Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициенты протонов

    Fe+2H l=Es" lj+Hj 2Ре+ЗС1=2Е " Оз Большую часть подобных реакций удобнее рассматривать с помощью метода электронно-ионного баланса. Однако мы продемонстрируем, что при хорошем владении методом электронного баланса Вы вполне сможете подобрать коэффициенты для таких реакций. Как пример рассмотрим взаимодействие азотной кислоты с металлами. Известно, что в этих реакциях не выделяется водород, поскольку окислительная способность азота в степени окисления +5 значительно выше, чем протона Н . При этом азотная кислота [c.97]


    Вообще, при наличии п эквивалентных ядер со спином I, взаимодействующих с электронным спином, мультиплетность сигнала ЭПР равна (2и/+1). Отношение интенсивностей компонент мультиплета такое же, как отношение коэффициентов биноминального разложения (л -Ь ]) (см. треугольник Паскаля, табл. 1.5), когда п>1, а при п=1 компоненты мультиплета имеют одинаковую интенсивность. На рис. П1.6 показан спектр ЭПР анион-радикала бензола, представляющий септет с константой а=3,75-10 Т и соотношением интенсивности компонент 1 6 15 20 15 6 1, здесь электрон делокализован по бензольному кольцу и одинаково взаимодействует со всеми шестью протонами. На рис. П1.7 схематически показана сверхтонкая структура спектра ЭПР для системы, содержащей один неспаренный электрон, который взаимодействует с двумя ядрами одно со спином /= /2, а другое со спином /= /2. Спектр представляет квартет дублетов с одинаковой интенсивностью всех линий. В общем случае при взаимодействии электрона с несколькими наборами эквивалентных ядер число линий в спектре ЭПР будет равно произведению [c.61]

    Аналогично находят коэффициент побочной реакции для лиганда, взаимодействующего с протоном. Суммарная равновесная концентрация К -ионов, т. е. частиц, не связанных в комплекс будет равна  [c.76]

    Кислотно-основные процессы. Кислотно-основные процессы представляют собой химические реакции, в ходе которых происходит перенос протонов (Н ). Значение рН-активности протонов можно получить, используя подход электронейтральности, однако для облегчения процедур вычисления лучше использовать общую концентрацию избыточных протонов (Н"" - ОН ). Уравнение массопереноса избыточных протонов, необходимое для ее определения, получают применяя принцип сохранения масс кислорода и водорода. Это уравнение принципиально идентично уравнению (5) с заменой С], Sj, Pj и Tj на Он, Зн, Рн и Тн, причем алгебраические уравнения, их определяющие, идентичны уравнениям (6)-(9). Однако, если среди видов компонентов встречаются гидроокиси, стехиометрические коэффициенты протонов этих видов отрицательны, но если среди видов будет выделен водород, то положительны. Кроме того, при записи закона действия масс все виды, включающие гидроокиси и (или) водород, должны модифицироваться в протоны. Протон рассматривается как водный компонент, и вычисление его активности такое же, как у прочих водных компонентов. Единственная разница протон может иметь отрицательную общую аналитическую концентрацию. [c.30]

    Если далее основание В или сопряженная с ним кислота БН являются индикаторами или обладают значительным коэффициентом оптического поглощения, отношение (ВН )/(В ) может быть определено экспериментально. Величина этого отношения есть мера тенденции раствора к переносу протона на нейтральное основание В . Разрешив это соотношение относительно (ВН )/(В°) и записав его в логарифмической форме, получим [c.494]


    Во все средние коэффициенты активности кислот в данном растворителе входит одна и та же величина lg лиония МН" . Таким образом, значения lg ионов кислот не могут быть связаны с изменением энергии протона, а являются результатом различного взаимодействия анионов с растворителями. Анионы жирных карбоновых кислот, ароматических карбоновых кислот и фенолов характеризуются изменением энергии при переносе их из неводного растворителя в воду. Можно было бы думать, что это результат различия в радиусах анионов. Однако радиусы замещенных бензойных кислот и фенолов с теми же заместителями мало различаются между собой, [c.204]

    По данным работы [655], диэлектрическая изотерма сорбции воды на торфе также является ломаной линией. На основе калориметрических сорбционных опытов было высказано предположение, что первым двум участкам изотермы отвечает различная энергия связи молекул с центрами сорбции, а третьему, с наибольшей производной е7 а, — образование в процессе сорбции водородных связей между сорбированными молекулами. Существенно, что при критической величине сорбции ао обнаруживается резкое увеличение коэффициента диэлектрических потерь е", обусловленное, по-видимому, значительным возрастанием электропроводности материала вследствие образования цепочек из сорбированных молекул и функциональных групп сорбента — карбоксильных (СООН), гидроксильных (ОН) и других полярных групп. При этом предполагалась возможность эстафетного механизма переноса протона вдоль цепочек, что обусловливает значительное возрастание е и е". Наличие протонной проводимости и протонной поляризации позволяет объяснить не только большие величины с1г /<1а, но и частотную зависимость критической гидратации Со, обнаруженную для ряда сорбентов [646, 648]. Здесь необходимо отметить, что при измерении диэлектрических характеристик применяются слабые электрические поля, которые не могут повлиять на про- [c.245]

    Столь резкое различие кинетических коэффициентов нельзя объяснить только меньшими значениями параметров межатомного потенциала о,т и е,т. Принято считать, что миграция водорода в матрице от одного положения равновесия к другому происходит не в атомарной форме, а в виде протона. Если использовать для качественной оценки коэффициента диффузии соотношения (3.39) и учесть, что диаметр протона на пять по- [c.116]

    А — работа а — активность С — молярная теплоемкость с — удельная теплоемкость, концентрация В — коэффициент диффузии Е — энергия, ЭДС, электродный потенциал е — заряд протона [c.3]

    Малая доля свободного объема и весьма незначительная подвижность структурных элементов силикатных стекол должны приводить к неудовлетворительным сорбционным н диффузионным характеристикам для большинства газов, с и в металлических мембранах возможен процесс диссоциации двухатомных молекул и их диффузия в атомарной или даже протонной, как у водорода, формах, то в стеклах происходит миграция молекул растворенных газов. В результате проницаемость стекла с увеличением молекулярных характеристик диффундирующего газа резко падает, в частности для кварца при 400 °С коэффициенты проницаемости метана и азота равны 6-10-2 моль-м/(м2-с-Па), т. е. примерно на шесть порядков ниже, чем проницаемость гелия. Высокая селективность мембран из силикатных стекол наряду с удовлетворительной проницаемостью по гелию является главным технологическим преимуществом этих систем при выделении гелия. Основные проблемы внедрения связаны с хрупкостью стеклянных трубчатых мембранных элементов. [c.120]

    В области pH от 1 до 7 окислительно-восстановительное равновесие в системах галоген/галогенид почти не зависит от pH только в очень сильнокислых средах (pH О или —1) стандартный потенциал системы 21 /12 несколько понижается (pH 1, = 0,53 В pH —1, ° = 0,44 В). Уменьшение потенциала в этих условиях можно объяснить тем, что при высокой кислотности происходит увеличение коэффициента активности иодид-иона вследствие дегидратирующего действия протонов. Иодид-ион восстанавливает ионы Ре +, а также ТР+ и Си +, а бромид-ион— лишь Си +. [c.499]

    Особый интерес в связи с проблемой единой шкалы кислотности (см. гл. IX) представляют данные об изменении энергии (изобарного потенциала) при переносе протона из неводного растворителя в воду и соответственно данные о коэффициентах активности y о отдельно протона. Для их оценки необходимы данные об изменении изобарного потенциала — химической энергии сольватации протона в различных неводных растворителях и в воде. [c.202]

    Коэффициенты активности протонов [c.202]

    Из этого выражения следует, что положение равновесия в среде М определяется отношением собственной кислотности веш еств, участвующих в равновесии, т. е. различием в способности веществ к выделению протона в условиях, независимых от среды, и отношением коэффициентов активности веществ, участвующих в равновесии. [c.267]


    Из этого выражения следует, что Пне равно логарифму активности протона, а отличается от него на величину логарифма отношения коэффициентов активности заряженной и незаряженной форм индикатора, т. е. зависит от того, какова энергия взаимодействия с растворителем иона и нейтральной молекулы индикатора. При стандартизации по отношению к бесконечно разбавленному водному раствору величины 7 и 7ор,н+ определяются работой переноса ионов ВН" и соответственно молекул В из среды М в воду. Таким образом, предположение, что равно —lg ан+(М) будет справедливо только в том случае, если влияние растворителя на катион основания и молекулу основания индикатора одинаково. [c.415]

    Коэффициент 10 вводят потому, что (см. раздел 3.1) величина константы экранирования а, выраженная в единицах Яо, имеет порядок 10 (для протонов). Химический сдвиг б, полученный по уравнению (40), измеряют в миллионных долях (м. д.) от приложенного магнитного поля (или рабочей частоты спектрометра Го). Химический сдвиг, измеренный в этих единицах, не зависит от величины поля и определяется только химическим окружением данного ядра. [c.65]

    Возвращаясь к сказанному о спектрах, в которых наблюдается расщепление только первого порядка, отметим, что даже при значительном различии химических сдвигов взаимодействующих протонов правила расщепления точно выполняются только в отношении числа компонентов в мультиплетах, тогда как интенсивности компонентов почти никогда не бывают точно кратны биноминальным коэффициентам. Например, в спектре этанола, снятом при 60 МГц (рис. 32), для протонов метиленовой группы справедливо соотношение 0,9 2,9  [c.91]

    В этом уравнении % отнесена к бесконечно разбавленному неводному раствору лиония, а единый коэффициент активности (Уо. н+) отнесен к водному раствору протона. Отрицательный логарифм коэффициента активности (— +) служит мерой перехода от шкалы рНр к шкале рА. [c.421]

    Мерой коэффициентов активности является энергия сольватации протона, т. е. энергия переноса Н+ из вакуума в среду данного растворителя. Изменение энергии сольватации протона обусловливается главным образом изменением основности растворителя. [c.421]

    Порядок величин V и можно определить по уравнению (5.4.5) и табл. 5.25. Определяя величину В. , одновременно находят и величину V. Так как значение магнетона Бора в 10 раз больше, чем ядерный магнетон [уравнение (5.4.1)], то при одном и том же порядке величины В резонансные частоты электронов и протонов должны различаться на этот коэффициент. Обычные условия регистрации спектров протонного ( Н-ЯМР) и электронного (ЭПР) резонансов приведены в табл. 5.26. [c.252]

    Вклад коэффициента пропорциональности составляет 20—30 Гс. Для взаимодействия неспаренного электрона с другими магнитными ядрами также имеются соотношения, подобные уравнению (5.4.25). Протоны, находящиеся в Р-положении, дают расщепления такого же порядка, как и -протоны, так как они выходят из плоскости радикала и могут вступать в непосредственное взаимодействие с неспаренным электроном, находящимся на 2рл-орбитали. Константа их взаимодействия определяется выражением [c.269]

    Авторы [1, 3] обращают внимание на сходство ацетона с нзоиро-циловым спиртом по положению полярной группы и по размерам. Ими проведено соиоставление концентрационной зависимости их термодинамических свойств, вязкости, коэффициента протонной самоднффузии. На соотвегс 1 ву ош,нх графиках прослеживается аналогичный ход кри- [c.115]

    Выводы термодинамического анализа подтверждаются данными ЯМР. Например, коэффициент самодиффузии адсорбированной воды в двухслойном гидрате Ма-вермикулита (0 я=10 м / ) [86] почти на порядок ниже, чем в жидкой воде см /с). Тем не менее время жизни протонов (т) в гидратационной оболочке обменных катионов короче, чем в жидкой воде. Это указывает на более высокую степень диссоциации (более выраженную кислотность) молекул воды, адсорбированной слоистыми силикатами, по сравнению с объемной водой. К сожалению, из-за неточностей в интерпретации спектров ЯМР первые оценки кислотных характеристик межслоевой воды монтмориллонита в работах [99, 100] оказались сильно завышенными. По данным [99], степень диссоциации воды в однослойном гидрате На- и двухслойном Са-монтморил-лонита в 10 раз выше, чем в жидкой воде. Согласно [100], в однослойном гидрате На-фтормонтмориллонита около 60% межслоевой воды существует в виде ионов НаО+ и ОН . [c.38]

    В уравнении (14.1) цо — магнитная постоянная н — гиромагнитное отношение для протонов ft—постоянная Планка гнн — межпротонное расстояние в молекуле воды о — диаметр молекулы воды рн — численная плотность спинов Dtr — коэффициент трансляционной диффузии А — постоянная, значение которой зависит от выбранной модели трансляционной диффузии для модели случайных скачков Л 0,42 [582]. [c.230]

    Относительные интенсивности полос даются коэффициентами биномиального разложени /. Следует помнить, что эта (Ьор.мула применима лишь при эквива.тентных протонах и.ти других ядрах с /=  [c.19]

    Некоторые из первых попыток интерпретации СТВ были связаны с ароматическими радикалами, в которых неспаренный спин находится в гг-системе, как, например, в СбН5Н02 . Расчет осуществлялся по методу Хюкке.гтя, и для определения величины плотности неспаренного электрона у различных атомов углерода использовались квадраты р -коэффициентов углерода в МО, на которой находится неспаренный электрон. Экспфиментально наблюдаемое сверхтонкое расщепление обусловлено протонами цикла, которые ортогональны я-системе. Непосредственно на них плотность неспаренного электрона находиться не могла, но плотность неспаренного спина тем не менее на них ощущалась из-за так называемой спин-пол.чризации, или косвенного механизма. Мы попытаемся дать предельно простое представление этого эффекта, используя метод валентных схем. Рассмотрим две резонансные формы, представленные на рис. 9.15 для связи С — Н в такой систе.ме, в которой неспаренный электрон находится на р -орбитали углерода. В отсутствие взаимодействия между л- и а-системой (так называе.мое приближение идеального спаривания) мы можем записать волновые функции связывающей и разрыхляющей а-орбиталей, используя метод валентных схем  [c.24]

    Используя. метод Хюккеля для расчета МО в сопряженных органических системах,. можно с помощью соотношения Мак- Коннела приближенно определить для них константы протонного СТВ. Константа СТВ для -го протона а, выражается как a = Q() . где ру = j j — коэффициент различных атомных 2р-орбиталей углерода в. молекулярной орбитали, на которой находится неспаренный электрон. [c.59]

    Основным доводом в пользу нахождения неспаренного спина в тг-си-стеме ароматического лиганда типа пиридина или фенильной группы является результат замещения атома водорода цикла на группу СН3. Если наблюдаемый сдвиг протона СН3 меняет знак по сравнению со знаком сдвига протона, находящегося в том же самом положении в кольце незамещенного соединения, то спиновая плотность находится в л-системе. Это происходит потому, что спиновая плотность в л-систе-ме — преимущественно углеродной системе—делокализована непосредственно на метильные протоны, т.е. связанные в этими протонами орбитали атомов водорода характеризуются небольшими коэффициентами в л-молекулярной орбитали. В незамещенном ароматическом соединении 1.5-орбиталь водорода ортогональна л-системе, и л-спиновая плотность должна поляризовать а-связь С — Н, чтобы повлиять на протоны. В результате знак спиновой плотности на Н противоположен знаку спиновой плотности в л-системе. [c.179]

    Основной дозиметрической величиной при оценке возможного ущерба здоровью человека от хронического воздействия радиации является эквивалентная доза (//), которая равна произведению поглощенной дозы на средний коэффициент качества (к) ионизирующего излучения (для рентгеновского и у-нзлучения = 1 для р-излучения - 1 для протонов с энергией менее 10 МэВ - 10, для нейтронов с энергией менее 20 КэВ - 3 для нейтронов с энергией от 0,1 до 10 МэВ - 10, хцгя а-излу-чения - 20 и т.д.) в данном объеме биологической ткани при значении Н за год не более 5 предельно допустимых доз (ПДД). Коэффициент качества позволяет учитывать влияние физических характеристик ионизи- [c.98]

    В заключение, чгобы показать, насколько важны приближенные волновые функции при интерпретации контактных сдвигов, мы рассмотрим сдвиги в спектрах некоторых комплексов N-окиси 4-метилпиридина [27]. Картина наблюдаемых протонных контактных сдвигов напоминает механизм тг-делокализации со спином, направленным в тс-сис-теме вдоль поля. Исходя из этих сдвигов, можно сделать вывод, что при координации N-окись 4-метилпиридина должна вращаться таким образом, чтобы я-молекулярная орбиталь, которая представляет собой главным образом р -орбиталь кислорода (ось г перпендикулярна плоскости цикла), смещталась с ст-связывающей -совокупностью нике-ля(П), Это приводит к возможности прямой делокализации неспаренного спина по орбитали цикла . Такой тип координации с вращением донора обнаружен в твердом аддукте этого донора. Расчет по методу МО указывает, что некоторые из высокоэнергетических молекулярных орбиталей донора представляют собой главным образом АО кислорода с очень небольщими коэффициентами АО водорода. Таким образом, если даже эти молекулярные орбитали участвуют в связывании с пике-лем(П), они должны давать по крайней мере небольшой непосредственный вклад в протонные контактные сдвиги. [c.185]

    При рассмотрении азеотропной перегонки мы уже познакомились с приемами, позволяющими установить для какой-либо смеси вероятность образования азеотропа (см. разд. 6.2.1). Дополнительные возможности в этом направлении представляет методика Шайбеля [65], основанная на использовании коэффициентов активности компонентов разделяемой смеси. Выделение экстрагированного компонента относительно высококипящего разделяющего агента перегонкой не представляет трудностей. Согласно Бергу [34, 52] в соответствии с данными табл. 41 (см. разд. 6.2.1) наиболее подходящими разделяющими агентами для экстрактивной ректификации являются вещества, принадлежащие классам I и П. Это, главным образом, вещества, которые имеют склонность к образованию прочных водородных связей и могут взаимодействовать и как доноры протонов, и как доноры электронов. Сюда относят фенолы, ароматическе амины (анилин и его производные), высшие спирты, гликоль и т. д. [c.316]

    О последнем преимуществе квазихимического метода следует сделать несколько замечаний. Хотя газ, состоящий из атомов водорода, в обычных условиях можно описать непосредственно вириальным уравнением состояния, гораздо проще признать образование молекул. Если этого не сделать с самого начала решения задачи, то предварительно придется решать задачу молекулярной структуры, а затем механико-статистическую задачу. Это плохая стратегия, ибо она приводит к решению простой задачи через решение сложной задачи. В качестве примера рассмотрим предельный случай — уравнение состояния смеси N протонов и N электронов в обычных условиях. Это очень трудоемкая механико-статистическая задача, и может показаться, что вириальные коэффициенты будут расходиться из-за дальнодейст-вующих кулоповских сил. Однако если с самого начала использовать некоторые физические данные и принять, что электроны и протоны даже при достаточно высоких температурах образуют бинарные группы (атомы Н), а при более низких температурах—более сложные группы (молекулы Нг), то задача становится более простой и определенной. Невозможность принять точку зрения химической ассоциации должна привести к решению сложных проблем атомной и молекулярной структуры перед решением гораздо более легкой проблемы — уравнения состояния разреженного газа. Правда, эту задачу можно решить начиная с электронов и протонов и вывести соответствующие формальные выражения [77], однако для обычного атомарного или молекулярного газа это был бы слишком далекий обходной путь. [c.67]

    Как показывает опыт, отношение коэффициентов активности /а //ан+ в данной среде (при заданной концентрации кислоты) мало зависит от природы основания А. Следовательно, величина Л, определяется главным образом свойствами среды. Чем больше величина /г , тем больше отношение АН ]/[А] и тем сильнее прото-низовано данное основание. Таким образом, величина кд характеризует способность среды отдавать протон и поэтому получила название кислотности среды. Эта величина легко может быть вычислена при помощи соотношения [c.249]

    В дальнейшем различными авторами были предприняты попытки уточнить эту Теорию и устранить некоторые ее противоречия. Так, из-за большого различия в энергиях связи протона со ртутью ( 29 ккал1г-атом) и с молекулой воды в ионе Н3О+ ( 280 ккал1г-ион) углы б и у в точке пересечения потенциальных кривых на рис. 150, б должны быть разными, а величины а — значительно превышающими 0,5. О. А. Есин предложил учитывать энергию отталкивания между адсорбированным атомом водорода и молекулами воды. Учет этого взаимодействия должен был увеличить наклон восходящей ветви на потенциальной кривой Над (см. рис. 150). При учете туннельного разряда водорода теория Гориути — Поляни дает возможность истолковать различную скорость выделения протия, дейтерия и трития за счет их различной способности просачиваться через потенциальный барьер. Наконец, в работах Дж. Бокриса квантовомеханические представления были использованы для расчета трансмиссионного коэффициента х. [c.296]

    Коэффициенты активности 7 о определяются разностью в энергии гидратации и сольватации ионов, в данном случае разностью между суммой величин (I7 jjjj+ -f- U p) для протонов в воде и неводном растворителе (примем растворитель М)  [c.198]

    Таким образом, выведено уравнение для единых нулевых коэффициентов активности протона, характеризующихся изменением изобарного потенциала при переносе протона из неводного раствора с активностью, равной единице, в водный раствор с той же активностью. Однако нельзя определить экспериментально отдельно коэффициент активности протонов или ионов лиония. Можно определить только средний коэффициент активности катионов и анионов. В обычных опытах нельзя осуществить отдельно перенос протонов из одного растворителя в другой. Можно перенести только хлористый водород или другую кислоту из одного растворителя в другой. Протон будет переноситься вместе с анионом, например ионом хлора. Чтобы можно было сравнить выведенное уравнение с экспериментальными данными, перейдем к средним коэффициентам активности Ig7o = 8 7оионов-Как следует из гл. I, для кислоты НА [c.199]

    Х-2-17. Хинин ( 20H24N2O2) — основание (Q), которое может принимать два протона. Первая и вторая константы диссоциации равны A i = 2,0-10 и /(2=1,35-10- °. Раствор приготовлен добавлением 0,10 моля хинина и 0,10 моля НС к 1,00 кг воды при 25° С. а) Определите ионную силу раствора. Использовав полученный результат и уравнение Дебая — Хюккеля, найдите приближенно коэффициент активности каждого иона Б этом растворе, б) Напишите уравнения, решения которых дадут моляльность каждой химической частицы в растворе, за исключением воды. Примите, что активность воды равна единице, в) Сделайте необходимые упрощения для определения моляльности ОН и хинина в растворе. [c.118]


Смотреть страницы где упоминается термин Коэффициенты протонов: [c.498]    [c.498]    [c.231]    [c.26]    [c.273]    [c.45]    [c.317]    [c.279]    [c.279]    [c.269]    [c.333]    [c.350]   
Электрохимия растворов издание второе (1966) -- [ c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Кислотность и нулевые коэффициенты активности протона

Коэффициенты активности единые протона



© 2024 chem21.info Реклама на сайте