Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроны перенос энергии

    Вся система переноса электронов от субстрата на О2 через длинную цепь переносчиков представлялась бы нерационально громоздкой, если бы единственной целью процесса было соединение электронов с молекулярным кислородом. Другое назначение этого механизма состоит в запасании освобождающейся в процессе электронного переноса энергии путем трансформирования ее в химическую энергию фосфатных связей. [c.365]


    Соотношение между вкладами в энергию активации электронного переноса энергий реорганизации внутренней и внешней координационных сфер зависит от природы реагирующих комплексов и окружающей их среды, а также от механизма переноса электрона. При внутрисферном механизме перенос электрона сопровождается процессами разрушения и образования прочных внутрисферных связей металл — лиганд, причем химические стадии образования предшествующего комплекса и разрушения последующего комплекса могут протекать как в практически равновесных, так и в неравновесных условиях. Более простая ситуация наблюдается в случае внешнесферного механизма, когда перенос электрона не сопровождается разрушением или образованием связей лиганд — внутрисферный лиганд, а происходит лишь изменение их длины и происходит соответствующая реорганизация внешнесферного растворителя [54—56]. [c.21]

    Неионизирующие излучения имеют более низкую энергию. Излучение в ультрафиолетовом, видимом и инфракрасном диапазонах спектра — это неионизирующая радиация. Когда эти виды излучений передают свою энергию веществу, происходит возбуждение молекул усиливаются их колебания или электроны переходят на более высокий уровень. В результате такого переноса энергии могут происходить химические реакции, как, например, при приготовлении пищи в микроволновых печах. Длительное неионизирующее облучение также может нанести вред организму. Солнечные ожоги, например, вызываются длительным действием неионизирующего излучения Солнца. Микроволновое и инфракрасное излучения могут оказать пагубное воздействие на организм. [c.304]

    При обсуждении соотношения между изменением свободной энергии и напряжением гальванического элемента надо обратить внимание на то, что п-это число электронов, перенос которых осуществляется согласно полному сбалансированному уравнению электрохимической реакции, а не число их в отдельных электродных полуреакциях. [c.580]

    Все рассмотренные выше реакции представляют собой мономолекулярные процессы распада. Генерация ионов в ходе электронной бомбардировки часто приводит к потере наименее прочно удерживаемого электрона, и ионы часто образуются в колебательно возбужденных состояниях с избытком внутренней энергии. В некоторых молекулах образца происходит потеря низкоэнергетического электрона, что приводит к иону в электронно возбужденном состоянии. Ион в возбужденном состоянии может подвергаться внутренней конверсии энергии, в результате чего он переходит в основное электронное состояние с избытком колебательной энергии. Молекула может диссоциировать в любое из возбужденных состояний, участвующих во внутренних конверсиях с безызлучательным переносом энергии. В этом случае ион фрагментирует, как только он начинает колебаться. Таким образом, в данном образце получаются ионы с широким энергетическим распределением, и фрагментация может происходить по различным механизмам. Полезно рассмотреть временные шкалы для некоторых обсужденных процессов. Время одного валентного колебания составляет 10 с, максимальное время жизни возбужденного состояния — около 10 с и время, которое ион проводит в ионизационной камфе масс-спектрометра, равно 10 —10 с. Следовательно, для перехода иона с избыточной электронной энергией в более низкое электронно возбужденное состояние с избытком колебательной энергии времени вполне хватает. Поэтому мы наблюдаем процессы в ионизационной камере через регистрируемые молекулярные ионы в различных энергетических состояниях, которые подвергаются быстрой внутренней конверсии энергии, образуя индивидуальные ионы с различным количеством избыточной энергии. Фрагментация протекает по первому порядку с различными [c.319]


    Флуоресцентный метод применяют для изучения быстрых реакций возбужденных молекул, кислотно-основных реакций возбужденных молекул и комплексообразования в возбужденном электронном состоянии, определения концентрации люминесцирующих веществ в смеси, изучения кинетики и механизма ферментативных реакций, изучения межмолекулярного переноса энергии. [c.74]

    Изучение межмолекулярного переноса энергии. Перенос энергии — это безызлучательный, происходящий в один акт перенос энергии электронного возбуждения от молекулы донора D к молекуле акцептора А. Перенос энергии достаточно эффективен, если энергия возбужденного состояния А меньше энергии D. Предполагается, что перенос энергии может происходить по двум различным механизмам. [c.86]

    Перенос энергии, происходящий между молекулами на расстоянии, значительно превышающем их диаметры столкновения. Скорость переноса по этому механизму не должна лимитироваться диффузией и поэтому не должна зависеть от вязкости даже при переходе от жидких растворов к твердым. Для этого механизма тушение возбужденной молекулы D молекулой А не связано с диффузией или непосредственной встречей молекул за время жизни возбужденного состояния.. Электронные системы молекул D и А можно рассматривать как механические осцилляторы, которые способны колебаться с общей частотой v. Колеблющиеся электрические заряды молекул D и А будут взаимодействовать друг с другом как два диполя. Когда молекула А оказывается вблизи молекулы D, имеется определенная вероятность того, что прежде чем испустить фотон, молекула D передаст свою энергию возбуждения акцептору А. Константа скорости переноса энергии описывается уравнением [c.86]

    Перепое, который происходит только при непосредственном контакте молекул. Это так называемый обменный механизм. Он может осушествляться, если электронные оболочки находящихся рядом молекул О и А перекрываются. В области перекрытия электроны обобществлены, поэтому возбужденный электрон молекулы О может перейти в молекулу А. Константу скорости переноса энергии по обменному механизму рассчитывают по уравнению [c.87]

    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна /IV а + С, где а — энергия активации Q — теплота, выделяющаяся в элементарном акте. Следовательно, хемилюминесценция должна наблюдаться в соответствующем интервале длин волн. В некоторых реакциях в газовой фазе наблюдается инфракрасная хемилюминесценция, соответствующая колебательному возбуждению молекул. В реакциях, протекающих в жидкой фазе, энергия колебательного возбуждения рассеивается очень быстро. Наблюдающаяся хемилюминесценция соответствует обычно излучению с пулевого колебательного уровня возбужденного электронного состояния и лежит в видимой и реже в ультрафиолетовой областях. [c.119]

    Последовательности ферментативных окислительно-восстановительных реакций лежат в основе клеточного метаболизма энергии. Энергия, освобождаемая при окислении восстановленных органических или неорганических соединений, запасается с различной эффективностью в виде таких удобных форм, как АТР, мембранные потенциалы или восстановленные коферменты. Механизм действия ферментов, катализирующих процессы электронного переноса, активно изучается, что связано с их вал<ной физиологической ролью. [c.399]

    Электронное возбуждение полимерной сетки может быть вызвано электромагнитным излучением (свет, ультрафиолетовое излучение, -излучение) или облучением частицами. Для передачи энергии соударения частиц или кванта излучения электрону необходимо, чтобы энергия оказалась достаточной для перехода последнего в возбужденное состояние н чтобы существовал механизм взаимодействия. При облучении светом в видимой части спектра фотон, скажем, длиной волны 330 нм обладает достаточной энергией для разрыва С—С-связи.. Однако фотон не будет поглощаться алканами, и в них нет электронных состояний с такой же или меньшей энергией возбуждения. Для эффективного разрыва связей фотон должен поглощаться и взаимодействовать с электроном связи. Подобное взаимодействие происходит либо непосредственно, либо косвенно с помощью механизмов переноса энергии путем диффузии экситона, одноступенчатой передачи или поглощения флюоресцентного света, испускаемого той же самой или другой (примесной) молекулой [11]. Природа и последовательность этих важных процессов, которые определяют фотохимическую стабильность (или нестабильность) полимеров, не будут здесь подробно рассматриваться. Интересно, однако, определить уровни энергии, на которых начинается возбуждение электронов или ионизация молекул, и изменения энергии связи, вызванные в свою очередь возбуждением или ионизацией. [c.109]


    Любая реагирующая частица обладает поступательными степенями свободы и внутренними степенями свободы — электронными и колебательно-вращательными. Каждому положению частицы в пространстве отвечает набор возможных распределений энергии по внутренним степеням свободы. Но решающую роль в осуществлении реакций играет перенос энергии на колебания вдоль линий валентных связей, способствующий разрыву старых и образованию новых связей. [c.237]

    С наличием металлической проводимости тесно связаны высокая теплопроводность и оптические свойства металлических веществ. Так, электроны могут вследствие их высокой подвижности осуществлять отвод тепла путем переноса энергии из областей с более высокой температурой в области с более низкой температурой. Высокие коэффициенты поглощения и отражения излучения у металлов объясняются наличием в энергетических зонах очень тесно расположенных чередующихся занятых и свободных состояний. Этим обусловлены металлический блеск и непрозрачность. В тонкодисперсном состоянии все металлы имеют черный цвет. [c.360]

    Для проведения многих важных химических процессов необходима электрическая энергия, другие же процессы, наоборот, могут дать ее. Поскольку электричество играет важную роль в современной цивилизации, интересно ознакомиться с той областью химии, которая называется электрохимией и рассматривает взаимосвязи, существующие между электричеством и химическими реакциями. Как мы убедимся, знакомство с электрохимией позволит нам получить представление о таких разнообразных вопросах, как устройство и действие электрических батарей, самопроизвольность протекания химических реакций, электроосаждение металлов для получения металлических покрытий и коррозия металлов. Поскольку электрический ток связан с перемещением электрических зарядов, в частности электронов, в электрохимии внимание сосредоточено на реакциях, в которых электроны переносятся от одного вещества к другому. Такие реакции называются окислительно-восстановительными. [c.199]

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]

    Излагая современное учение о кинетике электрохимических реакций, авторы более подробно останавливаются на закономерностях двух основных стадий электродных процессов стадии подвода реагирующих частиц к поверхности электрода и стадии разряда — ионизации, в которой происходит перенос заряженной частицы через границу электрод — раствор. В этом пособии достаточно полно представлены современные экспериментальные методы электрохимической кинетики, физические основы квантовомеханической теории электродных процессов, а также отражены такие вопросы, которые слабо освещены в литературе, например роль работы выхода электрона и энергии сольватации в электрохимической кинетике и др. [c.3]

    Механизм элементарного акта ионных реакций можно трактовать при помощи поверхностей потенциальной энергии системы в начальном и конечном состояниях. Для простейших реакций электронного переноса, не сопровождающихся изменением структуры иона, в качестве координаты реакции (т. е. того параметра, который претерпевает изменение в ходе процесса) следует выбрать некоторую обобщенную координату у, характеризующую конфигурацию диполей среды. На рис. 26 представлены одномерные потенциальные кривые начального и конечного состояний системы для таких реакций. Исходной равновесной конфигурации диполей растворителя отвечает координата , а конечной — yf. Координата характеризует ориентацию диполей растворителя в переходном состоянии реакции. Кривая 1 получена суммированием потенциальной энергии системы растворитель + за- [c.87]

    Состояние химических систем (как и любых других систем) может изменяться. Такие изменения называются процессами. Понятие процесса является одним из наиболее фундаментальных понятий для физической химии. Следует подчеркнуть, что строение и свойства химических систем проявляются именно в изменениях состояний систем. С химической точки зрения особый интерес представляют такие процессы, в которых происходит глубокая перестройка электронных состояний, сопровождаемая перегруппировкой ядер, так что из одних устойчивых одно- или многоатомных частиц образуются другие. В многокомпонентной макроскопической системе эти процессы приводят к химическому превраш,ению, в результате которого некоторые химические соединения — исходные веш,ества, или реагенты, превращаются в другие химические соединения — продукты. Химическую природу имеют также и многие другие явления, происходящие в химической системе, такие, как растворение, испарение ковалентных и ионных кристаллов и др., так как они также сопровождаются существенной перестройкой электронных оболочек. Как правило, химические превращения сопровождаются процессами, которые принято относить к области молекулярной физики переносом вещества и зарядов, переносом энергии термического возбуждения (теплоты) и др. [c.186]

    Количество взаимодействующих атомных орбиталей не влияет на ширину зоны, а определяет лишь плотность ее заполнения электронами. Ширина энергетических зон в твердых телах существенно зависит от внутренней структуры их кристаллов. Эта зависимость тесно связана с волновой природой движения электронов. Перемещаться по кристаллу способны лишь те электроны, длины волн которых не укладываются целое число раз между узлами кристаллической решетки. Электроны с длиной волны, равной (2а//г), где а — постоянная решетки, будут находиться в кристалле в условиях замкнутого отражения и не способны переносить энергию. [c.83]

    Выражение (IX, 22) представляет собой разность между энергией состояния с переносом заряда и энергией основного состояния электрона. В отличие от формулы (IX, 21) в выражении (IX, 22) матричные элементы построены из одинаковых функций и не содержат в качестве множителя интеграл перекрывания. Поэтому обменными членами первого порядка пренебрегать не следует, ввиду чего выражение для (IX, 22) приобретает довольно сложный вид. Приблизительно член (IX, 22) можно оценить как разность между энергией ег соответствующей орбитали хг, на которую перешел электрон, и энергией ег, соответствующей орбитали фг, с которой произошел переход электрона. Значение выражения (IX, 22) может быть и меньше этой разности, что приводит к еще большему значению О. [c.189]

    В некоторых случаях разница между энергией состояния с электронным переносом от ВЗМО одного реагента к НСМО другого Ч в.з->н с и энергией первоначального состояния Фо настолько мала, что выражение возмущения второго порядка для О становится неправильным. Тогда В приближенно представляют в следующем виде  [c.194]

    Если введение анализируемого вещества вызывает увеличение рекомбинаций или существенное уменьшение подвижности, ток детектора падает, и это уменьшение тока регистрируется па хроматограмме как пик данного вещества. На этом принципе основана работа детектора электронного захвата. Ионизация газа-носителя в этом детекторе приводит к образованию положительных ионов и электронов малой энергии (медленных электронов). Почти весь ток, возникающий в детекторе, переносится электронами, так как их подвижность благодаря малой массе примерно на 3 порядка выше подвижности ионов. [c.50]

    Перенос энергии за счет обменных взаимодействий может рассматриваться как особый тип химической реакции, в которой химическая природа партнеров А и О не меняется, а возбуждение переносится от одной частицы к другой. Тогда существует переходное состояние, характеризующееся расстоянием между А и О, не сильно превышающим сумму радиусов газокинетических столкновений, и перенос энергии по обменному механизму, вероятно, имеет место лишь для таких значений г. Как и другие химические процессы, перенос энергии будет эффективным лишь в том случае, если потенциальные энергии исходных и конечных продуктов расположены на непрерывной поверхности, описывающей зависимость потенциальной энергии системы от нескольких межатомных расстояний реакция, протекающая на такой поверхности, называется адиабатической. Другими словами, исходные и конечные вещества должны коррелировать друг с другом и с переходным состоянием. Большинство химических реакций с участием невозбужденных частиц может протекать адиабатически, но для таких процессов, как обмен энергией, когда участвует несколько электронных состояний, требование адиабатичности реакции может налагать ряд ограничений на возможные состояния частиц А,А и 0,0, для которых передача возбуждения эффективна. Так, для атомов и малых молекул необходима корреляция спина, орбитального момента, четности и т. д. Однако в случае сложных молекул низкой симметрии обычно необходима лишь корреляция спина. Для проверки подобной корреляции рассчитывается вероятный суммарный спин переходного состояния сложением векторных величин индивидуальных спинов реагентов (см. разд. 2.5 о сложении квантованных векторов в одиночных атомах или молекулах). Так, для исходных веществ А и В, имеющих спины Зд и 8в, суммарный спин переходного состояния может иметь величины 5а+5в , [c.122]

    Излучение не является единственно возможным процессом с участием электронно-возбужденного акцептора, образованного при межмолекулярном переносе энергии. Энергия возбуждения может быть израсходована в двух других важных процессах — диссоциации и химической реакции. Более подробно эти процессы рассматриваются в гл. 3 и 6, но здесь интересно обсудить существование фотосенсибилизированных реакций с позиции эффекта передачи энергии. Такие реакции протекают в части- [c.138]

    Работа некоторых весьма важных газовых лазеров основана на механизме возбуждения в процессе межмолекулярного переноса энергии. Например, в гелий-неоновом лазере электрический разряд проходит через смесь, содержащую около 10% Ые в Не. Столкновения с электронами от разряда вначале заселяют первые возбужденные триплетные и синглетные состояния Не, как показано на рис. 5.6. Оптические переходы от этих состояний к основным состояниям запрещены и поэтому являются метастабильными и долгоживущими. Эти два состояния близко резонируют с двумя возбужденными состояниями N0 (обозначенными на рисунке 23 и 35), и столкновительный обмен энергией приводит к образованию возбужденного неона в состоянии 5. Имеются также низколежащие состояния Р, для которых резонансное возбуждение невозможно, так что осуще- [c.144]

    Химия возбужденных частиц может значительно отличаться от химии частиц, находящихся в основном состоянии. Как мы уже указывали в гл. 1, эти различия могут происходить как в результате избытка энергии, присущего возбужденным частицам, так и за счет частичной перестройки их электронных оболочек. Оба этих фактора отчетливо проявляются в процессах внутри- и межмолекулярного переноса энергии, которые обсуждались в последних двух главах. Очевидной предпосылкой для переноса энергии является ее избыток, а ограничения, накладываемые на состояния, между которыми происходит перенос энергии, зависят от строения электронных оболочек молекул в различных состояниях. В настоящей главе мы рассмотрим процессы, включающие возбужденные частицы, которые приводят к химической реакции (т. е. в которой реагенты и продукты различаются не по возбужденным состояниям, а по химической природе). Эти химические процессы могут быть как внутри-, так и межмолекулярными, подобно физическим процессам переноса энергии. Первый класс реакций включает внутримолекулярное восстановление, присоединение и различные типы изомеризации к межмолекулярным реакциям возбужденных частиц относятся реакции присоединения невозбужденных молекул абсорбированного вещества или (в случае растворов) растворителя. Фотохимические реакции могут быть наилучшим способом синтеза множества важных, интересных или полезных соединений некоторые примеры приведены в разд. 8.10. Мы опишем здесь ряд принципов, лежащих в основе реакционной способности возбужденных частиц, и представим небольшую подборку реакций, иллюстрирующих наиболее важные типы известных процессов. [c.148]

    Этен-номенклатурное название С2Н4 его тривиальное название-этилен.) Соединения с циклическим расположением атомов, имеющие делокализованные, бензолоподобные кратные связи, называют ароматическими. Дакрон, нафталин, ДДТ, аденин и рибофлавин (см. рис. 21-1 и 21-3) содержат ароматические группы. На примере аденина и рибофлавина видно также, что углерод способен образовывать двойные связи с азотом и что азот может принимать участие в образовании ароматических циклов с делокализованными кратными связями. Многие разделы органической химии связаны с особыми свойствами систем, включающих ароматические циклы. Ароматические молекулы и комплексные соединения переходных металлов являются двумя важнейшими классами соединений, в которых энергия, необходимая для возбуждения электрона, приходится на видимую часть спектра. Поэтому практически все красители представляют собой такие соединения и принимают участие в механизмах захвата и переноса энергии фотонов. [c.270]

    При фотохимическом возбуждении новые энергетические уро1 ни могут различаться спинами электронов. Состояния с пара лельными спинами (триплеты) имеют более низкую энергию, че состояния с антипараллельными спинами (синглеты). При возбу дении молекулы атомом сенсибилизатора выполняется правил Вигнера, по которому перенос энергии между возбужденной част цей и молекулой в основном состоянии разрешен только при сохр нении полного спина системы. Работы Лейдлера показали, чт правило сохранения спина позволяет объяснить характер ряд фотохимических реакций углеводородов. Основное состояние ол( фина с заполненной я-орбиталью (спины антипараллельны) — си1 глет возбуждение в триплетное состояние представляет собой з прещенный переход. Не следует понимать это как отсутствие во бужденных триплетных состояний, но такие молекулы будут обр зовываться при безизлучательной потере энергии возбужденным синглетными молекулами. [c.66]

    Перенос энергии в форме тепла , происходящий между телами, имеющими различную температуру, называется теплообменом. Движущей силой любого процесса теплообмена является разность температур более нагретого и менее нагретого тел, при наличии которой тепло самопроизвольно, в соответствии со вторым законом термодинамики, переходит от более нагретого к менее нагретому телу. Теплообмен между телами г.редставляет собой обмен энергией между молекулами, атомами и свободными электронами в результате теплообмена интенсивность движения частиц более нагретого тела снижается, а менее нагретого — возрастает. [c.260]

    Кристаллическое строение металла характеризуется кристаллической решеткой, в узлах которой находятся атомы металла с ослабленными внутриатомными связями ядра с внешними валентными (полусвободными) электронами. Перенос зарядов (электрический ток) в металлах осуществляется полусвободными электронами. Различную степень электропроводности металлов (во всех случаях очень высокую) можно объяснить различным кристаллическим строением их и, следовательно, разным количеством полусвободных электронов, сосредоченных в узлах кристаллической решетки металла. При обычных условиях полусвободные электроны не могут выйти за пределы атома, но при затрате дополнительной энергии (нагревание, электрическое поле, освещение и т.п.) можно создать условия для их направленного движения. [c.27]

    Итак, мы приходим к важному выводу хемосорбированные молекулы и сорбент, т. е. молекулы, присоединенные к твердому телу атомными связями, и данное твердое тело (как атомы или молекулы примеси, соединенные с атомами твердого тела атомными связями, и соответствующее твердое тело), представляют собой единую квантовую систему. Подобные системы, как мы видим, могут образовать как неорганические вещества, например примеси 2пО или СнгЗ в сульфиде цинка, так и органические с неорганическими, в частности красители-сенсибилизаторы, адсорбированные А Вг. Последние могут находиться на поверхности бромида серебра в виде коллоидных частиц—агрегатов молекул. Как указывает А. Н. Теренин, существует беспрепятственный перенос энергии или электронов по таким агрегатам даже в том случае, когда они не имеют кристаллического строения. Следовательно, контактное соединение (см. гл. IV) аморфного и кристаллического вещества является также единой квантовой системой. [c.132]

    На рис. 4.44 и 4.45 изобраясена резкая граница межд> валентной зоной и зоной проводимости. В действительности эта граница размыта вследствие теплового движения электроны могут переходить с верхних уровней валентной зоны на нижние уровни зоны проводимости. Способность этих электронов свободно передвигаться по кристаллу и переносить энергию из одной его части (нагретой) в другую (холодную) служит причиной высокой теплопроводности металлов. Таким образом, и электрическая проводимость и теплопроводность металлов обусловлены возможностью свободного передвижения электронов зоны проводимости. Именно поэтому для большинства металлов наблюдается параллелизм между этими величинами. Например, лучшие проводники электричества — серебро и медь — обладают и наиболее высокой теплопроводностью. [c.150]

    Особый интерес для теории представляют реакции электронного переноса, при которых не происходит суммарного химического изменения (Ре (СМ)Г+Ре (СЫ)Г МпО +МпОГ Ре (Н.0)Г+Ре(Н,0)Г). Эти процессы не сопровождаются изменением свободной энергии системы. Для их изучения вводят небольшое количество одного из реагентов, содержащего в качестве центрального атома радиоактивный изотоп, а затем определяют, как этот изотоп распределился между реагентами. Например, КМпО , меченный Мп , добавляют к смеси КМпОа и КаМпО , а затем МпО селективно осаждают в виде РЬДзМпО , а МпО, — в виде ВаМп04. Реакция МпО +МпО может быть изучена также методом ЯМР. [c.82]

    Механизм элементарного акта ионных реакций можно трактовать при помощи поверхностей потенциальной энергии системы в начальном и конечном состояниях. Для простейших реакций электронного переноса, не сопровождающихся изменением структуры иона, в качестве координаты реакции (т. е. того параметра, который претерпевает изменение в ходе процесса) следует выбрать некоторую обобщенную координату у, характеризующую конфигурацию диполей среды. На рис. IV. 14 представлены одномерные потенциальные кривые начального и конечного состояний системы для таких реакций. Исходной равновесной конфигурации диполей растворителя отвечает координата уи а конечной— У/. Координата у характеризует ориентацию диполей растворителя в переходном состоянии реакции. Кривая 1 получена суммированием потенциальной энергии системы растворитель+заряженные частицы и полной энергии электрона при различных значениях обобщенной координаты у в исходном состоянии. Сумму указанных величин называют также электронным термом. Кривая 2 представляет электронный терм конечного состояния. Так как в первом приближении термы можно аппроксимировать параболами, то для энергии активации а на основе простых геометрических соотношений получаем следующее уравнение  [c.97]

    Дальнодействующий диполь-дипольный (индуктивно-резо-нансный) безызлучательный перенос энергии электронного возбуждения в вязких средах приводит к неэкспоненциальному затуханию флуоресценции. Константа скорости этого процесса равна [c.97]

    Направление 7 на рис. 1.1 обозначает процессы физического тушения, когда атом или молекула М снимает избыточную энергию АВ. Чисто формальное отличие физического туще-ния от молекулярного переноса энергии состоит в том, что в первом случае М, получая некоторую избыточную энергию, все же не изменяет заметно своей химической активности. Чаще всего энергия электронного возбуждения АВ переходит в колебательные или вращательные степени свободы М. [c.17]

    Сказанное имеет отношение к электронной компоненте вероятности отдельных типов безызлучательных переходов. Экспериментальные наблюдения (о некоторых из них речь пойдет в дальнейшем) показывают, что вероятность переноса связана обратной зависимостью с разностью энергий двух состояний для данного типа электронного перехода. Этот результат может быть поясней с помощью принципа Франка — Кондона для безызлучательных переходов, обсуждавшегося для случая излс/-чательных переходов в разд. 2.7. Согласно этому принципу, ядра в молекуле неподвижны в течение всего электронного перехода, т. е. переходы вертикальны на энергетической диаграмме (см. рис. 2.3, а и б). При внутримолекулярных безызлучательных переходах сумма электронной и колебательной энергий должна оставаться постоянной в отличие от излучательного перехода, когда рождение фотона приводит к возникновению или изменению разности энергий начального и конечного состояний. Таким образом, в безызлучательном случае переход горизонтальный в той же мере, что и вертикальный , поэтому он ограничивается очень малой областью на энергетической кривой или поверхности. Перекрывание в этой области колебательных вероятностных функций для начального и конечного состояний будет определять эффективность переноса энергии при определенной фиксированной вероятности электронного перехода. На рис. 4.7 представлены три возможных случая данные кривые могут рассматриваться как кривые потенциальной энергии для двухатомной молекулы или как линии- пересечения энергетических поверхностей для более сложных молекул. На рис. 4.7, а показаны два состояния, X и У, сходной геометрии, но обладающие сильно различающейся энергией. Нижний колебательный уровень = 0 в состоянии X имеет то же значение энергии, что и верхний уровень V" в V. Вследствие характерного распределения колебательных вероятностных функций их перекрывание мало. На рис. 4.7,6 представлен случай, когда и разность энергий двух состояний, и разность квантовых чисел V и V" существенно меньше, что приводит к большему перекрыванию колебательных вероятностных функций. Таким образом, эффективность пересечения будет возрастать по мере того, как т. е. заселение уровня вблизи v" = Q благоприятст- [c.102]

    При переносе энергии можно заселить те электронные состояния молекулы, которые не заселяются непосредственно при поглошении излучения, и фотосенсибилизированные процессы могут химически отличаться от песенсибилизированного фотолиза. Например, прямой фотолиз (Я<144 нм) метана в качестве первичных продуктов дает молекулярный водород и метилен (СНг), в то время как фотолиз, сенсибилизированный ртутью (Я = 253,7 нм) в основном дает СНз и Н, как показано в уравнении (5.48). [c.139]

    Кинетические исследования исходят из количественного образования некоторых промежуточных соединений триплета сенсибилизатора при концентрациях кислорода выще 10 моль/ /дм . Сами интермедиаты количественно поглощаются хорошими акцепторами, хотя со многими соединениями, например со спиртами, они не реагируют. Имеются две интерпретации этих фактов интермедиатом являются 1) комплекс кислорода с сенсибилизатором и 2) электронно-возбужденный кислород, образованный при переносе энергии от сенсибилизатора к кислороду. Возможно, обе интерпретации допускают образование аддукта ( эксиплекса ) между возбужденными сенсибилизатором и кислородом, хотя стабильный эксиплекс получается только по первому механизму  [c.174]


Смотреть страницы где упоминается термин Электроны перенос энергии: [c.326]    [c.165]    [c.109]    [c.97]    [c.91]    [c.124]   
Современная общая химия Том 3 (1975) -- [ c.2 , c.236 ]

Современная общая химия (1975) -- [ c.2 , c.236 ]




ПОИСК





Смотрите так же термины и статьи:

Безызлучательный перенос электронной энергии Сенсибилизованная фосфоресценция органических молекул при низкой температуре. Межмолекулярный перенос энергии с возбуждением триплетного уровня. (Совместно с В. Л. Ермолаевым)

Внутримолекулярный перенос электронной энергии

Каплан, М. Д. Г аланин. Об электромагнитном механизме переноса энергии электронного возбуждения при радиолизе разбавленных растворов

МИГРАЦИЯ ЭНЕРГИИ И ПЕРЕНОС ЭЛЕКТРОНА В БИОСТРУКТУРАХ

Межмолекулярные процессы переноса электронной энергии

Межмолекулярный перенос электронной энергии в газовой фазе

Механизмы переноса электрона и миграции энергии в биоструктурах

О переносе энергии электронного возбуждения в жестких растворах органических люминофоров. Я А. Терской, В. Г. Брудзь

Перенос электронной энергии в конденсированных системах

Перенос электронов и преобразование энергии

Перенос энергии электронной

Перенос энергии электронной

Правило сохранения спина. Разрешенные процессы переноса электронной энергии

Тепловая энергия при переносе электронов

Энергия электрона

Энергия электронная

Энергия, высвобождаемая в процессе переноса электронов по дыхательной цепи, запасается в форме электрохимического протонного градиента на внутренней мембране митохондрий



© 2025 chem21.info Реклама на сайте