Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тетраэдрические комплексы переходных структура

    Комплексы переходных металлов. Лиганды. Геометрические изомеры. Октаэдрическая структура, плоская квадратная структура и тетраэдрическая структура. Парамагнетизм и диамагнетизм. Лабильность и инертность. Взаимосвязь степени окисления центрального атома и структуры комплекса. Влияние числа /-электронов металла на структуру комплекса. Перенос заряда. [c.204]


    Четырехкоординационные комплексы обычно имеют геометрическую структуру одного из двух следующих типов тетраэдрическую или плоско-квадратную (рис. 23.1). Структура первого типа встречается чаще, особенно она распространена среди комплексов непереходных металлов. Плоско-квадратная структура характерна для комплексов переходных металлов с валентной оболочкой, включающей восемь -электро- [c.372]

    Большинство данных о структурах этих комплексов получено методом рентгеноструктурного анализа. Недавно было сделано сообщение о приготовлении тетраэдрических комплексов всех элементов первого переходного ряда со степенью окисления -4-Н Однако для переходных элементов эта конфигурация не харак терна чаще всего у них — октаэдрические и тетрагональные конфигурации. Причина этого станет ясна позднее при рассмотрении современных теорий химической связи. Последнее утверждение, касающееся конфигурации, не применимо к металлам в высоких [c.236]

    Аквакомплексы металлических ионов обладают определенной геометрической структурой. Так, для комплексов переходных металлов (N1 +, Со +, уз+, Рез+, Ре2+, Мп2+) оптическими методами доказано октаэдрическое размещение молекул воды вокруг иона аквакомплексы Си + и ТР+ характеризуются тетрагональной (не вполне правильной) конфигурацией, ион лития — тетраэдрической, ион калия, возможно, способен заместить одну молекулу воды в ее тетраэдрической структуре (Брэда). [c.257]

    Следствием этой теории является вывод, что комплексы с координационным числом четыре и шесть в основном имеют соответственно тетраэдрическую и октаэдрическую конфигурации. Комплексы переходных металлов иногда отклоняются от этого правила, и это отклонение можно отнести за счет имеющихся в них -электронов. Теория кристаллического поля дает возможно наиболее простое объяснение влиянию -электронов на структуру комплексов. [c.74]

    Из результатов, приведенных в табл. 1, следует, что большая группа известных комплексов имеет линейную, тетраэдрическую или октаэдрическую структуры, в зависимости от того, занимают ли лиганды 2, 4 или 6 координационных мест вокруг иона металла. Это те структуры, которые следует ожидать на основе электростатических представлений (лиганды должны быть размещены таким образом, чтобы общее отталкивание было минимальным). С другой стороны, их можно легко истолковать на основе теории валентной связи или теории поля лигандов. Однако в случае ионов переходных металлов обычно встречаются и другие пространственные конфигурации, особенно плоский квадрат и искаженный октаэдр. Их образование лучше всего объясняется теорией поля лигандов. [c.48]


    Можно было бы легко показать, что координационным числам 2, 4 и 6 должно соответствовать образование линейных, тетраэдрических и октаэдрических комплексов, поскольку такие структуры обеспечивают минимальную энергию электростатического отталкивания лигандов друг от друга. Однако существование квадратно-плоскостных комплексов нельзя объяснить на основе этой элементарной теории. Трудно объяснить также устойчивость комплексов с неполярными лигандами типа СО, а также и различия в устойчивости между соответствующими комплексами двух центральных ионов, имеющих одинаковый заряд и радиус, например Ре(1И) и Со(1П). И наконец, большая устойчивость комплексов переходных металлов второго и третьего рядов по сравнению с комплексами центральных ионов переходных металлов первого ряда весьма удивительна, так как центральные ионы элементов второго и третьего рядов, имея одинаковый заряд с центральными ионами переходных металлов первого ряда, обладают большим размером, чем центральные ионы первого ряда. [c.60]

    Подобно этому случаю, мы часто встречались с активированными комплексами простейших структур и знаем, что, например, нуклеофильное замещение у тетраэдрического углерода 3 2 проходит через переходное состояние, изображенное ниже, чем и объясняется вальденовское обращение  [c.537]

    Если мы решим по данным табл. 7-14, что образование плоского квадратного (тетрагонально искаженного) комплекса более вероятно, чем образование октаэдрического, то на основании разности в энергиях стабилизации кристаллическим полем и на основе распределения электронов мы придем к тому же заключению. Величины А(= lOD ), обозначающие разности между энергиями плоской и октаэдрической структур, велики для d - и -систем в слабом поле и для d - и -систем в сильном поле. Это, конечно, благоприятствует образованию плоских структур. Параметр Л, сам зависящий от геометрической формы, будет больше для плоской структуры. Кроме того, взаимное отталкивание четырех групп будет меньше, чем шести, что также благоприятствует образованию плоских структур. С другой стороны, общая энергия связи для шести лигандов будет выше, чем для четырех. Этот фактор в значительной степени благоприятствует октаэдрическому расположению лигандов, и именно по этой причине величина А должна сильно способствовать образованию плоского комплекса. Данные табл. 7-14 можно также использовать для объяснения, почему тетраэдрическую структуру редко наблюдают в комплексах переходных [c.273]

    Плоско-квадратная структура характерна для комплексов Pd(ll), Pt(II) и Au(III), в которых катионы имеют восемь -электронов, или конфигурацию (табл. 20-4). Тетраэдрическая координация чаще всего встречается в соединениях переходных металлов с координированными группами О"", как, например, в СгО " или МпО ". В настоящее время координационную структуру определяют путем прямых рентгеноструктурных исследований, которые подтверждают выводы относительно геометрических изомеров, сделанные на основании других экспериментов. [c.210]

    В методе валентных схем привлекается гибридизация орбиталей металла, как это было описано (кн. I, стр. 251) для углерода в разных его валентных состояниях хр , хр. В случае переходных металлов наряду с 5- и р-орбиталями гибридизации подвергаются также -орбитали. Так, например, наиболее обычный октаэдрический тип комплекса имеет хр -гибридизованные орбитали металла, направленные по осям октаэдра квадратный тип комплекса, к которому, в частности, относятся многие соединения никеля, палладия и двухвалентной платины, например соль Цейзе [С2Н4Р1С1з1 К , рассматривается как имеющий зр -гибридизованные орбитали металла тетраэдрические комплексы, такие, как карбонил никеля, имеют р -гибридизованные орбитали металла. Гибридизация типа яр положена в основу тригонально-бипира-мидальпых комплексов типа Ре(С0)5. Таким образом, число выравниваемых гибридизацией орбиталей металла, входящего в соединение, равно его координационному числу. Одпако ряд аргументов, особенно малая вероятность большого отрицательного заряда на металле в карбонилах или в анионе Ре(СК) "при предположении об односвязности с металлом каждой группы СО или СК и данные о сокращенном расстоянии М—С и увеличенном С—О, заставляют предположить известную степень двоесвязности в связях металла с углеродом групп СОи СК за счет предоставления металлом своих электронов. Вследствие этого для ряда комплексов приходится привлекать представление о резонансе с участием структур, [c.460]

    В комплексах каких из перечисленных ионов переходных металлов, имеющих тетраэдрическую структуру, следует ожидать вклад спин-орбитального взаимодействия Сг , Си " , Со , Ре" , Мп "  [c.160]


    В 1952 г. Вольфсберг и Гельмгольц применили полу-эмпирическую схему теории МО для анализа свойств тетраэдрических комплексов переходных металлов [32]. Тот же вариант метода МО, примененный к таким комплексам, как Мп04 и СгО , приводит к неправильному порядку энергетических уровней [45], Эта неудача полуэмпирического варианта метода МО указывает на трудности, которые возникают при использовании дедуктивного подхода к структуре неорганических соединений. Ясно, что любую априорную теоретическую трактовку, основанную на полуэмпирической схеме, следует принимать с осторожностью. [c.503]

    Долгое время химиков чрезвычайно занимала проблема образования химической связи в координационных комплексах. Во многих отношениях связь в комплексных соединениях ничем не отличается от связи в ковалентных молекулах образование направленных связей в обоих случаях приводит к возникновению линейных, тетраэдрических и октаэдрических структур. И все же координационные комплексы, особенно комплексные ионы переходных металлов, обладают некоторыми свойствами, которые не наблюдаются у большинства обычных молекул. Химикам не давали покоя многие вопросы, касающиеся строения и свойств таких комплексов. Почему, например, некоторые комплексы обладают плоско-квадратной структурой Почему одни комплексы инертны, а другие лабильны Как связана окраска комплексов с природой их лигандов [например, Си (НгО) имеет бледно-голубую окраску, Си(КНз) —темно-пурпурную, а СиС1 — зеленую] Каким образом зависят от природы лигандов магнитные свойства комплексов [скажем, Ре(Н20)б" обнаруживает парамаг- [c.413]

    Теория кристаллического поля объяснила магнитные свойства и оптические спектры комплексов переходных металлов в растворе. Дуниц и Орджел [169] применили эту теорию к объяснению кристаллической структуры твердых ионных соединений переходных металлов, в особенности окислов. Например, для ионов Сг + и NP+ октаэдрическая конфигурация дает большую стабилизацию энергии, чем тетраэдрическая. Поэтому последняя для этих элементов в твердых телах почти не наблюдается. Для ионов d°, d , d (Ti +, V +, r +, [c.50]

    Кроме того, на структуру комплексов переходных металлов распространяется теорема Яна—Теллера, согласно которой идеально симметричная конфигурация атомных ядер в комплексе дестабилизируется с целью устранения вырождения. Как правило, эта теорема оказывается справедливой для любой нелинейной молекулы и может применяться как к возбужденному, так и к основному состоянию. Этот эффект Яна—Теллера встречается у комплексов с вырожденным основным состоянием, т. е. с состоянием Eg или Tig, для тетраэдрических структур Е или Т. Согласно теореме Яна—Теллера, такой октаэдрический комплекс не может оставаться совершенным, а испытывает деформации. В случае тетраэдрической симметрии эта деформация соответствует сжатию. В качестве примера для иллюстрации теоремы Яна—Теллера с помощью простой электростатической модели можно взять какой-нибудь комплексный ион меди (II) с координационным числом 6, скажем [Си(Н20)е] +. Если бы образовался правильный октаэдр, то основым состоянием было бы Eg, а электронной конфигурацией — (i g) (е )- Однако, поскольку eg-электроны распределены неравномерно, электростатическое взаимодействие оказывается более сильным вдоль оси z, т. е. положительный заряд ядер в направлении этой оси менее экранирован, чем в направлениях осей X и у. Вследствие этого микросимметрия возникающего комплекса уже более не является строго октаэдрической, а деформи- [c.55]

    Пространственное расположение лигандов вокруг центрального иона зависит от радиуса данного донорного атома, электронной структуры лиганда и стерических препятствий, возникающих при взаимодействии. Влияние размера донорного атома уже обсуждалось в предыдущем разделе чем больше радиус донорного атома, тем меньшее число донорных атомов может разместиться вокруг данного центрального иона. Воздействие электронной структуры проявляется главным образом у комплексов переходных металлов, где в обменных взаимодействиях участвуют как электроны, локализованные на молекулах лигандов, так и электроны центрального иона металла. Поэтому здесь координационное число зависит от образования я-связи между центральным ионом и лигандом. В иных случаях конфигурация донорных атомов (в отсутствие стерических затруднений) напоминает их конфигурацию в комплексах непереходных металлов. В большинстве случаев наблюдается октаэдрическая микросимметрия либо вследствие эффекта Яна—Теллера образуется искаженный октаэдр. Такое же пространственное расположение сохраняется даже тогда, когда из-за стерических препятствий число органических лигандов становится меньшим. В этом случае координационное число остается тем же за счет молекул растворителя. Если лиганд и металл образуют я-связь, то наблюдается растяжение, октаэдра или даже возникновение плоской структуры. Органические лиганды реже дают тетраэдрическую конфигурацию. [c.56]

    Если даже для реакции (41) исключить плоское квадратное переходное состояние, все же остается возможность для того, что некоторое другое расположение атомов Н должно иметь более низкую энергию иможет выступать в роли активированного комплекса. Возможные структуры — линейная, прямоугольная, ромбическая, тетраэдрическая, треугольная и т. д. Детальные расчеты показывают, что все эти структуры также имеют слишком высокую энергию [36, 37, 42]. Структурой с низшей энергией является линейная Н4, но она может только вести к изотопному обмену, если при этом возникают свободные атомы. [c.60]

    Комплексы переходных металлов MLg обычно должны иметь плоскую тригональную структуру. Присоединение нуклеофила должно давать в зависимости от числа d-электронов либо тетраэдрический аддукт, как в случае ВИд, либо плоский квадратный ад-дукт. Существует также возможность присоединения электрофила, соответствующая 0К11Слению на две единицы. Примером может быть [c.335]

    Хотя трудно ожидать, чтобы эти результаты были непосредственно применимы ко всем металл-белковым системам, они помогают объяснить структурные особенности, благодаря которым активные центры некоторых ферментов, таких, как карбоксипептидаза и карбоангидраза, могут связывать ионы металлов с весьма различными координационными свойствами. Например, тетраэдрически координированный ион 2п(П) в карбоксипептидазе легко замещается многими ионами переходных металлов [84, 85] (разд. 3.3.2), причем двумя из четырех лигандов являются атомы гистидиновых остатков [29, 67[. Хорошо известны изоструктур ные тетраэдрические комплексы Со(П) и 2п(И), поэтому легко представить себе замещение ионов 2п(П) на Со(И). Однако связывание иона Сс1(П) является довольно неожиданным, учитывая его большой ионный радиус и предпочтительно гексакоординацион-ную структуру комплексов [86], поскольку для сохранения структурной целостности белка необходима строго определенная взаимная ориентация аминокислотных остатков. Из данных табл. 4 следует, что углы между связью металл — азот и плоскостью имидазольного кольца в тетраэдрическом комплексе 2п(П) и октаэдрическом комплексе Сс1(И) различны, хотя кристаллические структуры соответствующих бис-(ь -гистидинато)металло-комплексов сходны. Простой тригонометрический расчет в этом случае показывает, что для обоих комплексов величины смещений [c.30]

    Белок может влиять также на переходное состояние, отличающееся от основных состояний как исходного, так и конечного продуктов. Результат этого влияния отражается на кинетике процесса (но не на его термодинамических параметрах). Как отметили Волли и Уильямс [222], белок может индуцировать такую компромиссную структуру, которая близка к структуре переходного состояния, и тем самым снижать энергию активации. Этот фактор может быть особенно важным, например, при переносе электрона, когда два состояния окисления иона металла характеризуются различными типами симметрии, как в случае тетраэдрического комплекса Си(1) и тетрагонального комплекса Си(П). Искажение обычной структуры может привести и к возрастанию энергии активации, а следовательно, к замедлению реакции. [c.242]

    Хотя во всех перечисленных соединениях координация металла октаэдрическая, это не означает, конечно, что другие формы полиэдров для двухвалентного марганца вовсе не характерны. По данным [205] в р-СзгМпСЦ имеются тетраэдрические комплексы [МпСи] ". В наш обзор не включены многие кислородные соединения переходных металлов и, в частности силикаты. В исследованной недавно структуре Ыа2Мп251207 половина атомов Мп имеет тетраэдрическое окружение, половина — тригонально-пирамидальное (поскольку атом О, расположенный в одной из вершин бипирамиды, удален от Мп на 0,3—0,4 А дальше, чем остальные, этот полиэдр можно рассматривать как искаженный тетраэдр, дополненный пятой вершиной). [c.21]

    Большинство данных о структурах этих комплексов получено методом рентгеноструктурного анализа. Недавно было сделано сообщение о приготовлении тетраэдрических комплексов всех элементов первого переходного ряда со степенью окисления -f П. Однако для переходных элементов эта конфигурация не характерна чаще всего у них октаэдрические и тетрагональные конфигурации. Причина этого станет ясна позднее при рассмотрении современных теорий химической связи. Последнее утверждение, касающееся конфигурации, не применимо к металлам в высоких степенях окисления, в которых они ведут себя подобно неметаллам и образуют тетраэдрические оксианионы, такие, какУ04 , СгОГ.РеО , МпОГ, МпОГ. [c.228]

    Экспериментальное изучение магнитных свойств комплексных соединений, включающих атомы переходных элементов, давно уже позволило установить две группы комплексов. В одной из этих групп магнетизм центрального нона оказывается таким же, как и у простых галогевндов, и соответствует наличию от одного до четырех неспаренных электропов на периферийных оболочках атомов в соединении. Комплексные соединения, относящпеся к другой группе, диамагнитны, так что магнитные свойства центрального атома в комплексе резко отличаются от свойств атома в свободном состоянии или в простых солях. Параллельно этому отмечается и различная химическая активность обоих типов комплексов. Принято считать, что в первой группе соединений взаимодействие между центральным атомом и координирующимися вокруг него груннами значительно менее глубокое, чем во второй. Если в первой группе соединений взаимодействие сводится в основном к силам ионно-дипольпого притяжения и в меньшей мере связано с вовлечением в ковалентную связь глубоко лежащих 3 -электронов атомов переходных элементов, то устойчивость второй группы соединений, как правило, связана с вовлечением в ковалентную связь всех внешних неспаренных электронов этих атомов, что приводит к коренному изменению структуры электронных оболочек центрального иона. Рассматриваемые комплексы [N (N 3)4]++ и [Ni( N)4] как раз и относятся к обеим указанным группам соединений. Первый из этих комплексов парамагнитен, второй— диамагнитен. Первый представляет собой, повидимому, тетраэдрический комплекс, второй, как это установлено, икеет плоскую структуру. [c.169]

    В остальной части книги каждая глава посвящена обсуждению химической связи в определенном клас( е молекул. В главах II—VII рассматриваются структуры наиболее типичных молекул, образуемых элементами от водорода до конца второго периода периодической системы. Таким образом, в этой части книги описаны строение и характер связей в двухатомных, линейных и угловых трехатомных, плоских треугольных и тетраэдрических молекулах, а также в молекулах, no rpoea-ных в виде тригональной пирамиды. Главы VIII и IX представляют собой введение в современные представления о характере связей в молекулах органических веществ и в комплексах переходных металлов. Книга снабжена большим количеством иллюстраций, на которых особым приемом изображены граничные поверхности орбиталей. Мелкие точки, которыми пользовалЬя [c.7]

    Поскольку в присутствии катализаторов давление и температура синтеза алмаза сильно уменьшаются, высказаны гипотезы, каким образом металлы-катализато-ры облегчают перестройку одной структуры в другую. Одной из них является следующая. При высоких давлении и температуре из графита и металла-катализатора образуется металлографитовый комплекс, где атомы металла располагаются между углеродными сетками графита (этот комплекс можно представить как нестойкий карбид). Этот процесс может происходить как с твердым металлом, так и с жидким в последнем случае гораздо быстрее. Слдеует отметить, что термодинамическая устойчивость графита обусловлена главным образом делокализацией рг-электронов (с этим связана электронная проводимость графита) — остальные валентные электроны углерода (х, рх, ру) образуют устойчивую зр -гибридизированную конфигурацию. При отсутствии выигрыша энергии из-за делокализации электронов более выгодной с термодинамической точки зрения была бы тетраэдрическая 5р -гибридизированная конфигурация, т. е. конфигурация электронов в алмазе. Поэтому нарушение делокализации электронов в графите снижает его термодинамическую устойчивость. При внедрении атомов металла-комплексообразователя между углеродными слоями графита их внешние электроны (все металлы-катализаторы алмазного синтеза являются переходными металлами с недостроенными й-орбиталя-ми) взаимодействуют с делокализовакными электронами углерода, что уменьшает подвижность последних. Поэтому устойчивость структуры графита резко снижается. Высокое давление сближает плоские углеродные сетки, и становится возможным перекрывание орбиталей электронов у атомов углерода в соседних сетках (слоях). Это может привести к возникновению ковалентных связей между атомами в разных сетках, так как устой- [c.139]

    Мы уже обсуждали (гл. 6) факторы, определяющие форму неорга нических молекул, составленных из атомов переходных элементов. Главным образом это — размер и заряд центрального иона, наличие свободной электронной пары, возможность расширения валентного уровня сверхоктета, являющегося предельным для элементов второго периода, способность к образованию л -связей. стерические требования к группам, связанным с центральным атомом, и, вероятно, важнее всего принцип запрета Паули. Если рассматривать центральный атом со сферической симметрией, характерной для комплексов металлов, не имеющих свободных электронных пар, следует ожидать, и это действительно обнаруживается, правильные формы. Молекулы с координационными числами 2, 3, 4, 5, 6, 7 и 8 характеризуются следующими структура, чи линейной, треугольной, правильной тетраэдрической, тригональной бипирамидой, октаэдрической, пятиугольной бипирамидой и квадратной (архимедовой) антипризмой. Можно сказать, что всякий раз, когда электронный уровень атома переходного элемента, не принимающий участия в связи, будет иметь сферическую симметрию, структура таких комплексов будет правильной, определяемой только координационным числом. Можно вы писать электронные конфигурации, которые приводят к правильным симметричным комплексам. Для наиболее распространенных координационных чисел 6 и 4 имеют место следующие конфигу рации  [c.282]

    Существенную роль в реакции этерификации играют стерические эффекты, поскольку атом углерода карбонильной группы кислоты в переходном комплексе П переходит из плоской тригональной структуры (sp -гибридизация) в тетраэдрическую структуру sp -тибридизация). Для определения влияния стерических эффектов иа скорость этерификации алифатических кислот полезно правило шести Ньюмена, но лучшим способом оценки стерических факторов является изучение моделей [17]. При применении обычных методов этерификации влияние оказывают также за. 1естнтелн, находящиеся в о/огао-положении ароматических кислот. В случае о,о-ди-алкилзамещенных можно проводить этерификацию, приливая раствор кислоты в 100% -ной серной кислоте к спирту [18] Успех этой реакции, по-видимому, зависит от образования плоского иона кар- [c.284]


Смотреть страницы где упоминается термин Тетраэдрические комплексы переходных структура: [c.213]    [c.105]    [c.225]    [c.284]    [c.629]    [c.101]    [c.284]    [c.274]    [c.284]    [c.381]    [c.274]    [c.620]    [c.389]    [c.414]    [c.309]    [c.389]    [c.46]   
Квантовая химия (1985) -- [ c.314 ]




ПОИСК





Смотрите так же термины и статьи:

Тетраэдрические комплексы переходных



© 2025 chem21.info Реклама на сайте