Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота, Энергия зависимость

    Из этого уравнения видно, что, зная максимальную работу (или изменение изохорного потенциала) процесса и зависимость этой величины от температуры, можно вычислить теплоту С1 процесса (т. е. изменение внутренней энергии). [c.120]

    Теплота первой реакции равна 102 ккал. а второй — 347,5 ккал таким образом, энергия диссоциации связи С—Н в метане равна 102 ккал, а средняя энергия связи составляет 86,9 ккал. Последняя величина рассчитана по термохимическим данным и зависит от величины скрытой теплоты сублимации графита, а первая является экспериментальной величиной, полученной на основе кинетических измерений. Зависимость между ними заключается в том, что в данном случае сумма индивидуальных энергий диссоциации связи в СН , СНд, СНз которые сильно различаются между собой, должна быть равна четырехкратной средней энергии связи. Таблицы энергии связи, составленные, нанример, Паулин-гом [33], дают сведения о средней энергии связи и не имеют прямого отношения к проблемам разложения углеводородов, поэтому дальше будут рассматриваться только методы определения энергии диссоциации связи. Раньше всех стали изучать энергию диссоциации связи в сложных молекулах Поляни и сотрудники [7], которые исследовали пиролиз ряда иодидов в быстром потоке несуш,его газа при низких давлениях иодидов, В этих условиях, по их мнению, вторичные реакции не представляют важности, и измеренная" энергия активации соответствует энергии реакций  [c.14]


    Обратимся к рассмотрению зависимости давления насыщенного пара от температуры. Схема процесса испарения, использованная нами, несмотря на свою упрощенность, позволяет все же в качественной форме предвидеть, как изменение температуры будет влиять на давление насыщенного пара. При повышении температуры кинетическая энергия молекул возрастает и, следовательно, большая доля молекул окажется обладающей энергией, достаточной для перехода в пар к тому же, вследствие происходящего при этом расширения жидкости, взаимное притяжение молекул будет ослабляться и теплота испарения уменьшаться. Так как оба эти фактора действуют в одном направлении, то число молекул, вылетающих из жидкости в 1 сек, при повышении температуры должно, сильно увеличиться и, следовательно, равновесие пара с жидкостью будет достигнуто только при более высоких концентрациях пара. Таким образом, с повышением температуры давление насыщенного пара должно увеличиться. Опыт вполне подтверждает этот вывод. [c.171]

    При малых значениях р1р и С >1 уравнение БЭТ (XVI, 32) переходит в уравнение Лэнгмюра (XVI, Юв) в соответствии с тем, что при выводе уравнения БЭТ не было принято во внимание притяжение адсорбат—адсорбат. Поэтому уравнение БЭТ выполняется тем лучше, чем относительно больше энергия взаимодействия адсорбат—адсорбент ио сравнению с энергией взаимодействия адсорбат—адсорбат, т. е. оно хорошо выполняется лишь ири больших чистых теплотах адсорбции (при С>1). Этому условию близко отвечает, например, адсорбция бензола на поверхности графитированной сажи (изотерма адсорбции представлена нй рис. XVI, 7). На рис. XVI, 8 показана зависимость дифференциальной теплоты адсорбции (т. е. теплоты, выделяющейся на моль адсорбата при данном заполнении ) пара бензола от заполнения поверхности графитированной сажи. Из рисунка видно, что ири преимущественном заполнении первого слоя (до 6 = 1) теплота адсорбции почти постоянна (Ql= 0,2 ккалЫоль, чистая теплота адсорбции Q —L=2,Q ккалЫоль), а ири преимущественно полимолекулярной адсорбции теплота адсорбции близка к теплоте конденсации Ь. [c.453]

    Зависимость между кажущимися энергиями активации гидродеалкилирования толуола и теплотами сублимации металлов [2561. [c.175]

    На рис. 17-4 изображены графики зависимости теплоты реакции, АН, и изменения свободной энергии, AG°, от температуры. Разность между этими величинами, АЯ° — AG°, в любой точке равна TAS°. Если оба графика, для АЯ° и для AG°, приближенно представить прямыми линиями, то произведение TAS° окажется пропорциональным Т, следовательно, AS° также приближенно не зависит от температуры. Экстраполяция графиков для АН° и AG° в сторону низких температур показывает, что они пересекаются в точке абсолютного нуля. При О К выполняются соотношения TAS° = О и АЯ° = AG°. [c.110]


    Диэлектрическими потерями называется та часть энергии диэлектрика, находящегося в переменном электрическом поле, которая переходит в теплоту. В зависимости от времени релаксации различных видов поляризации максимум поляризации диэлектрика Б той или другой степени отстает по времени от максимума [c.595]

Рис. 10.53. Отводимая теплота в зависимости от плотности энергии. Рис. 10.53. Отводимая теплота в зависимости от плотности энергии.
    Понятие о внутренней энергии. Зависимость, выраженная уравнением (1), строго действительна только тогда, когда рабочее вещество или система, с которой мы экспериментируем, проходит через полный цикл изменений, т. е. возвращается в свое исходное состояние. При рассмотрении таких процессов, как испарение жидкости, химическая реакция или сжатие газа, не существует простой, общей для всех процессов, зависимости между теплотой и работой. Поскольку теплота и работа являются внешними эффектами, получающимися вследствие изменений внутри системы, и поскольку эти эффекты должны считаться возникающими из уже существующих действий или, другими словами, должны иметь причину, то следует ввести понятие энергии. Теплоту и работу следует считать формами энергии и в более узком термодинамическом смысле — внешним выражением накопленной энергии . [c.86]

    Диэлектрическими потерями называется та часть энергии диэлектрика, находящегося в переменном электрическом поле, которая переходит в теплоту. В зависимости от времени релаксации различных видов поляризации максимум поляризации яи-электрика в той или другой степени отстает по времени от максимума напряжения поля, т. е. создается некоторый сдвиг фаз поляризации по сравнению с фазами напряжения поля. При отсутствии такого сдвига фаз отсутствуют и соответствующие диэлектрические потери. Вместе с тем диэлектрические потери будут равны нулю и в том случае, если время релаксации настолько велико, что поляризация практически не успевает происходить. [c.600]

    Зависимость между теплотой и механическими единицами энергии (работы) приведена в табл. 3. [c.22]

    Между выделяемым или поглощаемым системой количеством теплоты aQ, количеством производимой или потребляемой системой работы dA и изменением внутренней энергии системы du, согласно первому закону термодинамики, существует зависимость  [c.127]

    Следует еще раз подчеркнуть, что все рассуждений о механизме адсорбции и кинетике контактных реакций на неоднородной поверхности базируются на гипотетических предположениях, касающихся 1) числа активных участков с различной адсорбционной способностью 2) зависимостей между характеризующими эти активные места величинами, такими как теплота адсорбции, энергия активации адсорбции и энергия активации десорбции. [c.281]

    В нешироких интервалах умеренных температур, в которых обычно производятся кинетические измерения, энергия актива-Ш1И, по-видимому, не зависит от температуры. Это можно объяснить тем, что энергия активации представляет собой теплоту образования промежуточного соединения, а разница в физических теплотах продуктов реакции и исходных веществ с изменением температуры изменяется незначительно. Однако в ряде случаев такое влияние температуры было обнаружено. Так, например, тщательное повторное изучение экспериментальных результатов, на анализе которых Аррениус основывал свою теорию, и данные более поздних исследований позволили установить некоторую зависимость от Г  [c.35]

    Данные, приведенные выше, позволили сделать вывод о зависимости между энергиями связей и структурами соединений. Теплота гидрирования алкенов с двойной связью на конце молекулы (бутен-1) больше, чем алкенов с двойной связью, расположенной ближе к середине цепи (бутен-2). [c.236]

    В приведенных выше уравнениях известны теплоты образования молекулярных частиц, и для каждого процесса могут быть получены относительные термодинамические энергии (Е ). Например, для уравнения с ННз определяется как теплота образования ОН3 минус теплота образования КНз. График зависимости Ет от энергий связи 15-электронов азота ( ь) демонстрирует исключительно хорошую корреляцию (рис. 16.16). Такой тип замещения эквивалентных оболочек дает хорошие корреляции и для данных по энергиям связи электронов в других элементах, например в углероде (Ь) и ксеноне ( /2) [55]. Этот вид корреляций полезен, поскольку дает возможность из некоторых измеренных энергий связи электронов оболочки и известных термодинамических параметров предсказать различные, еще не определенные термодинамические величины. Изучение приведенных выше уравнений показывает, что их можно использовать для определения сродства к протону. По некоторым непонятным причинам сродство к протону (РА) молекулы В берется как положительное число и приравнивается изменению энергии процесса (16.32) с отрицательным знаком. [c.351]


    Особенности кинетики реакций на неоднородной поверхности не исчерпываются, однако, простым изменением формы изотермы адсорбции. Поверхность, неоднородная по теплоте адсорбции, должна быть неоднородна и кинетически. Будем считать, следуя Рогинскому [14], что в ходе процесса зависимость скорости реакции от концентраций реагентов остается неизменной на всех участках и температурная зависимость скорости реакции по-прежнему описывается уравнением Аррениуса. При этом величина предэкспонента постоянна на всех участках, а значение энергии активации распределено по некоторому закону. Все эти допущения являются дискуссионными, но в первом приближении они достаточны, так как главным эффектом действия катализатора обычно бывает именно изменение энергии активации реакции. [c.86]

    Термодинамика является одним из основных разделов теоретической физики. Предметом термодинамики является изучение законов взаимных превращений различных видов энергии, связанных с переходами энергии между телами в форме теплоты и работы. Сосредотачивая свое внимание на теплоте и работе, как формах перехода энергии при самых различных процессах, термодинамика вовлекает в круг своего рассмотрения многочисленные энергетические связи и зависимости между различными свойствами вещества. ч дает весьма широко применимые обобщения, носящие название законов термодинамики. [c.26]

    Термодинамическая система может получать или вьщелять теплоту и совершать работу или быть объектом совершения работы. Первый закон термодинамики утверждает, что во всех этих процессах энергия в системе не создается из ничего и не исчезает бесследно. Энергия системы не обязательно остается постоянной она может повышаться или уменьшаться, в зависимости от того, какое воздействие мы оказываем на систему. Но изменение энергии системы должно быть равно результирующему количе- [c.14]

    Выражение (XII, 112) характеризует зависимость кажущейся энергии активации от истинной для рассматриваемого случая. Как видно из выражения (XII, 112), кажущаяся энергия активации меньще истинной на величину теплоты адсорбции реагирующего вещества. [c.324]

    Для нагревания в широком диапазоне температур применяется электрический нагрев. Электрические нагреватели удобны для регулирования, обеспечивают создание хороших санитарно-гигиени-ческих условий, но относительно дороги. В зависимости от способа преобразования электрической энергии в тепловую применяют электропечи сопротивления, индукционный нагрев, нагрев токами высокой частоты и электродуговой нагрев. В электропечах сопротивления преобразование энергии осуществляется через жаростойкие проводники с высоким удельным электрическим сопротивлением. Индукционный нагрев основан на использовании теплоты, выделяющейся за счет вихревых токов Фуко, возникающих под действием переменного магнитного поля. Этот метод обеспечивает равномерный нагрев, но дорог. Высокочастотный нагрев основан на превращении в теплоту энергии колебания молекул диэлектриков в переменном электрическом поле. Он обеспечивает равномерное нагревание материала по всей толщине. Однако из-за необходимости применения довольно сложной аппаратуры с низким коэффициентом полезного действия этот метод дорог и используется лишь в производствах ценных высококачественных материалов. Электродуговой нагрев основан на использовании электродуго- [c.362]

    До сих пор в этой главе рассматривались химические следствия закона сохранения массы и почти ничего не говорилось об энергии. Но закон, согласно которому теплоты реакций аддитивны и энергия процесса не зависит от того, проводится ли он в одну или несколько стадий, играет в химии очень важную роль. Теплота и работа являются различными формами энергии и измеряются в одинаковых единицах. Если вы совершаете работу над каким-либо телом или совокупностью тел, можно повысить энергию этой системы или нагреть ее в зависимости от того, каким образом совершается работа. Когда мы поднимаем тяжелый предмет, работа превращается в его потенциальную энергию, а трение приводит к превращению работы в теплоту. И наоборот, при падении тяжелого предмета энергия превращается в теплоту, а при работе автомобильного двигателя выделяемая в нем теплота превращается в работу. Химиков обычно гораздо больще интересует тепловая форма энергии, а не работа их занимает теплота, которая может поглощаться или выделяться при протекании химической реакции. [c.87]

    В табл. 17-4 приведены значения стандартной свободной энергии для реакции диссоциации SO3 при различных температурах, вычисленные по экспериментальным данным о константе диссоциации. По мере повышения температуры стандартное изменение свободной энергии для рассматриваемой реакции становится все более отрицательным, а константа равновесия возрастает, и для установления равновесия реакция должна все более смешаться вправо. Приведенные в этой таблице данные позволяют определить теплоту и энтропию реакции. Для того чтобы понять, как это делается, разделим левую и правую части уравнения (17-13) на Т, при этом получится соотношение AG°/T = АН°/Т — AS°, называемое уравнением Гиббса-Гельмгольца. Если воспользоваться этим уравнением и построить график зависимости величины AG°/T от 1/7 то тангенс угла наклона графика к оси абсцисс в каждой точке графика дает значение АН° при соответствуюшей температуре. [c.110]

    В зависимости от характера распределения участков но теп-лотам адсорбции и энергиям активации на неоднородных поверхностях реализуется тот или иной тип адсорбционного равновесия. Основные используемые для практических расчетов изотермы, изобары и дифференциальные теплоты адсорбции на неоднородных поверхностях систематизированы в табл. 3.2 [71]. [c.151]

    Зависимость теплоты реакции (внутренней энергии реакции AU=Qv или энтальпии реакции AH=Qp) от температуры определяется зависимостью и или Я от Т. Поскольку для ТС  [c.18]

    Разрушение кристаллической решетки на свободные ионы — процесс эндотермический (АЯрещ, > 0) гидратации ионов — процесс экзотермический (АЯгидр < 0). Таким образом, в зависимости от соотношения значений АЯр и АЯр др тепловой эффект растворения может иметь как положительное, так и отрицательное значение. Так, растворение кристаллического гидроксида калия сопровождается выделением теплоты, т. е. на разрушение кристаллической решетки КОН требуется меньше энергии (АЯреш = 790,5 кДж/моль), чем ее выделяется при гидратации ионов (АЯгидр.к+ [c.169]

Рис. XVIII, 3. Зависимость (вычисленная) потенциальной энергии адсорбции я-алканов на базисной грани графита от числа я атомов углерода в их молекуле. Кружки —измеренные теплоты адсорбции. Рис. XVIII, 3. Зависимость (вычисленная) <a href="/info/917997">потенциальной энергии адсорбции</a> я-алканов на <a href="/info/301188">базисной грани</a> графита от числа я атомов углерода в их молекуле. Кружки —<a href="/info/86269">измеренные теплоты</a> адсорбции.
    Зависимость степени отравления катализатора от количества поглощенного им яда для многих случаев в широких пределах имеет линейный характер. Типичная кривая отравления катализатора с широким интервалом линейной зависимости представлена на рис. 1.11. Однако при неоднородности поверхности кривая отравления может иметь значительные отклонения от линейности. Величина отклонения зависит от типа функции распределения поверхности по теплотам адсорбции и от функции взаимосвязи теплоты адсорбции яда II энергии активации реакции. [c.56]

    Температурная зависимость константы скорости реакции остается, таким образом, аррениусовой, причем кажущаяся энергия активации Е равна Е — При больших теплотах адсорбции кажущаяся энергия активации может даже стать отрицательной мы встречаемся при этом с весьма редким случаем замедления химической реакции с ростом температуры, причиной которого является уменьшение равновесных степеней заполнения поверхности, не компенсируемое ускорением самого химического взаимодействия. [c.81]

    Это выражение эквивалентно уравнению (П.6). Если зависимость всех коэффициентов й,. от температуры выражается соотношениями, аналогичными (1.3), и теплота адсорбции г-го вещества равна Я,-, то реакция идет с кажущейся энергией активации  [c.82]

    При переходе компонента из газовой фазы в жидкость выделяется определенное количество энергии, известной под названием теплоты абсорбции. По величине она несколько больше, чем скрытая теплота конденсации. Эта теплота поглощается абсорбентом и газом, поэтому температура их на выходе из абсорбера должна повышаться. Общее количество выделяющегося тенла пропорционально количеству поглощенных углеводородов, так как теплота абсорбции легких углеводородов мало зависит от их строения. В некоторых случаях (когда желательно вести процесс нри определенной температуре) абсорбент перед подачей в абсорбер охлаждают до необходимой температуры. В зависимости от температуры перерабатываемого газа в качестве абсорбента применяются масла с относительной молекулярной массой, равной 100—200. При температуре около —17° С применяются масла с относительной молекулярной массой 120—140, при 37,8° С — 180—200. В отрегенерирован-ном масле на выходе из выпарной колонны допускается небольшое содержание более легких, чем пентан, компонентов. Для уменьшения потерь масла от испарения при выборе его необходимо учитывать температуру абсорбции. [c.130]

    Рассмотрим системы, в которых в наиболее чистой форме выражены отклонения того или другого вида. Примером систем, в которых происходит распад ассоциированных комплексов одного компонента, могут служить системы из спиртов с углеводородами, в особенности простейших спиртов с углеводородами предельного ряда. Комплексы из молекул спирта, попадая в среду неполярного растворителя, претерпевают распад, причем в очень разбавленных растворах этот процесс доходит до распада на отдельные молекулы. В этом случае не происходит какого-нибудь процесса образования соединений, компенсирующего распад молекул. Поэтому образование раствора сопровождается значительным поглощением теплоты (расходуемой на распад комплексов, например, ассоциированных молекул спирта при растворении его в углеводороде предельного ряда) и образовавшийся раствор обладает значительным положительным отклонением давления пара от линейной зависимости (связанным с тем, что для выделения из жидкости одиночных молекул требуется меньше энергии, чем для выделения молекул, соединенных в комплексы). Подобные соотношения мы наблюдаем и в других системах, когда сильно ассоциированный компонент смешивается с неполярным компонентом и молекулы их не образуют между собой соединений. [c.312]

    В конце XIX в. Вант-Гофф и другие ученые исследовали зависимость свободной энергии реакции и константы равновесия от температуры. Они установили, что константа равновесия Кравк зависит от абсолютной температуры Т и от теплоты реакции АН следующим образом  [c.364]

    Таким образом, и количественно результаты эксперимента согласуются с нашей теоретической моделью экспоненциально-неоднородной поверхности ст. тр. окислов. На рис. 5 представлен хемосорбционный спектр поверхности Н02О3 зависимости теплоты, энергии активации адсорбции и десорбции с заполнением хемосорбцп- [c.291]

    Эти соединения имеют характер твердых растворов. Твердые растворы замещения образуются в основном веществами со сходными структурами (подобно жидкостям) твердые растворы внедрения могут быть образованы соединениями с самыми различными структурами. В таких соединениях энергии связей обусловлены, в основном, силами Ван-дер-Ваальса. Поскольку эти силы действуют в направлениях, где находятся элементы кристаллической решетки, результирующая энергия, приходящаяся на 1 тиоль вещества, может быть довольно значительной. Калориметрическими измерениями была установлена зависимость между теплотой образования соединений включения и степенью заполнения пустот кристаллической решетки. [c.77]

    Пользуясь табличными данными а) теплотой образования Н2О пз элементов (см. табл. 17), б) стандартным значением свободной энергии 1 моля П2О (см. табл. 23) и в) температурной зависимостью теплоемкостей водорода, кислорода и П2О (см. табл. 6) вычислить изменение свободной энергии при обра ювании НгОгаз из элементов пр,и 727° С. [c.213]

    Os > Pd > iRu > Pt. В условиях, когда глубина превращения толуола не превыщает 50%, селективность деалкилирования в первую очередь определяется природой металла и для перечисленных катализаторов составляет 99 (Pd/AbOa)—80 (Ru/AbOa) 7о (мол.). Определены [256] кажущиеся энергии активации гидродеалкилиро-вания толуола (см. табл. 6) и найдена антибатная зависимость между энергиями активации и теплотами сублимации металлов [257] (рис. 36). С увеличением теплоты сублимации закономерно снижается кажущаяся энергия активации. Это объясняется [256] тем, что энергии связи металлов с реагирующими атомами изменяются, как правило, симбатно с теплотами их сублимации [153, т. 2 258], в то время как энергетический барьер, который необходимо преодолеть для разрыва Сар—Сал-связи, должен быть тем меньще, чем больще энергия связи М—С [259]. [c.174]

    Полученные результаты допускают различную интерпретацию. Часто существование излома и низкое значение эффективной энергии активации процесса в области высоких температур рассматривают как доказательство лимитирующего влияния испарения топлива. Однако при этом не учитывается, что в случае лимитирующего влияния испарения эффективная энергия активации процесса в высокотемпературной области для бензола и цетена должна быть различной, равной их теплотам испарения (30,75 и 51,10 кДж/моль соответственно), чего не наблюдается в опыте. Кроме того, значения IgXi при постоянной температуре для легко испаряющегося бензола (т. кип. 80,1 °С) должны располагаться ниже, чем для трудно испаряющегося цетена (т. кип. 274 °С), чего также не наблюдается в опыте. Нельзя объяснить существование излома и тем, что в области низких температур преобладает гетерогенный (пристеночный) механизм самовоспламенения [155]. В этом случае температура, при которой наблюдается излом, для трудно испаряющегося цетена должна быть выше, чем для бензола. Опыт свидетельствует об обратном. Причину излома зависимости IgXj—1/Т можно объяснить различием механизма газо- и жидкофазного окисления топлив, аномально высокой скоростью окисления капель топлива. [c.136]

    Константа скорости реакции ингибитора с КОг- зависит от природы разрываемой 1п—Н-связи, (О—Н-связь фенола или N—Н-связь амина), от прочности 1п—Н-связи и от стерических препятствий, создаваемых объемными заместителями в о-положении. Чем прочнее 1п—Н-связь в ингибиторе, тем медленнее он реагирует с пероксидными радикалами. Для 2,6-ди-г/зег-бу-тилфенолов с разными заместителями в п-положении вшюл няется линейная зависимость между энергией активации и теплотой реакции (уравнение Поляни — Семенова) [177] Е = 8,2—0,072 <7, которая позволяет при известной В1пн найти Е, так как <7 = 368—/)1пн. Линейно связана с /)1пн и константа скорости реакции пероксидных радикалов с фенолами этого -ипа [177] [c.103]

    В случае полярных растворителей методики расчета перераспределения компонентов между фазами дансе для отдельных конкретных систем пока не разработаны. Менсду тем использование энергии Гиббса в уравнении параметра растворимости удобно в том отношении, что в изобарно-изотермический потенциал входят лишь две функции— тепловая и энтропийная. Не требуется отдельно искать математическую зависимость степени ассоциации молекул растворителя при разных температурах процесса, так как этот эффект учитывается изменением теплоты смешения. [c.247]

    В зависимости от условий, в которых производят нагрев, различают несколько видов теплоемкостей, из которых мы остановимся здесь на двух главнейших. В случае нагревания вещества при постоянном объеме теплоемкость v, которой оно обладает, называется изохорной теплоемкостью (ее называют также теплоемкостью при постоянном объеме). В этом случае вся сообщаемая веществу теплота увеличивает его внутреннюю энергию, так как при нагревании без изменения объема не производится внешней работы. Теплоемкость Ср, которой обладает тело, нагреваемое при постоянном давлении, называется изобарной теплоемкостью (ее называют также теплоемкостью при постоянном давлении). В этих условиях нагрева, наряду с расходом теплоты на увеличение внутренней энергии вещества, производится еще и работа против внешнего давления вследствие расширения вещества при повышении температуры. Эта работа требует затраты дополнительного количества теплоты, поэтому изобарная теплоемкость всегда больше тохорной. [c.102]


Смотреть страницы где упоминается термин Теплота, Энергия зависимость: [c.162]    [c.35]    [c.65]    [c.23]    [c.376]    [c.394]    [c.73]   
Методы сравнительного расчета физико - химических свойств (1965) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия зависимость

энергий теплота



© 2025 chem21.info Реклама на сайте