Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал влияние на восстановление ионо

    ДОВ заключается в том, что при положительных значениях потенциала исключается восстановление ионов многих металлов, могущих присутствовать в растворе, и устраняется влияние растворенного кислорода, который также не может восстанавливаться при потенциалах более положительных, чем +0,65 (НВЭ). [c.22]

    В соответствии с уравнением (4.19) скорость восстановления анионов возрастает с ростом адсорбируемости и заряда неорганических катионов (рис. 4.17). Органические катионы ускоряют реакцию восстановления анионов, а органические анионы тормозят электродный процесс. Различное действие адсорбированных органических ионов указывает на то, что их влияние связано в основном с изменением ч 31-потенциала. Влияние неорганических и органических катионов на скорость реакции восстановления аниона персульфата наблюдается только в области потенциалов их адсорбции. [c.236]


    В этом случае интервал перехода можно характеризовать как область значений потенциала (А ), внутри которой окраска индикатора является смешанной Д = Е° 0,059/л (25 °С). При обмене электронами переход от окраски только окисленной формы к окраске только восстановленной формы соответствует области примерно 120 мВ. Б действительности эти соотношения существенно усложняются, потому что большинство систем окислительно-восстановительных индикаторов подвержено влиянию концентрации ионов водорода. Используя уравнение (3.1.37), можно учесть влияние [c.71]

    Влияние концентрации ионов на ход кривых ток — потенциал восстановления [c.539]

    Форма кривой сила тока — напряжение и, тем самым, величина потенциала полуволны могут изменяться под влиянием различных факторов. Так, например, потенциалы восстановления ионов металлов, присутствующих в растворе в виде аквакомплексов, изменяются при образовании комплексов с другими лигандами. При комплексообразовании обычно наблюдается смещение потенциала полуволны в сторону более отрицательных значений. Исследование такого смешения в зависимости от концентрации комплексообразующего вещества позволяет найти состав и константы образования комплекса. На потенциал полуволны может также оказывать влияние pH раствора, которое связано с изменением или природы имеющихся комплексов или продуктов электролиза. Преимущество полярографических методов по сравнению с другими электрометрическими методами в том, что электролизу подвергается лишь небольшой объем раствора, и, кроме того, концентрация вещества, подлежащего исследованию, в этом растворе может быть очень малой. Количественные полярографические исследования, как правило (исключения см. гл. 1), возможны только тогда, когда имеются следующие предпосылки. [c.211]

    Эффект ускоряющего влияния олова на осаждение сурьмы в некоторой мере характеризуют кривые 2 и 5 на рис. 32 потенциал становится положительнее на 150 мв при плотности тока 0,15 а/дм . Очевидно, этот эффект значительно занижен тем, что сурьма выделяется на предельном токе. Вызывает сомнение, что облегчение выделения сурьмы обусловлено деполяризацией в результате образования твердого раствора 5п—5Ь, как считают авторы этой работы [94], потому что оно проявляется лишь в присутствии поверхностноактивных веществ. Кажется более вероятным, что восстановление ионов сурьмы совместно с оловом ускоряется вследствие изменения адсорбции органических веществ на сплаве по сравнению с адсорбцией на отдельных компонентах. Действительно, поскольку применяемые добавки слабее тормозят осаждение олова, чем сурьмы [94], можно предполагать, что их адсорбируемость на сплаве 5п—5Ь меньше, чем на чистой сурьме. [c.263]


    Объяснение влияния pH раствора на стационарный потенциал железа основано на том, что стационарный потенциал железа определяется условием равенства скоростей анодного процесса ионизации железа и катодного процесса восстановления ионов водорода или молекул кислорода. Так как поляризационная кривая, отвечающая любому из этих двух катодных процессов, сдвигается с ростом концентрации водородных ионов в сторону более положительных потенциалов, то и стационарный потенциал железа сдвигается при этом в ту же сторону Прим. редактора). [c.82]

    Из этих данных следует, что при замене катодного процесса разряда ионов водорода процессом восстановления ионов Си-+ до Сц+ или восстановления иона Н + до металлической ртути теоретическое напряжение разложения понижается. Однако величины термодинамически обратимых электродных потенциалов и теоретического напряжения разложения не определяют однозначно величину напряжения на ячейке. Она зависит также от перенапряжения для анодного и катодного процесса, от состава, концентрации, электропроводности и температуры электролита, а также от конструкции электролизера. Нормальный потенциал разряда ионов никеля более электроотрицателен, чем ионов водорода, однако из-за влияния перечисленных факторов, прежде всего высокого перенапряжения выделения водорода, процесс электролиза хлористого никеля можно проводить прн более низком напряжении на ячейке, чем прямой электролиз соляной кислоты. [c.286]

    Методики определения Со основаны на его электровосстановлении в водных и неводных средах на ртутном или платиновом электроде. Предварительно, если в анализируемом растворе присутствует Со ", его восстанавливают химически до Со [294, 295]. Электролитическое восстановление ионов иридия, так же как и ионов рутения, часто бывает осложнено реакциями гидролиза, полимеризации и катализа, протекающими одновременно с основной реакцией. На примере восстановления Ir" на фоне H I изучено влияние геометрии ячейки и расположения рабочего электрода и электрода сравнения на распределение потенциала и тока. Показано, что в зависимости от формы, размера и расположения электродов на некоторых участках рабочего электрода могут протекать побочные процессы, искажающие результат анализа [199]. Описано определение 1г в концентратах после отделения драгоценных металлов путем его восстановления на Pt-электроде до 1г" при Е = 0,25 В на фоне 0,2 М НС1 [180]. [c.62]

    Исключение составляет лишь зона pH от 2 до 1, где изменение потенциала цинкового электрода несколько большее, чем у О2 (Аи)-электрода по-видимому, это связано с влиянием ОН--ионов на электрохимические процессы, протекающие на цинковом электроде. При этом цинковый электрод навязывает новое значение своего потенциала О2 (Аи)-электроду, вызывая также резкое смещение его потенциала и восстановление прежнего напряжения при pH раствора, равном 1 (табл. УП-5). [c.132]

    ЧТО концентрации каждого реагирующего вещества и продукта равны одному молю и концентрации любых других компонентов раствора точно известны. Формальные потенциалы для многих систем приведены в приложении 2. Например, формальный потенциал полуреакции восстановления железа(П1) до железа(II) равен -fO,731 В в одномолярной хлорной кислоте и -f-0,700 В в одномолярной соляной кислоте, тогда как стандартный потенциал этой полуреакции +0,771 В. В присутствии хлорной кислоты формальный потенциал снижается вследствие того, что при высокой ионной силе коэффициент активности железа (III) меньше, чем коэффициент активности железа (И). Более сильное влияние соляной кислоты обусловлено большей устойчивостью хлоридных комплексов железа(III) по сравнению с устойчивостью комплексов железа (II). [c.347]

    В основе существующей теории совместного разряда ионов лежит представление, согласно которому при совместном разряде ионов металлов закономерность изменения скорости процесса восстановления ионов от потенциала электрода не изменяется по сравнению с раздельным восстановлением. Следовательно, в этом случае не учитывается влияние изменения природы и состояния поверхности электрода, изменения структуры и состава двойного электрического слоя, а также влияние изменения концентрации электролита и состояния ионов в растворе ма скорость электродных процессов. [c.177]

    К 0,5. Отсюда вытекает, что при восстановлении иона водорода на ртути, по-видимому, нет заметной зависимости коэффициента переноса заряда от потенциала в широком интервале потенциалов. Правда, по общему признанию, совпадение точек при 1 мксек пока не является полностью удовлетворительным. Однако не следует слишком критически рассматривать эти систематические ошибки, поскольку экспериментальные данные, полученные Б самой верхней области потенциалов, служат главным образом для иллюстрации возможностей метода. Эти ошибки вызваны рядом причин, таких, как отклонение импульса от строго прямоугольной формы, экранирующее влияние капилляра, малые неточности в потенциалах пика во время прохождения импульсов и т. п. Эти погрешности в методе фарадеевского выпрямления высокого уровня наиболее сильно выражены на начальном участке волны, и поэтому нижние точки для сек на рис. 7 откло- [c.111]


    На скорость необратимых электрохимических реакций, в которых участвуют заряженные частицы, большое влияние оказывает изменение приэлектродной концентрации этих частиц под действием поля электрода чем выше скачок потенциала в диффузной части двойного слоя я] , тем больше различие между концентрациями ионов у поверхности электрода и в глубине раствора [см. уравнение (1)]. Поэтому при изменении ifi происходит как изменение приэлектродной концентрации ионов, так и изменение эффективного скачка потенциала между поверхностью электрода и разряжающейся частицей. Учет этих двух факторов приводит к следующей зависимости между величиной изменения Eij волны восстановления иона и изменением ф -потенциала  [c.18]

    Существенное влияние на коррозию ок 1зывает pH раствора. Равновесный потенциал реакции восстановления ионов гидроксония смещается на 0,059 В в электроотрицательную сторону при повышении рн на единицу при 25 °С. Поэтому скорость коррозии металла, например цинка, будет уменьшаться при переходе от кислых к нейтральным растворам. Но в щелочных растворах цинк растворяется с образованием гидроксокомплексов по реакции 2п + 40Н - 2е = 7п(ОН)Г [c.362]

    Это линейное зфавнение наклонной прямой, где т —стехиометри-ческпн коэффициент перед ионами водорода п—число электрО" нов, участвующих в окислительно-восстановительной реакции. Сле-довательно, на величину окислительно-восстановительного потенциала-оказывает существенное влияние активность ионов водорода, если восстановление веществ идет с его участием. [c.113]

    Для осуществления этих процессов в нейтральной среде при стандартных условиях необходимо поддерживать потенциалы анода и катода (без учета осложняющего влияния качества материала и поверхности их) близкими к стандартным, т. е. +0,814, +2,01 и —0,413 в. Если сравнить с этими величинами стандартный потенциал системы Си Си (+0,34 в), то можно сделать вывод о наиболее вероятных процессах (катодном и анодном) при электролизе. Сопоставление потенциалов 0,34 в ( u V u), 0,814 в (Оа + 4HVHaO) и 2,01 в (SaOf/SOf ) свидетельствует о том, что наиболее легко окисляется на аноде медь. Из двух возможных катодных процессов наиболее легко осуществимо восстановление ионов меди (фси2+/ Си = 0,34 в и фн,0/нг+20н- = = —0,413 б). [c.206]

    А. Т. Баграмян с сотрудниками изучал влияние pH на катодный процесс при электроосаждении сурьмы из виннокислых растворов. При повышении pH раствора потенциал восстановления сурьмы вначале резко смещается в отрицательную область ( на 0,5 в), а затем почти не меняется. Перегиб кривой ф — pH зависит от плотности тока и гидродинамического режима электролиза. Установлено, что pH прикатодного слоя увеличивается в процессе электролиза, хотя осаждение сурьмы не сопровождается выделением водорода. Расход ионов Н3О+ объясняется специфической структурой восстанавливающихся ионов металла. Концентрационные изменения прикатодного слоя приводят к разрушению виннокислого комплекса сурьмы с образованием ЗЬгОз-лгНаО, которая тормозит восстановление ионов металла и является причиной изменения структуры катодного осадка. [c.513]

    Бромат-ионы необратимо восстанавливаются на РКЭ до бромид-ионов, причем потенциал восстановления в присутствии различных индифферентных солей тем больше смещается в положительную область, чем выше валентность катиона [793]. С ростом концентрации одновалентного катиона фона Ei- TaKHie смещается в положительную область [107, 108]. Особенно большое влияние на потенциал полуволны восстановления бромата оказывает pH, так как ионы Н+ участвуют в электродной реакции. [c.133]

    Малое влияние катиона тетрабутиламмония на восстановление аниона Р1С14 , имеющего плоскую конфигурацию, в области потенциалов до —1,2 в по сравнению с анионами, имеющими трехмерное строение, обусловлено, очевидно, тем, что электровосстановление плоских анионов происходит так близко от электрода, что положительный заряд большого катиона тетрабутиламмония только незначительно влияет на локальное значение г[)1-потенциала, определяющее скорость электровосстановления. Рост тока в присутствии тетрабутиламмония при более отрицательных потенциалах (выше —1,2 в) может быть связан с тем, что восстанавливающийся анион уже не может так близко подойти к поверхности электрода, и вследствие этого на его восстановление начинает влиять 1])1-потенциал, определяемый присутствием ионов тетрабутиламмония. [c.223]

    Для перемешиваемых растворов форма кривой несколько отличается от рассмотренной потенциал электрода сначала изменяется более резко, затем плавно смещается к отрицательным значениям (кривая 5). Аномальная форма ф — /-кривой восстановления ионов ЗаОз на платиновом электроде в [233] объясняется следующим образом с одной стороны, персульфат-ионы способны окислять поверхность электрода с другой стороны, в процессе катодного восстановления происходит частичное восстановление платиновых окислов. При наложении поляризующего тока на электрод потенциал сначала резко смещается в сторону отрицательных значений, затем начинает преобладать влияние второго фактора, и потенциал смещается к потенциалу восстановления персульфат-иона. Более плавное изменение потенциала после максимума в нейтральных растворах авторы [233] объясняют возрастанием концентрации ионов ОН у поверхности электрода, которые образуются при восстановлении окислов платины на поверхности электрода. В кислых растворах и при перемешивании происходит интенсивный отвод ионов ОН" от поверхности электрода, что приводит к более резкому изменению по-. тенциала электрода. [c.144]

    Электрохимическое поведение органических соединений обладает рядом характерных особенностей, отличающих их от неорганических веществ. Эти особенности обусловлены [841] а) заметной адсорбируемостью органических деполяризаторов на поверхности электрода, приводящей обычно к значительному ускорению электродных и приэлектродных процессов б) участием в потенциал-определяющей стадии ионов водорода в) тормозящим влиянием продуктов электродной реакции, если их поверхностная активность выше, чем у исходных соединений (иногда торможение обусловлено почти полным заполнением поверхности адсорбированным деполяризатором [438, 784]) г) способноетью некоторых органических соединений образовывать водородные связи или иным образом взаимодействовать с растворителем. Поэтому при изменении состава растворителя наряду с явлениями, характерными для волн разряда неорганических деполяризаторов, которые обусловлены изменениями коэффициентов диффузии и активности ионов (см., например, обзоры К. Швабе [842, 843], работы Я. И. Турьяна и сотр. [844—846], И. Тати и Р. Такахаши [847, 848], а также других исследователей [849—852]), в случае волн восстановления органических соединений наблюдаются дополнительные эффекты [841], связанные с перечисленными особенностями их электрохимического поведения. [c.248]

    С табличными значениями нормальных потенциалов систем u +/ u и AgVAg, а восстановление золота (III) происходит при несколько более отрицательных потенциалах, чем термодинамически вычисленная величина Eq системы Au +/Au, которая составляет+ 1,50 в. Это следует связать с тем, что для снятия полярограммы золота (III) в качестве исходного реактива использовалась золотохлористоводородная кислота, т. е. вещество, в котором золото находится не в виде простого иона Аи +, а в виде комплексного — Au ir. Из сопоставления кривых рис. 25 вытекает практически важное следствие если потенциал индикаторного электрода будет установлен около +0,1 в, то все три иона — и медь (II), и серебро, и золото (III) — смогут восстанавливаться если же установить потенциал + 0,4 в, то ионы меди восстанавливаться не смогут, тогда как ионы серебра и золота будут давать диффузионный ток восстановления. Этот факт позволяет проводить титрования, связанные с восстановлением ионов серебра (или золота), в присутствии меди без какого-либо влияния с ее стороны (см. гл. II). Из рис. 25 следует, что при потенциале +0,8 в будет исключено уже и вое становление иона серебра, а золото при этом потенциале дает диф фузионный ток. Следовательно, проводя титрование при +0,8 в можно совершенно исключить влияние ионов серебра, меди и дру гих менее электроположительных металлов (ртути, висмута, евин ца и т. д.), чем золота, на диффузионный ток его трехвалентного иона. [c.81]

    При исследовании влияния органических ионов на кинетику электродного процесса использовались главным образом ионы тетраалкиламмониев [12, 47, 52, 59, 72, 73, 76, 108—121], а также органические анионы (см., например, работу [122] и полярографические исследования). Обзор работ по влиянию солей тетраалкиламмония на разряд ионов водорода на ртути можно найти в статье Фрумкина [6] там же рассмотрены некоторые особенности адсорбции этих веществ. Упомянутые катионы адсорбируются аналогично незаряженным веществам (см. гл. V), особенно если число атомов углерода велико. При значительных отрицательных потенциалах они десорбируются, несмотря на свой положительный заряд. Если раствор достаточно концентрированный, то, как и в случае неорганических солей, нет необходимости учитывать диффузию, но, когда концентрации малы, диффузия существенно сказывается на изменении степени заполнения капельного ртутного электрода (см. раздел 10, в этой главы). Адсорбция тетрасолей сдвигает фг в сторону положительных значений и снижает скорость восстановления катионов (Н+, Zn + и т. д.) наоборот, скорость восстановления анионов (ЗгОв", rOl" и др.) возрастает [ср. с уравнением (2)]. С другой стороны, повыщение степени заполнения с ростом концентрации иона тетраалкиламмония тормозит перенос заряда. Знак суммарного эффекта зависит от того, какой из этих факторов имеет больщее значение — сдвиг ф2-потенциала или блокировка [c.250]

    Коэтзи и сотр. [10] провели широкое исследование с целью выяснить возможность использования потенциала полуволны рубидия в тетраэтиламмонийперхлорате. Измерения проводили в растворах иодида (СЮГ является анионом фонового электролита, но НЬС104 недостаточно растворим). Они оценивали влияние изменений концентрации фонового электролита и равновесия ионной ассоциации. Изменения коэффициентов активности не учитывались из-за недостатка данных. Авторы рассчитали потенциалы полуволны для рубидия (I) в различных растворителях с перхлоратом в качестве фонового электролита, выраженные относительно нас. к. э. Эти величины (табл. 1.1) могут быть использованы для перевода экспериментальных данных, полученных с водным нас. к. э., в рубидиевую шкалу. Эта поправка должна быть внесена в данные, полученные с перхлоратом тетраэтиламмония как фоновым электролитом, при концентрациях, приведенных в табл. 1.1. Так были пересчитаны потенциалы полуволны восстановления ионов большого числа металлов в шести растворителях. Эти данные помещены в табл. 1.2. В то время как потенциалы, измеренные относительно нас. к. э., довольно существенно отличаются друг от друга, потенциалы, измеренные относительно рубидиевого электрода, почти не различаются. Интересно отметить, что при сравнении потенциалов, измеренных в различных растворителях относительно нас. к. э., расхождение без учета поправки может достигать 0,25 В. [c.30]

    Проблема строения медных рубиновых стекол в-1945 г. была разрешена Дитцелем он изучал влияние концентрации ионов кислорода на созревание стекол таких типов. Можно непосредственно измерить электрохимический потенциал окисления стекла и ячеек восстановления (см. А. П, 184) и рассчитать концентрацию ионов кислорода по наблюдаемым электродвижущим силам. Этот точный метод показал, что типичный рубиновый цвет не может быть вызван реакцией разложения типа Каннидзаро. Восстанавливающий агент, как, например, окись олова или железа или трехокись мышьяка или сурьмы, должен всегда присутствовать в стекле. Нельзя пренебрегать влиянием вязкости стекла, так как слишком) большая текучесть расплава мешает созреванию суспензий коллоидов и они быстро укрупняются и флоккулируют. Особенно медистые ионы при закалке быстро переохлаждаются и застывают в стекле медные. иойы во время созревания рубинового стекла не образуются. В золотом рубиновом стекле обнаружено также влияние химического состава самого стекла свинец или барий образуют в стекле стойкие супероисиды, которые имеют существенное значение для эволюции рубинового цвета.. [c.268]

    Итак, имеется два механизма разрушения интерметаллических фаз селективная и равномерцая коррози Д, причем последняя в некоторых случаях может по форме быть такой же, как селективная, за счет восстановления ионов благородного компонента (псевдоселективная коррозия). Главным фактором, опр-еделяющим механизм коррозионного разрушения интерметаллической фазы, являются электрохимические свойства компонентов и потенциал самой фазы. Естественно, характер кристаллической решетки, тип химической связи и т. п. тоже имеют большое значение, но доминирующее влияние оказывают электрохимические свойства. [c.154]

    Обстоятельный обзор данных по обоснованию метода электрохимической трактовки автокаталитических процессов восстановления металлов соединениями типа гипофосфита или борогидрида проведен в работе [48], посвященной химическому осаждению золота с помощью ЫаВН4. С учетом работ [49, 50] исследовалось влияние факторов, воздействующих на ход поляризацрюнных кривых, на скорость процесса выделения металла. Последняя оценивалась по величинам токов окисления восстановителя и восстановления ионов металла, как известно, равным в условиях смешанного потенциала. [c.163]

    Полярографически активный комплекс восстанавливается при более положите.чьных потенциалах, чем соответствующий аква-ион металла. Это обычно характерно для аква-ионов металлов, восстанавливающихся на ртути с высоким перенапряжением (устойчивая гидратация). Координированный лиганд, особенно лиганд, в адсорбированном состоянии (эффект электрического поля) [97], облегчает дальнейшую дегидратацию (лабилизация под влиянием лиганда оставшихся молекул воды [124, 125], и отсюда, учитывая адсорбцию полярографически активного комплекса [126], электрохимическая стадия для некоторых комплексов приближается к обратимой [110, 126, 127]. В процессе восстановления комплексов вначале образуется комплекс с нуль-валентным металлом [87, 97, 110, 126, 127], после чего следует необратимая химическая стадия [110]. На наличие этой стадии (дезактивация амальгамы никеля) обращалось внимание еще в работе [128], однако природа этой стадии до сих пор не ясна. Можно лишь отметить, что для некоторых комплексов никеля [128] данной стадией не является стадия диссоциации комплекса с ну.ль-валентным металлом. В противном случае невозможно было бы объяснить постоянство рассчитанного при различных концентрациях лиганда потенциала полуволны аква-иона нике.ия [128]. Этот расчет предполага.л обратимость стадии диссоциации комплекса с нуль-валентным никелем. [c.283]

    Совместное восстановление двух (или более) металлов приводит к электрохимическому осаждению сплавов. Кроме влияния на величины ер и у м состава раствора, природы разряжаюш,ихся ионов, параметров электролиза и др., необходимо также учитывать взаимное влияние восстанавливающихся ионов и, изменение парциально.й молярной свободной энергии при сплавообразовании за счет совместного построения кристаллической реешетки. Если первое условие может вызвать смещение потенциала выделения металла в сплав в сторону более электроотрицательных значений (сверхполяризация), то второе явление способствует выделению металла в сплав при более положительных потенциалах (деполяризация) по сравнению с раздельным осаждением металлов. [c.142]

    Для целей приближенного вычисления достаточно вместо активностей подставить концентрации. В этом случае результаты будут применимы лишь к разбавленным растворам но они позволяют уяснить некоторые общие моменты. На рис. 79 представлен ряд полученных этим путем кривых. Эти кривые показывают зависимость окислительно-восстановительного потенциала от относительного содержания в системе окисленной формы вещества. Кривые эти, как видно, аналогичны по 4>орме опытной кривой рис. 77. Положение кривой относительно нуля шкалы окислительно-восстановительных потенциалов зависит от стандартного потенциала системы, который соответствует потенциалу системы при содержании в ней приблизительно 50% окисленной формы, а наклон кривой определяется разностью между числом электронов в окисленном и в восстановленном состояниях. Влияние концентрации иона водорода в случае системы перманганат-ион — ион двухвалентного марганца видно из сопоставления двух кривых для ад +, равных соответственно 1 и 0,1. [c.377]

    Жолио-Кюри показал также, что полоний может выделяться как на катоде, так и на аноде, и исследовал влияние на критический потенциал различных других факторов, как физических (скорость перемешивания, сила тока и т. д.), так и химических (состав раствора). Например, в ще.лочпом растворе потенциал катодного осаждения сильно изменяется в зависимости от природы и состояния электрода и от его предварительной поляризации. Потенциал осаждения регулярно изменяется с концентрацией ш,елочи. Все это заставляет предположить, что осаждение здесь связано с вторичным эффектом, вызванным восстановлением ионов РоОд водородом в момент выделения. Анодный потенциал выделения полония в этой среде, напротив, не зависит, по-видимому, от щелочности раствора и природы анода, что указывает на возможность образования трехокиси непосредственным разрядом иона РоОд. Прибавление восстановителей даже в ничтожных количествах вызывает смещение потенциалов выделения, которое, несомненно, соответствует восстановлению полония до более низкой валентности. [c.515]

    В общем случае точность этого единственно возможного способа оценки стационарного потенциала участка проектируемого трубопровода (кроме моделирования в натуральную величину) существенно зависит от кинетики катодной реакции восстановления ионов водорода и ее равновесного потенциала (фн)обр- На рис. 15 влияние катодной реакции Н+- Н показано в виде изгиба в верхней части кривой А А. В результате регистрации потенциальных диаграмм на многих стальных образцах в грунтах с преимущественно нейтральной реакцией водной вытяжки выявили, что скорость реакции разряда ионов водорода становится сравнимой со скоростью реакции ионизации кислорода при потенциалах на 0,1—0,2 В меньше, чем потенциал, определяемый точкой пересечения линии предельной плотности тока по кислороду с кривой поляризационной диаграммы. Это значит, что в частном случае при изучении коррозии стали в грунтах зоны аэрации искажающим влиянием реакции Н+ -> Н можно пренебречь. В этом частном случае имеется возможность определения важных показателей минимального смещения потенциала трубы в отрицательную сторону, необходимого для полного предотвращения почвенной коррозии и соответствующей для этого смещения катодной плотности тока от внешнего источника. Из рис. 15 видно, что Афт1п равно разности ординат точек пересечения линий ДД и ЕЕ минимальная защитная плотность тока равна по модулю предельной плотности тока по кислороду. [c.85]

    Влияние комплексообразования на полярографические волны. Мы уже видели (гл. 14), что потенциал окислепи.ч или восстановления попа металла сильно меняется в присутствии веществ, образующих комплексные соединения с этим ионом. Не удивительно поэтому, что аналогичное изменение претерпевают и полярографические потенциалы полуволн. Данные, приведенные в табл. 21-1, показывают, что потенциал полуволны восстановления комплекса металла обычно более отрицателен, чем потенциал полуволны реакции восстановления соответствующего простого иона. [c.61]

    На рис. 17 приведены вольт-амперные кривые восстановления ионов медн(П), серебра(I) и золота(III) на платиновом электроде на фоне 1 М азотной кислоты. Такие же полярограммы эт1их нонов получаются на графитовом и золотом электродах. Из сопоставления кривых рис. 17 вытекает практически важное следствие если потенциал индикаторного электрода будет установлен около - -0,1 В, то все три иона — и медь (И), и серебро (I), и золото (III)—смогут восстанавливаться если же установить потенциал +0,4 В, то ионы меди (И) восстанавливаться не смогут, тогда как ионы серебра(I) и золота(1П) будут давать ток восстановления. Этот факт позволяет проводить титрования, связанные с восстановлением ионов серебра (или золота), в присутствии меди без какого-либо влияния с ее стороны (см. гл. II). Из рис. 17 следует, что при потенциале +0,8 В будет исключено уже и восстановление иона серебра, а золото при этом потенциале будет восстанавливаться. Следовательно, проводя титрование прн +0,8 В, можно совершенно исключить влияние ионов серебра, меди и других металлов, менее электроположительных, чем золото (III). [c.53]

    Влияние природы подкладки. Изменение скорости реакции совместного восстановления ионов, обусловленное изменением свойств поверхности электрода, двояко 1) может снижаться потенциал восстановления ионов. металла в результате сплаво-образования 2) может меняться скорость восстановления ионов в результате изменения природы подкладки и склонности ее к пассивированию. [c.184]

    Деполяризующее влияние подкладки. Влияние факторов сплавообразования на скорость процесса при совместном электроосаждении металлов изучено сравнительно мало [18]. Облегчение процесса восстановления ионов металла при образовании сплава связано с изменением парциальной свободной энергии компонентов сплава, при этом равновесный потенциал компонентов смещается в положительную сторону на величину [c.184]

    На рис. 2 представлены полярограммы, иллюстрирующие влияние индивидуальных уротропина, резорцина и резотропина (или смеси добавок) на кинетику электровосстановления ионов меди. В чистых перхлоратных растворах наблюдается хорошо выраженная волна восстановления ионов Си +, анализ которой свидетельствует о квазиобратимом протекании процесса (рис. 2). Стандартная константа скорости восстановления ионов Си +, определенная по методу Корыты [31, = 3,3 см сек. Ведение в раствор уротропина (< 5. 10 м1л) не оказывает сколько-нибудь существенного влияния на скорость электровосстановления ионов Си +. Вместе с тем уротропин значительно ускоряет выделение водорода, что проявляется в резком (на 0,3 в) смещении потенциала в положи- [c.52]

    Определению цинка в рудах мешают многие элементы кобальт, хром (III), теллур, селен, германий, волна восстановления которых почти полностью совпадает с волной восстановления цинка, а также повышенные содержания марганца, ванадия и никеля, потенциал полуволны восстановления которых близок к потенциалу полуволны восстановления цинка, что может исказить его полярограмму. Мешают также большие количества меди, оказывающие специфическое влияние на форму полярографической волны цинка. Оно особенно значительно сказывается иа результатах анализа при применении. метода двух отсчетов [33]. Определению цинка мешает также большое содержание в пробе железа и алюминия, с гидроокисями которых заметно соосаждаются ионы цинка как, по-видимому, за счет их сорбции, так и за счет химического взаимодействия ионов цинка с гидроокисями. При этом образуются труднорастворииые соединения типа шпинелей [13], вследствие чего даже многократное переосаждение гидроокисей аммиаком почти не уменьшает потери цинка за счет поглощения его осадком. [c.91]

    Потенциал восстановления ионов элемента на полярограм-ме определяется серединой полярографической волны (потенциал полуволны). Эта величина является характерной для каждого металла и зависит от природы раствора. Так, например, для свинца потенциал полуволны в нейтральной среде равен —0,48 в, а в щелочной —0,84 в, что свидетельствует о различных формах нахождения этого элемента в различных растворах. Влияние природы раствора на величину потенциала полуволны элемента широко используется в полярографическом анализе для выбора условий раздельного определения металлов. Так, например, потенциалы полуволн цинка и никеля в нейтральном растворе настолько близки (—1,06 и —1,11 в), что полярографические волны сливаются и определение этих металлов становится невозможным. В аммиачном же растворе потенциалы полуволн цинка и никеля раздвигаются (—1,36 и —0,96), благодаря чему раздельное определение металлов осуществляется довольно легко. [c.43]

    Так как потенциал титана при зачистке значительно более отрицателен, чем потенциал водородного электрода, то кислородная деполяризация оказывает малое влияние на стационарный потенциал металла. В этих условиях стационарный потенциал титана будет определяться кинетикой протекания анодного процесса растворения металла по второй формуле (1) и катодного процесса по формулам (2). Обратны ми реакциями ионизации атомов водорода (Ун =0) и восстановления ионов титана можно пренебречь, так как стационарный потенциал титана при зачистке далек от равновесных потенциалов соответствующих реакций [см. фиг. 45, а также фор1мулы (1)]. [c.86]


Смотреть страницы где упоминается термин Потенциал влияние на восстановление ионо: [c.15]    [c.254]    [c.545]    [c.42]    [c.237]    [c.252]    [c.289]    [c.448]   
Основы полярографии (1965) -- [ c.215 , c.216 , c.224 , c.225 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление иона

Восстановление ионов

Ионный потенциал

Потенциал восстановления



© 2025 chem21.info Реклама на сайте