Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость ограниченная смеси

    В спиртах при нормальных условиях смесь аминов С16—С20 растворима ограниченно. При повышении температуры растворимость интенсивно возрастает (при 60° в 100 г метанола растворяется 595 г перегнанного амина С]6 — Сго). Растворимость в хлороформе и четыреххлористом углероде выше, чем в спиртах. [c.20]

    При смешении двух жидкостей могут наблюдаться всевозможные градации взаимной растворимости — от практически полной нерастворимости друг в друге (например, ртуть и вода) до смешиваемости в любых отношениях с образованием однородного раствора (например, этиловый спирт и вода). Промежуточное положение занимает случай ограниченной взаимной растворимости, когда смесь жидкостей Л ИЙ (например, анилина и воды) разделяется после взбалтывания на два слоя насыщенный раствор Л в В и насыщенный раствор В в А. Однако и в этом случае могут существовать области температуры и состава, где Л и В образуют однородную смесь. [c.260]


    Пусть имеем смесь двух жидкостей Л и С (точка О) и будем добавлять к этой смеси распределяемое вещество В, неограниченно растворимое в растворителях Л и С сами растворители при этом ограниченно растворимы друг в друге. Точки, отвечающие получаемым растворам, находятся на прямой ВО и тем ближе к точке В, чем богаче становится смесь компонентом В. В точке М, например, имеем тройную смесь, состоящую из 40% С, 23% В и 37% Л. Эта смесь расслаивается на две 7 . 99 [c.99]

    На следующей диаграмме (рис. VIL-3,в) рассмотрен случай, когда компоненты А и В смешиваются в любом соотношении в жидкой фазе, но в твердой фазе может образовываться в некоторой области твердый раствор вследствие ограниченной растворимости компонента В в компоненте А. Область / представляет жидкую фазу. Охлаждая жидкую смесь с составом, отвечающим точкам, которые расположены правее эвтектики Е, имеем в области III смесь жидкости и кристаллов В. Если охлаждается жидкая смесь с составом, отвечающим точкам, которые расположены левее эвтектики Е, то выделяется твердый раствор компонента В в А с составом, определяемым кривой 1аК. Область II соответствует одновременному существованию жидкости и кристаллов твердого раствора В в А. Ниже изотермы ts возможны только твердые фазы область [c.188]

    Диаграммы VII-3, лс и з объединяют по несколько рассмотренных выше случаев. На рис. VII-3, яс изображен случай полного смешивания компонентов А и В в жидкой фазе и выше линии KEL в твердой фазе ниже этой линии твердый раствор распадается на компоненты А и В, а ниже линии U существует эвтектическая смесь ) (А + В) с кристаллами А (область VI) или с кристаллами В (область VII). В случае, представленном на рис. VII-3,3, тоже происходит полное смешивание компонентов А и В в жидкой фазе и выше линии KEL в твердой фазе ниже линии KEL — ограниченная растворимость компонента А в В и компонента В в А в твердых фазах, а ниже линии г образуется смесь кристаллов этих твердых растворов. [c.189]

    В зависимости от природы веществ компоненты смеси могут обладать ограниченной взаимной растворимостью, образуя, таким образом, отдельные фазы многокомпонентной системы. В простейшем случае при смешении жидкостей образуются две фазы, в каждой из которых содержатся отдельные компоненты органического и неорганического происхождения. Иногда такие системы образуются искусственно путем добавления компонента, склонного к избирательному растворению. Добавление такого компонента (разделяющего агента) изменяет условия фазового равновесия системы, увеличивая движущую силу процесса, и позволяет применить специальный метод для разделения компонентов исходной смеси. Часто введение разделяющего агента в исходную смесь обуславливается не столько близостью свойств компонентов, а склонностью к разложению, полимеризации и т. п. при высоких температурах. [c.285]


    Подобная типичная диаграмма представлена на рис. 11. Система состоит из трех компонентов А, В и С, находящихся при постоянной температуре. Компонент С растворим в А и В во всех соотношениях, компоненты/ и В ограниченно растворимы друг в друге. Смесь компонентов Л и В выражается точками вдоль стороны АВ треугольника, смесь А и С — точками вдоль стороны АС треугольника и смесь В и С — вдоль стороны ВС треугольника. Любая точка внутри треугольника представляет смесь трех компонентов. Так как треугольник равносторонний, состав смеси, характеризуемый точкой внутри треугольника, определяется длиной перпендикуляров, опущенных изданной точки на стороны треугольника, противолежащие данному компоненту. Так, для точки М состав смеси по компонентам А, В я С соответственно выражается длинами перпендикуляров Мх, Му и Мг. Это положение вытекает из принципа построения самой диаграммы, так как, например, в точке А содержание компонента А = 100%, в любой же другой точке, отличающейся от Л, содержание компонента А удет меньше 100% и чем дальше эта точка отстоит от А, тем меньше будет процентное содержание компонента А в смеси и, следовательно, тем короче будет перпендикуляр на сторону ВС треугольника. [c.37]

    При этой температуре рассматриваемые жидкости обладают ограниченной взаимной растворимостью. Смеси, содержащие от 51,2 до 98,188 мол. % воды (заштрихованная область рис. 111), разделяются иа два слоя спиртовый слой , представляющий почти эквимолекулярную смесь (48,8% спирта и 51,2% воды), и водный слой, содержащий спирт в концентрации 1,882%. [c.324]

    Термодинамическая система, состоящая из различных по своим свойствам частей, разграниченных поверхностями раздела, называется гетерогенной системой. Примеры гетерогенных систем смесь двух кристаллических веществ, насыщенный раствор соли в воде и кристаллы соли смесь нескольких жидкостей, трудно растворимых друг в друге вода и водяной пар сплав свинца и олова, состоящий из отдельных кристаллов РЬ и 5п. Каждая гетерогенная система состоит из отдельных фаз. Фазой называется часть гетерогенной системы, ограниченная поверхностью раздела и характеризующаяся в отсутствие сил внешнего поля одинаковыми физическими свойствами во всех своих точках. [c.319]

    На рис. ХИ-5 представлена типовая тройная система, причем компоненты Л и 5, а также В и С неограниченно растворимы друг в друге, а компоненты А и С ограниченно растворимы и в определенных соотношениях образуют двухфазную жидкую смесь. [c.742]

    Первоначально алкилирование углей проводили под действием алкилхлоридов в качестве алкилирующих агентов и хлористого алюминия как катализатора. Навеску 10 г среднелетучего угля (24,6% летучих) тонко измельчали и суспендировали в 50 мл сероуглерода, а затем в суспензию добавляли 10 г порошкообразного хлористого алюминия. Полученную смесь при 45 °С обрабатывали 0,25 моль алкилхлорида. Используемые алкилхлориды содержали от 3 до 18 атомов углерода. Обычная продолжительность алкилирования составляла 3 ч, но в случае алкилхлоридов ie и i8 для завершения реакции требовалось 24 ч. Во всех опытах происходило присоединение алкильных групп к ароматическим молекулам угля, о чем можно было судить по увеличению массы образца. По приращению массы находили число присоединенных алкильных групп в расчете на 100 С-атомов угля (рис. 1). Оно составило 2—3 алкильные группы на 100 С-атомов. Исключение составлял пропилхлорид, в случае которого на 100 атомов углерода приходилось 7 пропильных групп. Видимо, это связано со способностью небольшой пропильной группы присоединяться в различные положения ароматических составляющих угля. С увеличением размера алкильных групп возможности замещения становятся более ограниченными, и это снижает степень алкилирования. Описанный процесс давал лишь незначительное повышение растворимости угля. Так, необработанный образец растворяется в пиридине на 27,2%, а в хлороформе на 47о алкилирование увеличивает растворимость в пиридине до 35%, а в хлороформе до 16%. При холостом опыте было показано, что повышение растворимости угля связано не только с действием хлористого алюминия. [c.302]

    Летучая смесь с ограниченной растворимостью первого типа ие имеет азеотропа, так как на кривой давления пара и на кривой температуры кипения нет экстремальных точек (см. рис. 68, а, б, в), а на кривой состав раствора — состав пара нет точек, соответствующих одинаковому составу пара и раствора (рис. 68, г). [c.241]

    Летучая смесь второго типа с ограниченной растворимостью имеет азеотроп, поэтому на кривой давления пара и кривой температуры кипения существуют экстремальные точки (см. рис. 69, а, б, в), а на кривой состав раствора — состав пара имеется точка F, соответствующая одинаковым составам двухфазной жидкой системы и пара (рис. 69, г). [c.242]

    При охлаждении раствора азеотропные с.меси иногда переходят в двухфазную жидкость (ограниченная растворимость). В этом случае при обычной ректификации (рис. У1-46) получается дистиллят, близкий по составу к азеотропной смесн А. Его полностью конденсируют и охлаждают до те.мпературы ( , при которой он расслаивается на две фазы (01 и 0 ). Слоем О1 орошают верхнюю тарелку разделительной колонны, в которую поступает начальная смесь, при этом получают исчерпанную жидкость 1 1 и азеотропную смесь. Слой О2 подают во вторую колонну. Так как этот слой своим составом уже проскочил азеотропную смесь, то во второй [c.506]


    Выбор добавок ограничен следующими условиями. Чтобы разница в температурах кипения между азеотропными смесями или между азеотропной смесью и углеводородом, не входящим в ее состав, была достаточной для их разделения, добавляемое вещество должно кипеть на О—30° ниже углеводорода, подлежащего выделению. Это вещество должно давать большие отклонения от закона Рауля и образовывать азеотропные смеси с минимальной точкой кипения с одним или с большим числом углеводородов, подлежащих выделению. Кроме того, добавляемое вещество должно растворяться в углеводороде при температуре кипения смеси или на несколько градусов ниже оно также должно быть доступным по стоимости, стабильным, химически инертным и легко отделяющимся от углеводородов, с которыми образует азеотропную смесь. Обычно это отделение происходит либо в результате понижения взаимных растворимостей при низких температурах, что приводит к расслоению дистиллята на две фазы, либо в результате отмывки этого вещества водой. [c.36]

    Керметы получают методами порошковой металлургии, в основе которой также лежат процессы, связанные с повышенной термодинамической нестабильностью высокодисперсных частиц. Смесь высокодиспергированных керамических частиц и частиц металла под давлением при повышенной температуре превращается в компактную заготовку. При этом, хотя полное расплавление шихты не достигается, осуществляются начальные стадии процесса плавления ( подвижка каркаса), что и обеспечивает сцепление частиц в компактную массу. Керметы высокого качества получаются при условии высокой дисперсности и равномерного взаимного распределения фаз (смешения), а также при ограниченной взаимной растворимости компонентов. [c.447]

    Ограниченно растворимые жидкости без критических температур растворения (эфир — вода). Примером жидкостей данного типа может быть смесь этилового эфира с водой. При температуре —3,8 °С насыщенный раствор эфира в воде замерзает и ниже этой темпера- [c.106]

    Если при составе, при котором наступает ограниченная растворимость, т. е. при охлаждении, появляются не кристаллы, а эмульсия, смесь начать постепенно нагревать, непрерывно наблюдая за цветом. По достижении температуры, при которой наступает взаимное растворение, смесь становится прозрачной. В момент исчезновения мути зафиксировать температуру. Далее опыт следует вести в обратном направлении, т. е. смесь охлаждать, и в момент появления помутнения — появления первых капелек второй фазы — температуру снова зафиксировать. Разница температур не должна превышать 0,2°. Установленная температура есть температура взаимной растворимости фенола в воде. Далее смесь разбавить водой. В области, близкой к чистой воде, свойства этой системы надо определять криоскопическим методом. Для этого в пробирку, заключенную в воздушную рубашку, поместить чистый растворитель, т. е. воду. Рубашку, в свою очередь, поместить в охладительную смесь. По термометру Бекмана отмечать температуру кристаллизации чистой воды. Затем в пробирку поместить водный раствор фенола (например, 37о-ный). По термометру Бекмана фиксировать температуру кристаллизации данного состава. По разности температур кристаллизации смеси и чистой воды (А/ гн о— см) определить температуру замерзания раствора. Таким способом определить температуру замерзания 3, 5 и 7%-ных водных растворов. Опытные данные записать в таблицу по образцу  [c.214]

    Инвариантному равновесию трех фаз отвечают точки, лежаш,ие на участке а Ь линии фиксированного общего давления а и Ь — составов растворов 1 ]л2 с — состава с пара над растворами / и 2. В соответствии с правилом фаз давления р, рд и рв постоянны во всей области ub ограниченной растворимости и не зависят от содержания компонентов в системе, следовательно, от количеств растворов 1 н 2. Это означает, что температура кипения двухфазной жидкой смеси тоже будет постоянной, пока в процессе выкипания не исчезает один жидкий слой. Двухфазная смесь жидкостей, нераздельно кипящая при постоянной температуре, называется гетероазеотропом. [c.193]

    Самый общий случай взаимной растворимости двух жидкостей был изучен на системе никотин — вода. Как видно из рис. У-4, ниже +60 °С и выше +210 °С обе жидкости смешиваются друг с другом в л ю-бых соотношениях, а при промежуточных температурах смесь разделяется на два слоя. Из них водный содержит лишь около 10% никотина, а никотиновый около 20% воды, т. е. имеет место ограниченная растворимость каждой из жидкостей в другой. [c.162]

    Теперь рассмотрим, как изображается графически состояние систем, обладающих ограниченной взаимной растворимостью компонентов в твердом состоянии (рис. V. 34). При охлаждении расплава (рис. У.34, а) состава Хс от Тс до из расплава начинают выделяться кристаллы твердого раствора а с содержанием компонента В, равным ха, а из расплава состава Хв по достижении Tf — кристаллы твердого раствора р с содержанием компонента В равным х/. В точке 5 расплав затвердевает, образуя эвтектику, представляющую собой тонкую смесь твердых растворов аир, составы которых обозначены Хм и Хы- Ниже прямой МЫ располагается область смеси двух твердых фаз. При дальнейшем понижении температуры состав двух сосуществующих друг с другом твердых растворов изменяется по кривым МЕ и ЫР, В точке з сосуществуют три фазы переменного [c.309]

    В этом случае число фаз равно числу компонентов. Дивариантные системы чаще всего встречаются нри ректификации, когда при постоянном давлении происходит обогащение нижекипящим компонентом, т. е. изменяется х. Двойная смесь веществ с полной взаимной растворимостью, имеющая две фазы, может быть обогащена ректификацией, чего нельзя осуществить с двойной смесью взаимно нерастворимых компонентов с тремя фазами (см. рис. 29а—г). С другой стороны, известно, что трехкомпонентная система с ограниченной взаимной растворимостью компонентов, т. е. с двумя жидкими фазами и одной паровой фазой, может быть разделена ректификацией [1а]. Типичный пример — получение абсолютного (безводного. — Ред.) спирта азеотропной ректификацией с бензолом. [c.326]

    Ограниченная взаимная растворимость жидкостей также наблюдается в тех случаях, когда их смещение сопровождается эндотермическим тепловым эффектом. При этом вся смесь разделяется на два слоя, две взаимно насыщенные фазы. С повышением температуры взаимная растворимость обеих фаз возрастает, так что их составы посте- [c.82]

    По взаимной растворимости бинарные жидкие смеси можно разделить на три группы 1) растворимые одна в другой во всех отношениях (этиловыйспирт—вода) 2) практически не растворимые (бензол — вода) 3) ограниченно растворимые одна в другой (фенол — вода, никотин — вода, эфир — вода). Взаимная растворимость ограниченно растворимых жидкостей изменяется с температурой она может увеличиваться (фенол — вода) или уменьшаться (триэтиламин — вода) при повышении температуры. Температура, при которой жидкости растворяются во всех отношениях, называются критической температурой. Зависимость взаимной растворимости ограниченно смешивающихся жидкостей от температуры лучше всего выразить графи-ч ки в виде диаграммы растворимости. На рис. 13 приведена диаграмма растворимости системы фенол — вода. На абсциссе откладывают состав смеси в весовых или мольных процентах, на ординате — температуру. Если к воде при комнатной температуре (20°) добавить избыток фенола, то раствор станет насыщенным при данной температуре и смесь разделится на два слоя. Каждый из слоев после установления равновесия представляет со- [c.67]

    В некоторых кристаллических системах наблюдается как неограниченная, так и ограниченная растворимость компонентов. Переход от неограниченной растворимости к ограниченной происходит при изменении условий, например при охлаждении. При этом однородный твердый раствор превращается в смесь м. елких кристаллов двух типов. Этот переход называется разрывом" сплошности-, он соответствует расслоению жидких растворов. [c.403]

    Среди кислородных сое)щнений широко исследуются спирты, эфиры и их смеси. Примененив. спиртов в качестве самостоятельных топлив или компонентов бензинов известно давно. Они имеют высокую детонационную стойкость, удовлетворительную испаряемость, образуют минимальный нагар, а продукты их сгорания менее токсичны, чем продукты сгорания бензинов. Высокая теплота пспарения позволяет снизить температуру горючей смеси в такте впуска, повысить коэффициент наполнения и при малой склонности к нагарообразованию снизить требования двигателя к детонационной стойкости применяемых топлив. Основным недостатком спиртов как топлив является их низкая теплота сгорания. Кроме того, многие из них ограниченно растворимы в бензине особенно в присутствии воды. Среди спиртов с учетом сырьевых ресурсов, технологии получения и ряда технико-экономических факторов наиболее перспективен в качестве топлива для двигателей с принудительным зажиганием — метанол. Безводный метанол при обычных температурах хорошо смешивается с бензином в любых соотношениях. Но даже малейшее попадание воды вызывает расслаивание смеси. Так, смесь метанола (15%) с бензином расслаивается при О °С при содержании воды более 0,06%, а при 20 °С — более 0,18%. Введение в смесь метанола с бензином небольшого количества бензилового или изобутилового спиртов несколько увеличивает стабильность смеси, но не решает вопроса полностью. [c.170]

    Ограниченная растворимость жидкостей наблюдается, напри мер, при смешивании воды и анилина (рис. 2.23). Кривая на рис. 2.23 разделяет области существования гомогенных и гетеро генных систем. Заштрихованная площадь — это область расслаи вания жидкостей. Так, 50%-ная смесь анилин — вода при 160°С расслаивается на два взаимно насыщенных раствора (точки с и d). Температура, соответствующая точке /С,— критическая температур ра растворения. Это та температура, начиная с которой имеет место неограниченная взаимная смешиваемость обоих компонен тов. Рост взаимной растворимости с повышением температуры в данном случае обусловлен эндотермичностью процесса растворе ния. [c.238]

    Способность ограниченно смешивающихся жидкостей образовывать гетероазеотропы используется для разделения азеотропных смесей в системах с неограниченной взаимной растворимостью компонентов. Так, азеотропная-смесь в системе пиридин — вода, содержащая 57% пиридина и кипящая при 365 К, методом перегонки не может быть разделена на чистые компоненты. Однако если к такой азеотропной смеси добавить бензол, который образует с водой гетероазеотроп, кипящий при более низкой температуре (342 К), то при перегонке водных растворов пиридина в присутствии бензола можно получить чистый пиридин, а вода вместе с бензолом в виде гетероазе-отропа перейдет в дистиллят. Диаграмма на рис. 139 отвечает системе, в которой гетероазеотроп не образуется. В такой системе во всем интервале концентраций пар богаче жидкости компонентом Б, имеющим более низкую температуру кипения при заданном давлении. Такие системы характеризуются тем, что состав пара (точка О), равновесного с жидкими растворами (точки С и D), не является промежуточным между составами жидких растворов. Кроме того, температура равновесной трехфазной системы не будет самой низкой температурой, при которой существует равновесие пар—жидкость. Систему с ограниченной взаимной растворимостью компонентов второго типа перегонкой можно разделить на два чистых компонента. Примерами систем данного типа могут служить системы вода — фенол, гексан — анилин, вода — никотин, бензол — ацетамид, метанол — тетраэтил-силан и др. [c.398]

    При перегонке смеси вода—фенол путем добавления 17% Na l достигают смещения азеотропного состава с 91% (масс.) до 84% воды поэтому можно использовать область ограниченной растворимости системы [87]. Насыщая нитратом калия смесь этанол—вода в интервале концентраций этанола от 15 до 70%, также достигают большего обогащения, чем без добавления соли [88]. Гайер с сотр. [89] исследовал влияние солевых добавок на парожидкостное равновесие смеси муравьиная кислота—вода. При содержании в системе 35,5% соли азеотроп больше не обра- [c.322]

    Рассмотрим тройную систему, состоящую из трех жидких компонентов А, В и С. Пусть компоненты А и С, а также В и С неограниченно растворимы друг в друге компоненты А и В обладают ограниченной взаимной растворимостью. Если смешать компоненты А и В, то при определенных составах их образуются два жидких слоя. Составы этих слоев при температуре изображаются на изо-термной проекции точками а и 6 на стороне АВ треугольника Розебума (рис. 47,6). Добавляемый к этой двухкомпонентной системе компонент С распределяется меисду двумя слоями, в результате чего образуются два равновесных сопряженных трехкомпонентных раствора. Прибавляя разные количества компонента С, можно получить ряд тройных сопряженных растворов. Соединяя плавной линией точки треугольной диаграммы, соответствующие составам сопряженных растворов, получим бинодальную кривую ак в. Эта кривая делит треугольник Розебума на гомогенную и гетерогенную области. Любая смесь трех компонентов А, В, С, состав которой представляется фигуративной точкой х внутри гетерогенной области, распадается на два равновесных сопряженных тройных раствора, составы которых изображаются точками а и в При добавлении компонента С возрастает взаимная растворимость компонентов А и В. В результате этого составы тройных сопряженных растворов все меньше отличаются друг от друга и в конечном итоге может быть [c.197]

    Из рис. 10.8 видно, что двухфазной жидкости отвечают наибольшие значения обш,его давления насыщенного пара, имеющие, кроме того, постоянную величину. Лишь за пределами области расслоения, когда жидкость однофазна, общее давление насыщенного пара понижается. Этому соответствует своеобразный характер кипения рассматриваемых систем при постоянном давлении. До тех пор, пока имеется двухслойная смесь ограниченно растворимых жидкостей, температура кипения смеси постоянна. Когда же один слой полностью выкипит, температура начинает постепенно повышаться. [c.198]

    Ограниченная растворимость жидкостей наблюдается, например, в системе вода-анилин (рис. 2.22). Кривая на рис. 2.22 разделяет области существования гомогенных и гетерогенных систем. Заштрихованная площадь - это область существования гетерогенной системы, т. е. расслаивания жидкой системы. Так, 50%-ная смесь анилин - вода при 160 "С рассла- [c.254]

    При растворении твердых веществ в жидкостях обычно наблюдается лишь очень небольшое изменение объема системы. Поэтому растворимость твердых веществ от давления практически не зависит, f Растворимость жидкостей в жидкостях может быть неограии-ченной, когда обе жидкости смешиваются в любых соотноше-пиях (например, вода — этиловый спирт, вода — глицерин, вода — серная кислота) или ограниченной (например, вода — диэтиловый эфир, вода — бензол). В последнем случае при смешении жидкостей наблюдается расслаивание — смесь распадается на два слоя, из которых один представляет собой насыщенный раствор первой жидкости во второй, а второй слой --насыщенный раствор второй жидкости в первой. [c.78]

    На рис. 14.2 приведена фазовая диаграмма для трехкомпонентной системы из двух ограниченно растворимых друг в друге жидкостей — воды А и органического растворителя В, между которыми распределен компонент г. Ниже кривой ab — область гетерогенных систем, в которой они расслаиваются на водную и органическую фазы. Пусть точка Р — состав исходного водного раствора компонента i, а точка Q — состав исходного органического экстрагента, регенерированного после экстракции и потому содержащего небольшие количества воды и компонента i. При смешении этих жидкостей в отношении QM РМ точка всей системы будет находиться, в М, т. е. внутри гетерогенной области. Поэтому смесь М разделится на органическую Т и водную R фазы, точки состава которых лежат на концах конноды TR, соединяющей соравновесные фазы (в системах такого вида конноды строятся по экспериментальным данным). Как видно из положения этих точек, в результате экстракции концентрация компонента i в водной фазе уменьшилась, а в органической — увеличилась. [c.319]

    При взаимодействии компонентов, когда они неограниченно растворимы друг в друге, процесс смешения сопровождается уменьшением свободной энергии. Поэтому для растворов свободная энергия меньше, чем для механических смесей, и ее зависимость от состава изображается не прямой линией I, а лежащей ниже ее некоторой кривой линией II (рис. V.8). Эта кривая на всем протяжении от до является вогнутой — иначе взаимная растворимость была бы ограниченной. Действительно, если такая кривая имела бы выпуклый участок (участок кривой III между точками а и Ь на рис. V.8), то это означало бы неустойчивость одиорсдного раствора. Это можно доказать, если провести общую касательную к кривой [II, проходящую через точка а и Ь. Участок касательной между этими точками лежит ниже выпуклой части кривой ///. Таким образом, свободные энергии растворов, отвечающих кривой, больше, чем систем, ле-ж аш их на прямолинейном участке аЬ. Иначе говоря, растворы, составы которых лежат между концентрациями N g и Л/ , неустойчивы и должны распадаться на механическую смесь двух фаз, т. е. двух сопряженных растворов —один с когщентрацией а другой —iV . Такое явление распада растворов н.чзывается расслаиванием. Как упоминалось в гл. IV, оно обусловлено положительными отклонениями от законов совершенных рас- [c.92]

    Мы ограничились рассмотрением двойных смесей, поскольку многокомпонентную смесь при расчете можно рассматривать как определенное количество двойных смесей. Методы расчета трехкомпонентных смесей с полной или ограниченной растворимостью подробно рассмотрены Торманом [58]иМацом [59]. [c.85]

    На различной растворимости одного и того же вещества в неч смешивающихся жидкостях основан метод его извлечения из разбавленного раствора. По этому методу к разбавленному исходному раствору добавляют другой растворитель, не смешивающийся с растворителем исходного раствора, но хорошо растворяющий извлекаемое вещество. Из разбавленного раствора растворенное вещество переходит в слой добавленного растворителя и концентрируется в нем. Этот процесс, называется экстракцией. Экстракцию из растворов применяют для разделения близкоки-пящих жидкостей, жидкостей с относительно малой летучестью паров и высокой температурой кипения, веществ, разлагающихся при нагревании, т. е. в тех случаях, когда разделение перегонкой малоэффективно или вообще невозможно. Например, очень трудно и неэкономично выделять перегонкой уксусную кислоту из разбавленных водных растворов и для ее выделения применяют экстракцию. Для этого к водному раствору уксусной кислоты прибавляют небольшое количество этилацетата, который в воде растворяется ограниченно, но очень хорошо растворяет уксусную кислоту. После перемешивания и отстаивания смесь разделяется на два слоя, один из которых состоит из воды с очень небольшим содержанием уксусной кислоты, другой представляет собой концентрированный раствор уксусной кислоты в этилацетате. [c.63]

    Наблюдаются и такие случад ограниченной растворимости двух жидкостей, когда полная взаимная растворимость наступает не при повышении, а при понижении температуры. Примером может служить смесь воды и триэтиламина, для которой существует минимальная критическая температура растворения, равная 20°. [c.555]


Смотреть страницы где упоминается термин Растворимость ограниченная смеси: [c.226]    [c.22]    [c.100]    [c.284]    [c.278]    [c.423]    [c.278]    [c.507]    [c.193]   
Фазовые равновесия в химической технологии (1989) -- [ c.221 ]




ПОИСК





Смотрите так же термины и статьи:

Растворимость ограниченное

Растворимость смеси



© 2025 chem21.info Реклама на сайте