать из колонки последними. Обычно возникают вторичные взаимодействия неионной природы за счет адсорбции или водородных связей образца с неионной частью матрицы или за счет ограниченной растворимости образца в подвижной фазе. Трудно выделить классическую ионо-обменную хроматографию в чистом виде, и поэтому некоторые хроматографисты исходят из эмпирических, а не теоретических закономерностей при ионообменной хроматографии. [c.32]


    При получении летучих производных моносахаридов, необходимых для газовой хроматографии, для каждого компонента теоретически возможно образование пяти форм сс-, р-пиранозы, а-, Р-фуранозы и. линейная форма. Однако в значительных количествах образуются лишь четыре из них. Смеси, состоящие из пяти компонентов, при газовой хроматографии дают большое количество пиков, которые часто перекрываются. Для количественной оценки углеводов на хроматограммах с перекрывающимися пиками необходимо довести состояние различных форм до равновесия, чтобы быть уверенным, что определенные формы моносахарида всегда содержатся в одинаковых соотношениях и для любого моносахарида отношение между разными площадями пиков остается постоянным. Это позволяет вычислять общее количество отдельного моносахарида лишь по одному пику. [c.82]

    Вещества, у которых коэффициенты распределения различаются мало, можно также разделить с помощью колонны. В этом случае одна жидкая фаза удерживается тонкоизмельченным твердым телом с большой площадью поверхности, а другая жидкая фаза протекает через колонну. Этот процесс называется распределительной хроматографией и тесно связан с адсорбционной хроматографией (разд. 8.10). Колонна имеет большое число теоретических тарелок, каждая из которых эквивалентна отдельной экстракции. Компоненты смеси выходят по одному из нижней части колонны если коэффициенты распределения компонентов достаточно различаются, то будут различаться и времена выхода. [c.135]

    После удаления ароматических углеводородов парафино-наф-теновую часть фракции бензина подвергали четкой ректификации на колонке с разделяющей способностью, соответствующей 100 теоретическим тарелкам. При эгом было отобрано 40 узких фракций, выкипающих через каждые 2—4 °С. Эти фракции затем анализировали на хроматографе с применением различных жидких фаз, а также методом комбинационного рассеяния света. Проведенное исследование позволило с достаточной точностью установить индивидуальный углеводородный состав бензина туймазинской нефти. Однако этот метод ввиду трудоемкости и длительности не может быть рекомендован для применения в аналитической практике. Следует отметить, что большинство описанных в литературе методов анализа бензинов с применением хроматографии имеют тот же недостаток [2, 3, 4, 51. [c.18]

    Оптически активные соединения интересуют химиков с того самого момента, как только выяснилось, что природа обладает удивительной способностью создавать подобные объекты. В то же время разделение синтетических рацемических смесей на оптически активные компоненты всегда представляло сложную задачу и часто рассматривалось как своеобразное искусство ввиду трудности осуществления и непредсказуемости успеха при использовании того или иного метода. Даже сегодня мы еще далеки от того, чтобы рассматривать разделение энантиомеров как вполне рутинную задачу. Однако в последние десять лет начали интенсивно развиваться хроматографические методы разделения энантиомеров, позволившие сконцентрировать знания об источниках хирального распознавания, которые лежат в основе разделения оптических изомеров. Цель данной книги — дать читателю по возможности полное представление о хроматографических методах разделения энантиомеров, причем как теоретическое, так и методологическое, включая, например, представление о типах неподвижных фаз и различных областях их приложения. И хотя в последние годы появился ряд обзоров, посвященных этой теме, к моменту написания данной книги ощущалась отчетливая потребность в монографии, которая обобщила бы имеющийся материал. Поскольку никакое достаточно глубокое обсуждение механизма хирального распознавания, лежащего в основе хроматографии энантиомеров, невозможно, если читатель плохо представляет себе основы органической стереохимии, то первые три главы книги мы посвятили именно этой теме. Изложение указанного материала ни в коей мере не является исчерпывающим, и задача состоит лишь в том, чтобы дать читателю необходимый минимум для понимания последующего материала. [c.7]

    При хроматографии не слишком сложных смесей (до 4—6 компонентов) на высокоэффективных колонках выбор состава подвижной фазы очень часто заканчивается уже на стадии оптимизации элюирующей силы. Однако, если число определяемых веществ велико, нарастает вероятность того, что, несмотря на оптимальную элюирующую силу, пики отдельных соединений, окажутся неразделенными. В этой ситуации возникает необходимость оптимизации селективности, т. е. поиска таких компонентов В, которые в большей степени пригодны для разделения данной смеси. Теоретические основы селективности хроматографических систем по отношению к основным функциональным группам органических соединений пока совершенно не разработаны и прогресс здесь, по-вндимому, является перспективой отдаленного будущего. В настоящее время прогнозирование изменений селективности вследствие изменения качественного состава подвижной фазы может быть основано на ряде чисто качественных правил в режиме обращенно-фазовой хроматографии селективность разделения всех веществ, как правило, несколько возрастает с уменьшением элюирующей силы селективность системы по отношению к соединениям, различающимся структурными фрагментами, можно изменить, изменяя концентрации того компонента подвижной фазы, который в наибольшей степени способен к межмолекулярным взаимодействиям с одним из этих структурных фрагментов при хроматографии на силикагеле селективность повышается, если заменить один компонент В на другой, менее полярный, соответственно увеличив концентрацию последнего. [c.309]


    При больших скоростях (1—2 мл сек) на форме кривой проскока отражается влияние кинетики процесса переноса адсорбата. Это позволяет проанализировать возможности применения линейного кинетического уравнения Глюкауфа. На основании теоретического анализа этих кинетических кривых проскока мы пришли к выводу, что упомянутое кинетическое уравнение правильно описывает кинетику адсорбции лишь вблизи адсорбционного равновесия, так как только в этой области имеется соответствие с предпосылками, положенными в основу этого, часто употребляемого в газовой хроматографии уравнения. [c.458]

    Книга содержит описание основных современных физико-химических методов, применяемых для анализа органических соединений, — спектроскопии в инфракрасной, видимой и ультрафиолетовой частях спектра, рентгенографии, хроматографии, масс-спектрометрии, полярографии, ЯМР-и ЭПР-спектроскопии и др. Изложены теоретические основы методов, описаны современная аппаратура и возможности применения методов для исследования структуры и состава полимеров. Приведено большое число методик анализа различных природных и синтетических высокомолекулярных веществ — пластиков, эластомеров, смол, белков, целлюлозы, волокон и т. д., а также ряда низкомолекулярных соединений, применяемых при получении и переработке полимеров. [c.4]

    Физическая модель. Представим, что хроматографическая колонка поделена на отдельные контактирующие части соответствующие отдельным экстракционным трубкам в приборе противоточного распределения. Каждая часть содержит определенный объем подвижной А Ум и стационарной ДУз фазы. Во всей колонке имеется N таких частей, и так как в каждой из них достигается полное равновесие между стационарной и подвижной фазами, их называют теоретическими тарелками. Таким образом, поделенная на Части хроматографическая колонка эквивалентна прибору противоточного распределения с N экстракционными стадиями. Подвижная фаза соответствует верхней фазе в противоточном распределении и движется через прибор тем же самым образом. Существует, однако, различие в способе прослеживания процесса разделения. В противоточном распределении содержание каждой трубки анализируется после определенного числа переносов (п). В хроматографии содержание Л -ной трубки непрерывно анализируется посредством детектора, а п, т. е. число объемов подвижной фазы (ЛУм), прошедших через колонку, растет по мере проведения процесса. [c.531]

    В этой главе мы рассмотрели теории, которые объясняют размывание хроматографических зон. Эти теории являются основополагающими для понимания любого хроматографического метода. К тому же они имеют большую практическую ценность, давая хорошее объяснение возможных влияний многих различных экспериментальных переменных. Однако следует уделять внимание не только теоретическим обоснованиям процессов, происходящих в хроматографической колонке. Как уже было показано, детектор и система записи являются жизненно важными дополнениями в хроматографических измерениях, а сам хроматографический процесс является только частью в общей аналитической системе, которая сочетает разделение и количественное измерение. Такие системы находят огромное практическое применение в современном химическом анализе. В гл. 17 будут рассмотрены четыре специфических примера тонкослойная хроматография, газо-жидкостная хроматография ионообменная хроматография и молекулярно-ситовая хроматография. [c.551]

    Капиллярные колонки. В колонках очень малого диаметра инертный носитель отсутствует и стационарная жидкая фаза просто покрывает внутренние стенки самой колонки, поэтому размывание полос, вызванное влиянием потока в колонках с твердым носителем, здесь полностью исключается, к тому же поток газа-носителя встречает гораздо меньшее сопротивление. Все это вместе взятое значительно увеличивает скорость и эффективность разделения. Колонки могут иметь огромную длину (часто до 100 м) и соответственно исключительно большое число теоретических тарелок — вплоть до 10 . Примером результата использования капиллярных колонок является изображенная на рис. 17-14 хроматограмма летучих компонентов мочи человека. Очень часто хроматография высокого разрешения позволяет обнаружить чрезвычайно сложный состав природных смесей, таких как физиологические жидкости или нефтепродукты. На хроматограмме, изображенной на рис. 17-14, обнаружено наличие в пробе свыше 200 различных компонентов и наглядно продемонстрирована высокая разрешающая способность капиллярных колонок. Из-за очень малого внутреннего диаметра (обычно 0,25 мм) такие колонки часто называют капиллярными , хотя достоинством конструкции таких колонок является не их малый диаметр, а то, что такая колонка представляет собой длинную незаполненную трубку. [c.579]

    Практикум охватывает наиболее важные для биологии и медицины разделы физической и коллоидной хи-мин. Каждый раздел включает краткое теоретическое введение, практические работы, задачи, примеры решения задач, контрольные вопросы. Практические работы и задачи составлены большей частью на примерах биологических систем. В практикум включены современные физико-химические методы анализа, широко используемые в клинических и биологических исследованиях, различные виды хроматографии и электрофореза. [c.2]

    При общем описании процесса гель-про (икающей хроматографии следует исходить из модифицированных соответствующим образом теоретических концепций хроматографии и динамики сорбции с учетом специфики растворов полимеров. Хроматографическую систему удобно рассматривать как двухфазную, понимая под подвижной фазой совокупность каналов, образованных пустотами между частицами сорбента, а под неподвижной — норовое пространство сорбента. Можно считать, что движение макромолекул по каналам подвижной фазы происходит в условиях ламинарного потока и описывать его одним из уравнений баланса систем I.I—I.III. При этом обмен макромолекулами между внешней частью порового пространства и каналами подвижной фазы следует рассматривать как равновесный, а их диффузионный перенос во внутреннюю часть описывать уравнением Фика (предполагая, что частицы сорбента имеют сферическую форму)  [c.113]

    Химическая природа носителей обсуждается в гл. 5 для устранения собственной адсорбционной активности частичек носителей их подвергают предварительной обработке, методика которой рассматривается в связи с методами обработки носителей экстрагентами (разд. 2.1). В данном разделе обсуждается только проблема стандартизации размера частиц (зерен) носителя. Из теории хроматографии следует, что зернистость носителя влияет на высоту эквивалентной теоретической тарелки (ВЭТТ), поскольку размер частичек определяет вихревую диффузию и массонеренос в подвижной фазе [3]. Вихревая диффузия определяется характером движения подвижной фазы в колонке, которая в свою очередь зависит только от структуры упаковки носителя и профиля потока между частичками носителя. Согласно Гиддингсу [3], особенности движения подвижной фазы гораздо больше влияют на уширение зоны по сравнению с другими факторами (за исключением, может быть, диффузии). [c.67]

    Идеального носителя для распределительной хроматографии не существует. Поэтому ассортимент веществ, используемых в качестве носителей, очень разнообразен они в той или иной мере отвечают упомянутым выще требованиям. Следует отметить, что в экстракционной хроматографии неорганических соединений требования к качеству носителей являются в большинстве случаев менее жесткими, чем в распределительной хроматографии органических веществ (газо-жидкостной или жидкостной). Это связано с тем, что органические соединения, подвергаемые разделению, обычно имеют очень близкие коэффициенты распределения, так что все свойства носителя, влияющие на ширину хроматографических пиков (т. е. на высоту теоретической тарелки), приобретают решающее значение для разделения. В экстракционной хроматографии неорганических веществ разделение близких по свойствам веществ проводится не так часто (такими примерами могут служить разделение редкоземельных элементов, разделение америция и кюрия, а также разделение изотопов одного элемента). В большинстве случаев можно подобрать условия разделения таким образом, чтобы разница в коэффициентах распределения была достаточно велика. Тогда разделение производят по принципу сорбционного фильтра один элемент проходит через хроматографическую колонку не поглощаясь, а второй количественно задерживается на колонке. Для таких разделений с одинаковым успехом можно применять любые носители, удерживающие достаточное количество соответствующего экстрагента. [c.184]

    Книга является пособием по ионообменной, распределительной и осадочной хроматографии. В ней подробно рассмотрены некоторые наиболее часто используемые методики качественного и количественного анализа. Описанию лабораторных работ по каждому виду хроматографического анализа предпослано краткое теоретическое введение. [c.2]

    Бегло ознакомившись с практикой хроматографии, в ней можно увидеть скорее искусство, чем науку. Несомненно, накопленный опыт часто определяет основное направление при постановке эксперимента. Теоретические соображения, даже элементарные, лишь в редких случаях играют главную роль при разработке и проведении хроматографического разделения. В жидкостной хроматографии это положение выражено более отчетливо, чем в газовой. В самом деле, несмотря на семидесяти - восьмидесятилетнюю историю, в жидкостной хроматографии ао середины 60-х годов почти не наблюдалось прогресса. Материалы и оборудование, используемые для большинства адсорбционных работ, проводимых в колонках, в настоящее время все еще мало отличаются от тех, которыми пользовались Дей и Цвет. [c.24]

    В настоящее время мы располагаем достаточными теоретическими /14/ и экспериментальными /9, 15, 16/ доказательствами того, что очень маленькие частички одинакового (т.е. в узких пределах) диаметра обеспечивают предельное качество колонки. Сейчас такие материалы уже выпускаются промышленностью. Однако, если взять наиболее часто используемый адсорбент, силикагель, то мы увидим, что больщинство поставщиков предлагают все-таки только сравнительно широкую фракцию крупных частиц, диаметром обычно больше 75 мкм. Выпускается также силикагель для хроматографии в тонком слое это обычно частицы размером от 5 до 50 мкм. Чтобы получить интересующую нас более узкую фракцию частиц маленького диаметра (т.е. 5-10, 20-30 мкм и т.д.), хроматографист должен иметь возможность измельчить крупные гели и отсеять или каким-либо иным путем отделить основной гель или выделить требуемую фракцию. Таким образом, в настоящее время (хотя в будущем, мы надеемся, необходимость в этом отпадет) хроматографист, занимающийся жидкостной хроматографией, должен иметь оборудование для размола и фракционирования. [c.206]

    Так как количество неподвижной фазы, приходящееся на одну теоретическую тарелку, при капиллярной хроматографии значительно меньше, чем для насадочных колонок, объем пробы также должен быть значительно меньше. В капиллярные колонки рекомендуется дозировать не более 0,07 мкл, так как при больших дозах эффективность колонок будет снижаться. Поскольку манипуляции со столь ничтожными объемами пробы затруднительны, дозируют чаще всего большее количество вещества. а затем часть его отводят с помощью делителя потока. Конструкции дозаторов подобного типа уже рассмотрены. [c.59]

    Развитие хроматографии обеспечило возможность изучения влияния химии поверхности на межмолекулярные взаимодействия адсорбента главным образом с изолированными молекулами самых разнообразных веществ, адсорбирующихся из газовой фазы и жидких растворов в области малых заполнений поверхности, и, вместе с тем, потребовало создания возможно более однородных адсорбентов. В связи с этим теоретическая часть курса ограничена расчетами для однородных адсорбентов и в пособие не включены адсорбенты с сильно неоднородной поверхностью, не имеющие непосредственного применения в хроматографии. В нем не рассматриваются также теории ионообменной и ситовой (гель-фильтра-ционной) хроматографии, по которым имеются специальные руководства. Вместе с тем в пособии даются необходимые сведения о макропористых неионогенных и ионогенных адсорбентах и химических реакциях модифицирования их поверхности, которые облегчают читателю ознакомление с этими важными хроматографическими методами. [c.4]

    Монография, написанная крупнейшими специалистами в области газовой хроматографии-профессором Ж. Гиошоном (США) в соавторстве с инженером К. Гийеменом (Франция), представляет собой энциклопедическое руководство, охватывающее практически все проблемы, присущие газовой хроматографии, теоретические основы и методологию анализа (часть I в русском переводе), способы выполнения качественного и количественного анализов, аппаратурное оформление для проведения анализа в автоматизированном режиме на потоке промышленных процессов (часть II в русском переводе). Даны примеры алгоритмов для компьютерной обработки данных. В главах, посвященных качественному анализу, кратко излагается и новая комбинированная техника ГХ-ИК-фурье-спектро- копия, различные варианты ГХ-масс-спектроскопин. [c.4]

    Необходимо подчеркнуть, что количе ственное выделение какого-либо вещества в совершенно чистом состоянии методом вытеснительной хроматографии теоретически невозможно. Поэтому он представляет ограниченный интерес для аналитической химии. В принципе ширина каждой полосы (измеряемая объемом, который занимает эта полоса либо в колонке, либо в элюате) пропорциональна количеству соответствующего этой полосе вещества на практике, одпако, полосы часто асимметричны, и простыми способами бывает трудно точно определить их ширину. Для препаративных целей вытеснительная хроматография предпочтительнее, чем элюентная, так как позволяет получить за одну операцию значительно большее количество вещества. Можно с успехом использовать колонки, заполненные на 50%, и получать растворы веществ в чистом виде и с высокими концентрациями. Ионообменные разделения методом вытеснительной хроматографии изучались Снеддингом с сотрудниками [35], Тремийоном [41], Корне с сотрудниками [6] и другими авторами. Подробное обсуждение этого метода выходит за рамки настоящей книги. Следует, однако, отметить, что существуют промежуточные случаи между элюентной и вытеснительной хроматографией. К ним относятся некоторые разделения, выполняемые с помощью комплексообразователей или буферных растворов. Примером может служить разделение металлов на катионообменных колонках с помощью цитрат-ных растворов. При низких значениях pH (когда концентрация некомплексных ионов сравнительно велика) происходит элюентная хроматография при высоких же значениях pH (когда концентрация некомплексных ионов мала) — вытеснительная хроматография. [c.110]

    Идея хроматографического метода в самом его общем виде принадлежит русскому ученому-ботанику Михаилу Семеновичу Цвету. Эта идея заключается в использовании для разделения веществ давно известного явления — способности большинства веществ в различной степени адсорбироваться на выбранном адсорбенте (и,чбирательная адсорбция). В 1903 г. М. С. Цвет опубликовал в трудах Варшавского общества естествоиспытателей статью, в которой сформулировал принцип нового метода и наглядно показал возможность отделения зеленой части хлорофилловых пигментов листьев (хлорофиллинов) от желтой (ксанто-филлинов) и от оранжевой (каротина) с помощью адсорбентов. В более поздних работах М. С. Цвет значительно усовершенствовал свой метод и дал ему необходимое теоретическое и экспериментальное обоснование. Однако не всем исследователям удавалось воспроизвести опыты М. С. Цвета при его жизни и вскоре этот метод был предан забвению. О его методе вспомнили через 27 лет после его открытия немецкие биохимики Кун, Ледерер и Винтерштейн, которые в 1930 г, успешно разделили каротин на отдельные изомеры, предсказанные Цветом. С этого времени хроматография стала развиваться в самых разнообразных направлениях и со временем приобрела характер самостоятельной научно-технической дисциплины, претерпев, таким образом, второе рождение. [c.7]

    Вязкость обычных жидкостей много больше вязкости газов, поэтому в жидкостной хроматографии процессы внешней (между зернами адсорбента) и внутренней (в их порах) диффузии играют особенно важную роль, приводя к сильному размыванию пиков. Это влечет за собой, как известно, уменьшение числа теоретических тарелок N и соответствующий рост Я — высоты, эквивалентной теоретической тарелке, т. е. к падению эффективности хроматографической колонны. В результате часто оказывается невозможным реализовать селективность, присущую данной системе адсорбент — дозируемые вещества — элюент, которая определяется прйродой этой системы. Эти проблемы имеют место и в газовой хроматографии, однако, как было показано ранее, в газовой хроматографии, как правило, можно пренебречь конкурирующей адсорбцией элюента, снижающей адсорбцию дозируемых веществ. Поэтому в газовой хроматографии можно использовать непористые или широкопористые адсорбенты со сравнительно малой удельной поверхностью. Поверхность таких адсорбентов обычно более однородна и доступна. В жидкостной же хроматографии не очень больших молекул приходится применять адсорбенты с гораздо более высокой удельной поверхностью, а следовательно, более [c.283]

    Теорию динамики ионного обмена в хроматографии успешно развивает в течение последних лет В. В. Рачинский с сотрудниками. Мы сочли полезным выборочно изложить теоретические построения В. В. Рачинского, С. М. Рустамова и В. А. Гарнецкого в области ионообменной хроматографии, В. В. Рачинского и А. А. Лурье вобласти теории осадочной хроматографии в той части, которая, на наш взгляд, имеет наиболее близкое отношение к аналитической химии. [c.4]

    К сожалению, часто встречается эмпирический. подХод к использованию хроматографии в аналитических целях. Прогнозирование условий хроматографического разделения неорганических ионов почти не применяется, теоретические положения мало используются на практике. По-этбму в настоящем пособии подробно рассмотрен вопрос о том, как, пользуясь константами ионного обмена, можно рассчитать оптимальные условия разделения ионбв в хроматографической колонке (объем промывной жидкости, ее концентрацию для элюирования и т. д.). [c.4]

    В предыдущих главах были рассмотрены теоретические и практические предпосылки газохроматографического анализа. Перед аналитиком стоит важная проблема качественной интерпретации полученных результатов анализа. Трудность качественного анализа смеси зависит, с одной стороны, от того, насколько хорошо разделяются отдельные компоненты, а с другой — от того, насколько известна химическая природа и происхождение пробы. Само собой попятно, что идентификация компонентов в совершенно неизвестной пробе вызывает больше трудностей, чем качественный анализ таких смесей, происхождение которых позволяет предполагать присутствие определенных классов химических веществ или некоторых основных компонентов. При анализе какой-либо смеси на первый план выдвигается стремление достигнуть по возможности лучшего разделения компонентов, так как наложение пиков затрудняет идентификацию. С этой точкп зрения часто рекомендуется использовать две или несколько неподвижных фаз с различными свойствами. При особенно трудных проблемах анализа методы идентификации, основанные только на самой газовой хроматографии, часто не приводят к цели. В таких случаях до газохроматографического анализа целесообразно проводить предварительное разделение компонентов другими физикохимическими методами или селективное превращение определенных компонентов в пробе для получения веществ, которые легче разделить и анализировать. [c.232]

    Для оценки эффективности часто ийпользуют приведенное число теоретических тарелок, которое получается отнесением числа реально полученных теоретических тарелок на колонке данной длины к условной колонке длииой 1 м. При этом получаются значения до 50—100 тыс. теоретических тарелок на 1 м. Если сравнить это с соответствующими значениями, достигаемыми в газовой хроматографии — 2 тыс. теоретических тарелок на 1 м для насадочных и 3—4 тыс. теоретических тарелок на 1 м для капиллярных колонок, то представляется, что в жидкостной хроматографии достижимы более высокие эффективности. Однако реально в газовой хроматографии можно иметь колонку имеющую суммарно 1 млн теоретических тарелок, тогда как в жидкостной это пока недостижимо. [c.251]

    Газовая хроматография. Зная время удерживания сорбируемого вещества, можно по форме кривой элюирования оценить равновесные и кинетические характеристики сорбции. Часто используют такие концентрации вещества, которые соответствуют линейному начальному участку изотермы адсорбции. Провести такой эксперимент несложно, значительно труднее осуществить математическую обработку результатов. Наиболее распространены два подхода расчет по уравнению, связывающему ВЭТТ (высота, эквивалентная теоретической тарелке) со скоростью газа-носителя [16], и метод, основанный на анализе моментов [17, 18]. [c.468]

    В теории хроматографии часто используется послойный метод расчета, который основывается на предположении, что непрерывный процесс в хроматографической колонке можно приближенно рассматривать как ряд равновесий в небольших слоях сорбента определенной длины. Предполагается, что после установления равновесия в первом слое раствор из него переводится во второй слой, так что количество сорбируемого вещества при этом не изменяется, а в колонку вводится новая порция раствора. Элементарные слои, в которых устанавливаются равновесия, называются теоретическими тарелками . Обычно высоту теоретической тарелки определяют опытным путем. Метод теоретических тарелок применительно к расчету ионообменной хроматографии был развит в работе Майера и Томпкинса [9]. По этому методу может быть получена величина среднего квадрата размытия хроматографической зоны. Расчет дает [18] [c.86]

    Тиофен, 2-метилтиофен и 3-метилтиофен были препаративно выделены на хроматографе УХ-1 и идентифицированы И. И. Шабалиным по инфракрасным спектрам поглощения. Катализаты фракдионировались на ректификационной колонке с числом теоретических тарелок, равным 25. Тиофен, 2- и 3-метилтиофены имели чистоту 99%. Углеводородная часть С2—Сб газообразных продуктов реакции анализировалась на хроматографе ХЛ-4. Водород и метан определялись на хроматографе ХЛ-5. Сероводород анализировался поглотительным методом. [c.20]


Смотреть страницы где упоминается термин Хроматография Теоретическая часть: [c.394]    [c.2]    [c.112]    [c.90]    [c.286]    [c.348]    [c.271]    [c.597]    [c.275]    [c.226]    [c.226]    [c.37]   
Смотреть главы в:

Курс аналитической химии Издание 2 -> Хроматография Теоретическая часть




ПОИСК







© 2024 chem21.info Реклама на сайте