Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическая изомеризация парафиновых углеводородов

    Влияние условий термообработки носителя и катализатора на нх физико-химические свойства и каталитическую активность. Условия термообработки значительно изменяют физическое и химическое состояние компонентов катализатора, что связано с химическим взаимодействием исходных соединений платины, носителя и промоторов на различных стадиях термообработки. Катализатор изомеризации парафиновых углеводородов должен обладать сильными кислотными свойствами, обеспечивающими высокую скорость протекания реакции изомеризации, в сочетании с гидрирующими свойствами, от которых зависит стабильность его работы в процессе. [c.50]


    Новый этап начался в 1949 г., когда был разработан процесс каталитического риформинга с широким применением бифункциональных катализаторов. Это послужило толчком для разработки процессов изомеризации парафиновых углеводородов при давлении водорода в паровой фазе, температурах 350-500 °С на окисных, сульфидных катализаторах и металлах VIH группы, нанесенных на носители, обладающие кислотными свойствами — оксид алюминия, промотированный фтором, и алюмосиликаты [5—9]. [c.5]

    Влияние степени декатионирования и деалюминирования морденита на каталитическую активность в реакции изомеризации парафиновых углеводородов. Декатионированные формы морденитов можно получить прямым обменом на протон или через аммонийную форму. Прямой обмен ионов натрия на протоны происходит в процессе обработки морденита сильной неорганической кислотой одновременно удаляются ионы алюминия. Второй путь получения декатионированной формы - обработка водными растворами аммонийных солей. [c.61]

    Каталитическая изомеризация парафиновых углеводородов [c.496]

    Современные промышленные катализаторы изомеризации парафиновых углеводородов являются в основном бифункциональными и представляют каталитические системы металл - носитель. [c.41]

    При исследовании каталитической изомеризации парафиновых углеводородов А. Д. Петров, А. П. Мещеряков и Д. Н. Андреев установили [63], что давление водорода уменьшает скорость побочных реакций, в частности крекинга. Однако в работе [60] показано, что при достаточно высоких давлениях водорода каталитический крекинг парафинов постепенно ускоряется давлением. Это наблюдение сделано авторами нри исследовании каталитического крекинга н. гексана и п. гептана на алюмосиликатном катализаторе под давлением водорода до 1140—1380 атм. Повидимому, эффект давления водорода при каталитическом крекинге в решающей мере определяется специфическими особенностями применяемых катализаторов. [c.173]

    Каталитическая изомеризация парафиновых углеводородов уже была освещена в первом томе [18а]. Каталитическое дегидрирование будет описано в настоящей книге. [c.213]

    ИК-спектроскопией адсорбированного аммиака и пиридина установлено усиление апротонной кислотности и образование центров протонной кислотности в результате хлорирования т -оксида алюминия четыреххлористым углеродом. Исследования масс-спектров продуктов десорбции с поверхности образцов -у- и tj-оксидов алюминия до и после хлорирования и электронная оптическая спектроскопия адсорбированных состояний некоторых оснований позволили установить, что причиной принципиальной разницы в каталитической активности хлорированных tj- и 7-оксидов алюминия в низкотемпературной изомеризации парафиновых углеводородов являются различия в свойствах поверхности прокаленных при 500 °С оксидов алюминия, в том числе в количестве и расположении гидроксильных групп, обусловленных особенностями кристаллической структуры 7 - и 7-оксидов алюминия [90]. Хлорирование поверхности оксида алюминия, сопровождающееся выделением хлороводорода и диоксида углерода, усиливает кислотность апротонного и протонного типа. Бренстедовская кислотность обусловлена хемосорбированнымНС . [c.72]


    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]

    Катализаторы. Современные промышленные катализаторы изомеризации парафиновых углеводородов являются каталитическими бифункциональными системами металл—носитель. [c.179]

    В реакции изомеризации парафиновых углеводородов наиболее медленной стадией является перегруппировка промежуточных соединений на кислотных центрах носителя, поэтому при синтезе катализатора необходимо придать носителю сильные кислотные свойства. Роль металла сводится к осуществлению первичного акта дегидрирования молекулы парафинового углеводорода с образованием олефина и протекания реакции гидрирования промежуточных соединений, что обеспечивает стабильность каталитической системы. Немаловажным моментом в синтезе катализатора изомеризации является подбор правильного соотношения между концентрацией металла и кислотностью носителя - это определяет не только активность, но и селективность его действия и стабильность в процессе изомеризации. [c.42]

    В последнее время в качестве перспективных катализаторов изомеризации парафиновых углеводородов рассматриваются каталитические системы - фториды металлов V и VI групп периодической системы, промотированные фтороводородом. На этих катализаторах реакция изомеризации протекает при 20-50 °С [69, 70]. [c.43]

    Основными реакциями каталитического риформинга бензинов являются дегидрирование шестичленных нафтеновых углеводородов, дегидроизомеризация алкилиро-ванных пятичленных нафтеновых углеводородов и дегидроциклизация парафиновых углеводородов. Одновременно протекают реакции деструкции и изомеризации парафиновых углеводородов, деалкилирования ароматических углеводородов, и на поверхности катализатора отлагается кокс. [c.97]

    Изучение процесса ароматизации при атмосферном давлении на окисных катализаторах показало, что достаточная глубина ароматизации достигается при температуре не ниже 400—500 °С. В этих условиях алюмомолибденовый и алюмохромовый катализаторы не отравляются сернистыми соединениями и дегидроциклизация парафиновых и дегидрирование шестичленных нафтеновых углеводородов протекает достаточно глубоко. Реакций изомеризации парафиновых углеводородов почти не наблюдается. Однако процесс осложняется значительным коксообразованием, особенно в присутствии пятичленных нафтеновых углеводородов. Высокое коксообразование и сравнительно низкие качества получаемого бензина являются дополнительными причинами, лимитирующими применение каталитической ароматизации при атмосферном давлении в промышленных масштабах. [c.20]

    Основные закономерности синтеза метх1лсодержаи их катализаторов на основе цеолитов Y и М, установленные при исследовании их каталитических свойств в реакции изомеризации парафиновых углеводородов сформулированы в [23, 68] и сводятся к следующему  [c.60]

    Реакции каталитической изомеризации лежат в основе ряда нефтехимических процессов. Например, одним из наиболее удобных путей синтеза изопарафинов - компонентов высокооктановых топлив - является гидрирование ненасьпценных углеводородов с предварительной изомеризацией их в соответствующие соединения. Изомеризацией парафиновых углеводородов Сю-Сдо получают низкозастывающие керосины - топливо для реактивной авиации, зимние сорта дизельных топлив и низкозастывающие масла. [c.575]

    Хотя многие вещества влияют на скорость разложения углеводородов, только использование твердых кислотных окислов приводит к желаемому процессу и продуктам. Иные кислотные катализаторы при более низких температурах способствуют протеканию родственных реакций полимеризации олефиновых углеводородов, алкилирования ароматических или парафиновых углеводородов, изомеризации парафиновых углеводородов. Гринсфельдер [32] и Шмерлинг [95] дали общую основу этих превращений и каталитического крекинга. Ниже рассматривается несколько веществ, оказывающих различное каталитическое воздействие. [c.456]


    Реакция дегидроциклизации играет важную роль в процессах каталитического риформинга, так как получаемые ароматические соединения характеризуются высокими октановыми числами. Сказанное иллюстрируется данными, приведенными на стр. 476 и рис. 23 и 24. Значения октановых чисел гораздо выше тех величин, которые характеризуют продукты изомеризации парафиновых углеводородов и особенно высокомолекулярных. Реакция ароматизации как источник высокооктановых компонентов топлив приобретает все большую важность в нефтяной промышленности. [c.500]

    Такие ценпые реакции могут протекать с участием либо свободных радикалов, либо ионов кapбoгпIЯ . Ниже будут описэны господствующие в настоящее время представления о механизме упомянутых выше цепньлх реакций. К реакциям, протекающим с участием свободных радикалов, в первую очередь относятся такие процессы, как термическая полимеризация, термический крекииг и термическое алкилирование. В противоположность этому, реакции с участием ионов карбония являются каталитическими и протекают в присутствии сильных кислот (безводного хлористого алюминия, фтористого водорода, серной кислоты, фтористого бора, фосфорной кислоты, гидросиликата алюминия). При этом температуры реакций, как правило, невелики, за исключением температуры при каталитическом крекинге. К последним реакциям принадлежат каталитическая полимеризация, каталитическое алкилирование, каталитическая изомеризация парафиновых углеводородов и часто встречающаяся при различных превращениях олефинов побочная реакция переноса водорода от одпой молекулы олефина к другой. [c.333]

    Процессы каталитической изомеризации парафиновых углеводородов можно разделить на две группы осушествляемые при низкой и при высокой температуре. Предпочтительно (по условиям равновесия) применение низких температур, при которых получается значительно больше изомерных углеводородов. Типичный представитель низкотемпературного катализатора — хлористый алюминий. В области высоких температур используют по преимуществу катализаторы, содержащие платину. [c.223]

    Изомеризация. Хорошо разработанный процесс представляет сОбой каталитическая изомеризация пентана. Точно так же в промышленном масштабе нашла себе применение и изомеризация гексана. Однако с точки зрения производства моторного топлива изомеризация этих углеводородов в процессе каталитического риформинга имеет небольшое значение. Это объясняется тем, что в большинстве случаев октановые числа фракций С 5—С в достаточно высоки и нет необходимости прибегать к каталитическому риформингу этих фракций. Кроме того, они не нуждаются в рифор-мииге ввиду достаточно хорошей приемистости к тетраэтилсвинцу. Однако образование ароматических углеводородов и особенно бензола из фракции С6 требует изомеризации парафиновых углеводородов этой фракции. Объектом глубокого изучения является изомеризация парафинов фракции С,. Эти исследования еще не привели к созданию промышленного процесса, хотя теоретически реакция представляет интерес для повышения октанового числа парафиновых углеводородов фракции С 7. Главное до-стоилство этой операции заключается в получении исключительно больших теоретических выходов высокооктановых изомеров. Однако на практике наличие в продукте нафтеновых и ароматических уг.певодородов, а также тенденция к диспропорционированию между высоко и низкокипящими фракциями значительно затрудняют промышленную реализацию этого процесса. По-видимому, парафиновые углеводороды фракции С. являются наиболее высококипящими из тех, которые целесообразно подвергать изомеризации, так как углеводороды фракций Сз, С и Сщ даже после низкотемвературной изомеризации до равновесного состояния над катализаторами Фриделя-Крафтса неспособны повысить октановое число фракций настолько, чтобы удовлетворить требованиям сегодняшнего дня. [c.165]

    Так как с повышением температуры реакции- разветвлеиность углеводородов уменьшается, то и повышение октанового числа нри этом будет соответственно меньше. Например, по данным Фроста [И] при температуре каталитического риформинга около 450° С продукты равновесной изомеризации фракции С7 и Сд должны иметь октановые числа по моторному методу порядка 59 и 55 пунктов соответственно. Мэвити [33] для равновесных продуктов тех же фракций получил соответственно 68 и 43 пункта. Таким образом, при температуре каталитического риформинга порядка 450—500° С удовлетворительного повышения октанового числа вследствие изомеризации парафиновых углеводородов выше гептана пе получается. [c.165]

    Каталитическое превращение парафиновых углеводородов нормального строения в изомеры относится к процессам избирательного катализа, характеризующимся протеканием реакции с перестройкой молекулы, но без измененйя числа углеродных атомов в ней. Число образующихся изомеров определяется числом углеродных атомов в исходной молекуле парафинового углеводорода. Так, при изомеризации нормального пентана образуется изопентан, при изомеризации нормального гексана образуются 4 изомера 2,2-диметилбутан, 2,3-ди-метилбутан, 2-метилпентан и 3-метилпентан. При изомеризации нормального гептана число изомеров значительно увеличивается. Нормальный парафиновый углеводород дегидрируется до олефина, который затем изомеризуется, после чего подвергается гидрированию с образованием изопарафинового углеводорода. [c.25]

    Наши исследования о взаимодействии фтороводорода с гидроксидом алюминия бемитной модификации указывают также на рост каталитической активности платинированного фторированного у-оксида алюминия в реакции изомеризации и-пентана до массовой доли фтора 5%, из чего следует, что если при больших количествах фтора и образуется фаза AIF3, то она не является каталитически активной в реакций изомеризации парафиновых углеводородов [19]. Количественная оценка усиления изомеризующих свойств у-оксида алюминия при введении в его состав фтора была произведена на примере реакции изомеризации о-ксилола (рис. 2.1) при увеличении содержания фтора в 36 раз скорость реакции возрастала в 65 раз. На примере реакции гидрирования циклогексена было показано, что при введении в оксид алюминия фтора наряду с изо-меризующими возрастали и гидрирующие свойства противоположное действие оказывало введение в оксид алюминия ионов натрия [19]  [c.45]

    Влияние природы, количества и способа нанесения металлического компонента катализатора на его каталитические и физико-химические свойства. Современные катализаторы изомеризации парафиновых углеводородов готовят осаждением металлов на носители, обладающие кислотными свойствами. Для катализатора высокотемпературной изомеризации необходимо, чтобы металл обладал дегидрирующей активностью в условиях реакции изомеризации. Не менее ражны гидрирующие свойства металлического компонента, которые обеспечивают защиту поверхности носителя от отложения полимеров. В связи с этим аибольшее распространение получили катализаторы, приготовленные нанесением металлов VIII группы на оксид алюминия или алюмосиликаты. [c.51]

    Гидрогенизационно дегидрогенизационные катализаторы (никель, платина, окись молибдена и окись вольфрама), когда они базируются на кремний-алюминиевых катализаторах крекинга, поразительно эффективны в изомеризации парафиновых углеводородов при 300—450° С под давлением водорода около 21 — 35 кПсм . Изомеризация узко фракционна и сопровождается очень небольшим крекингом жидкие продукты восстановления получаются в весьма существенных количествах [441—444, 432]. Реакции этого типа часто встречаются в процессах каталитического риформинга. В качестве побочной реакции в большой степени проходит гидрокрекинг продуктов изомеризации образуются молекулы более мелкие, чем исходный углеводород. С увеличением содержания углерода в к-парафине уменьшается температура процесса, необходимая для получения той же самой степени превращения. Например, чтобы получить 50%-ное превращение, требуются следующие температуры  [c.119]

    Непосредственная изомеризация парафиновых углеводородов не происходит при каталитическом крекинге. Здесь следует упомянуть о работе Хиндипа, Обледа и Миллса, которые установили, что изомеризация парафиновых углеводородов (а также обмен водородом) в некоторой степени протекает при каталитическом крекинге, даже при температурах 100—150°, если катализатор ги- [c.328]

    Каталитические реакции, осуществляемые в нефтеперерабатывающей промышленности, относятся как к окислительно-воостано-вительным (гидрогенизация и дегидрогенизация), так и к кислотным (каталитический крекинг, алкилирование изобутана бутенами, полимеризация олефинов). Широко применяется бифункциональный катализ (изомеризация парафиновых углеводородов, рифор-минг, гидрокрекинг). Катализ основаниями в нефтеперерабатывающей промышленности не применяется. [c.135]

    Изомеризация парафиновых углеводородов является одной из реакций, протекающих при каталитическом риформинге с бифункциональными алюмоплатиновыми катализаторами (см. гл.7). Хотя изомеризацию парафиновых углеводородов можно проводить над любым промьш1ленным алюмоплатиновым ката- [c.31]

    В тесной связи с некоторыми из нриведенпых в табл. 149 техпо.иогиче-ских процессов находятся следующие основные химические реакции, дающие возможность получать исходные, промежуточные и конечные продукты, необходимые для производства т.гсокооктановых топлив каталитическая изомеризация и каталитическое дегидрирование парафиновых углеводородов. [c.213]

    ГИДРОФОРМИНГ, каталитич. переработка нефтяных фракций с целью получения высокооктановых бензинов и ароматич. углеводородов. Осн. р-ции-дегидрогенизация нафтеновых и дегидроциклизация и изомеризация парафиновых углеводородов. Проводится при 480-550 °С под давлением 1,5-2,5 МПа в присут. алюмомолибденового кат. (10% МоОз иа А12О3). Заменен в пром-сти каталитическим риформингом, [c.569]

    В связи с ужесточением требований к содержанию ароматических углеводородов в бензинах (в перспективе в экологически чистом автобензине содержание, % (об.), бензола должно быть не более 0,8 ароматических зтлеводородов - 25, в том числе ксилолов не более 5 олефинов - 5 кислорода - 2,7 серы - 250 ppm.) высокооктановые бензины должны содержать меньше ароматических углеводородов и больше разветвленных парафиновых углеводородов при практически полном отсутствии серусодержащих соединений. Этого можно достигнуть, например, компаундированием продуктов каталитического риформинга и изомеризации парафиновых углеводородов и их смесей, имеющих высокие октановые числа, путем алкилирования пропиленом бензиновой фракции, содержащей бензол, [c.773]

    Бурсиан Н.Р., Боруцкий П.Н., Волков И.А. и др. Опыт эксплуатации промышленных установок изомеризации н-пентана и пентан-гексановых фракций // Каталитические превращения парафиновых углеводородов. Л. ВНИИнефтехим. 1978. [c.911]

    Бурсиан Н.Р., Боруцкий П.H., Волнухина Н.К. и др. Основы технологии процесса изомеризации парафиновых углеводородов // Каталитические превращения парафиновых углеводородов. Л. ВНИИнефтехим. [c.877]

    Риформинг. Наибольшее распространение получил каталитический риформинг. При каталитическом риформинге происходит обра вание ароматических углеводородов благодаря реакциям дегидрогенизации нафтеновых углеводородов, дегидроциклизации парафиновых углеводородов, изомеризации пятичленных нафтенов в шестичленные с последующей дегидрогенизацией их в ароматические. Одновременно при этом протекают реакции гидрокрекинга и изомеризации парафиновых углеводородов. [c.475]

    Для реакций крекинга, полимеризации, изомеризации парафиновых углеводородов,. конденсации этанола и этиланилина, а также гидрогенизации этилена существует оптимум содержания остаточной воды в катализаторе, отв чающий его максимальной активности. Обычно это очень небольшое количество воды (от 0,5 до 5 вес. %). Из-пестно также, что катализаторы с большим содержанием воды (в некоторых случаях больше 13%) и катализаторы, совершенно лишенные воды, не обладают каталитической активностью. Изучая различные реакции на окисных катализаторах, мы также неоднократно наблюдали влияние степени гидратации поверхности катализатора на его активность и установили, что каждый раз при проведении той или иной реакции необходимо придерживаться строго определенного режима предварительной термической активации катализатора. Мы убедились также в том, что при изучении влияния воды на каталитическую активность очень важно пользоваться именно удельной константой скорости. Это позволяет исключить возможные ошибки за счет изменения доступной поверхности для молекул реагирующего вещества при получении образцов с различным содержанием воды методом прокаливания исходных катализаторов при различных температурах. [c.241]

    Однако, как показали нащи с О. А. Головиной опыты, над молибденовым катализатором 2,2,4-триметилпентан образует примерно равные количества о- и р-ксилолов, что никак не объясняется промежуточным образованием пятичленного цикла. Поэтому нам кажется, что в случае алканов, структура которых не допускает каталитической ароматизации без изомеризации углеродного скелета, имеет место дегидрогенизация алкана до соответственного алкена, который затем претерпевает скелетную изомеризацию такого типа, как ту, которую впервые наблюдали Петров и Чельцова 1 . Близкая схема была предложена Оболенцевым и Усовым . При ароматизации таких алканов, действительно, алкены явились бы обязательными промежуточными продуктами реакции. Отрицательное действие таких алканов на катализатор, а именно чрезвычайно быстрое его отравление, резко отличает этот процесс от обычного процесса каталитической ароматизации парафиновых углеводородов., . [c.244]

    О необходимости добавления некоторых веществ к катализаторам Фриделя-Крафтса с целью иовышения их каталитической активности стало упоминаться в литературе десятью годами иозже, хотя в заводских лабораториях проводились исследования но этому вопросу. Пайне и Беккер [150], используя вакуумную технику для контроля примесей, изучили влияние примеси кислорода на реакцию изомеризации парафиновых углеводородов в присутствии хлористого и бромистого алюминия. Они нашлл, что в отсутствии кислорода реакция не протекает, одпако добавление 0,007% мол. кислорода (в виде воздуха) было достаточно для нревращепия 40% к-пептапов в присутствии хлористого [c.342]

    В условиях каталитического крекинга протекают многие реакции изомеризации. Эти реакции совершенно отличны от неравновесных скелетных перегруппировок, которые имеют место только нри крекинге индивидуальных молекул и ведут, нанример, к образованию изобутана как основного продукта при крекинге более высокомолекулярных парафиновых углеводородов нормального строения. Истинные реакции изомеризации, стремящиеся к состоянию равновесия, протекают при крекинге олефиновых и ароматических углеводородов и обычно являются вторичными реакциями, следующими за первичными реакциями крекинга, в результате которых образуются непредельные углеводороды. Несмотря на то, что в присутствии крекирующих катализаторов иногда наблюдается изомеризация насыщенных углеводородов (нафтеновых или парафиновых), значение этой реакции в обычных условиях крекинга невелико. Хиндин, Облед и Миллс [53] установили, что при температуре 150° и продолжительности опыта 1 час в нрисутствии алюмосиликатного слабо гидратированного катализатора (добавлено 0,5% воды) наблюдается изомеризация парафиновых углеводородов Се, или С7, содержащих третичный углеродный атом. Выход продуктов изомеризации колебался в пределах 6—34%, причем образование новых структур не наблюдалось. [c.408]

    Полифункциональные катализаторы могут быть, использованы не только в целях получения высокооктановых бен-зинов. Мы считаем возможным применение соответствующих процессов в целях производства также реактивных, а в ряде случаев и дизельных топлив. Действительно, изомеризация индивидуальных парафинов нормального строения, с т. кип. выше 200°, проведенная в ряде работ (см. гл. VI), показала, что температура застывания смеои получающихся изомеров на 50—60° ниже температуры застывания исходного углеводорода. Поэтому вполне реальной является задача получения высококалорийных реактивных топлив, на основе парафиновых углеводородов с пределами выкипания 200—300° и с температурой застывания —40— —60°. Каталитическая переработка соответствующего прямогонного керосина, кроме изомеризации парафиновых углеводородов, будет сопровождаться также значительным обессериванием продукта и (в зависимости от условий) гидрированием ароматических углеводородов. Ясно, что все эти реакции приведут к повышению качества товарной продукции. [c.203]

    Дальнейшее улучшение процесса каталитической ароматизащш связано с нрименешхем платинового катализатора. Платина оказалась наиболее селективным катализатором для высокотемпературного гидрирования ненасыщенных углеводородов, образующих кокс, и в результате применения платинового катализатора длительность рабочего цикла может быть увеличена примерно до 200 суток. Процесс (для которого в американской практике нефтепереработки принято название п л а т ф о р м и и г, т. е. реформинг на платине) проводится при 25—30 ат и 480°. При такой температуре реакция дегидроциклизации имеет подчиненное значение, и преобладают реакции дегидрогенизации нафтенов, крекинг (сопровождающийся гидрированием олефинов) и изомеризация парафиновых углеводородов. Бензин состоит ио преимуществу из ароматических и изопарафиновых углеводородов и почти не содержит серы. Выход ароматизованного бензина из низкооктанового лигроина составляет 90—95%, октановое число 79—83. Содержание серы в жидком продукте снижается на 90%. Высокий выход толуола может быть достигнут только при значительном содержании метилциклогексана в исходном лигроине. [c.271]


Смотреть страницы где упоминается термин Каталитическая изомеризация парафиновых углеводородов: [c.207]    [c.13]    [c.282]    [c.249]    [c.910]    [c.249]   
Технология переработки нефти и газа (1966) -- [ c.245 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитическая изомеризация

Парафиновые углеводороды



© 2025 chem21.info Реклама на сайте