Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ энергия активации

    При отрицательном катализе энергия активации реакции возрастает, а скорость ее уменьшается. [c.143]

    Показатель степени величины е отрицателен, следовательно, с повышением температуры скорость реакции возрастает, а с увеличением энергии активации уменьшается. Энергия активации процесса окисления SO в SOg очень велика, и потому в отсутствие катализатора (гомогенное окисление) реакция практически не идет даже при высокой температуре. В присутствии твердых катализаторов (гетерогенный катализ) энергия активации понижается и скорость реакции возрастает. Таким образом, роль ванадиевой контактной массы как катализатора состоит в понижении энергии активации. [c.28]


    В сорбционных областях гетерогенного катализа энергия активации близка к теплоте хемосорбции и составляет более-80 кДж/моль, что близко к значениям в кинетической области катализа. Она неотличима от последней и по отсутствию влияния на скорость размера зерна катализатора (если в сорбции принимает участие вся поверхность), а различие проявляется в форме кинетических уравнений. С точки зрения практической-работы катализатора сорбционная и кинетическая области также близки друг к другу. [c.301]

    Оствальд удачно использовал эту идею в разработанной им теории катализа. Он показал, что образование промежуточного продукта в виде соединения с катализатором (см. разд. Катализ ) требует меньшей энергии активации, чем непосредственное образование конечных продуктов реакции. [c.120]

    Одним из наиболее распространенных в химической практике методов ускорения химических реакций является катализ. В присутствии катализатора изменяется путь, по которому проходит суммарная реакция, а потому изменяется ее скорость.Катализаторы—это вещества, изменяющие скорость реакции за счет участия в промежуточном химическом взаимодействии с компонентами реакции, но восстанавливающие после каждого цикла промежуточного взаимодействия свой химический состав. Увеличение скорости катализируемой реакции связано с меньшей энергией активации нового пути реакции.  [c.204]

    Г.К. Боресковым установлено исключительно важное для теории и практики гетерогенного катализа явление изменения энергии активации реакции, а также энергии связи кислорода окисла в зависимости от степени окисления катализатора. Было обнаружено, что по мере удаления кислорода из окислов металлов энергия активации реакций их восстановления непрерывно возрастает. Это указывает на то, чт) поверхность катализатора неоднородна в отношении хемосорбции окислителя, [c.160]

    Каталитические реакции в гомогенных системах (гомогенный катализ). В этом случае катализатор образует с реагентами одну фазу. Реакции такого типа могут проходить в газовой или жидкой фазах. Часто ход подобных реакций связан с образованием промежуточного соединения одного из исходных веществ с катализатором. Это соединение подвергается затем распаду с образованием продукта и восстановлением катализатора. Повышение скорости реакции в присутствии катализатора основано на уменьшении энергии активации этой реакции вследствие изменения механизма ее протекания. [c.227]


    Далеко не полный перечень упомянутых неоднородностей вносит значительные осложнения в однозначное истолкование механизмов адсорбционных и каталитических процессов. Обычно эти осложнения учитываются введением функций распределения участков поверхности по соответствуюш пм характеристикам (теп-лотам адсорбции, тепловым эффектам химических поверхностных реакций, энергиям активации хемосорбции и катализа). Иногда эффекты, воспринимаемые как следствие неоднородностей в кинетике и статике адсорбции и в кинетике каталитических реакций, объясняются как результат некоторого отталкивательного взаимодействия между адсорбированными молекулами [141. Однако до сих пор не выяснен вопрос о реальности и природе постулируемых сил отталкивания. Возникает проблема идентификации природы неоднородностей, разработки приемов их распознавания, позволяющих отличать географические неоднородности от влияния сил отталкивательного взаимодействия. [c.12]

    Закономерности основного катализа исследованы менее подробно, но в основном он подчиняется последнему уравнению, если /Сдисс является константой равновесия реакции присоединения протона к основанию (/С) [6, с. 260]. Реакция изомеризации обычно подчиняется уравнению первого порядка — как для кислотного, так и для основного катализа, а энергия активации по разным данным колеблется в пределах 40—ПО кДж/моль. [c.95]

    Скорость каждой стадии в реакциях кислотно-основного катализа вследствие снижения энергии активации значительно выше, чем у всего процесса в целом, когда тот протекает без катализатора. [c.34]

    Таким образом, и в гетерогенном катализе ускоряющее действие катализатора связано с тем, что реагирующие вещества образуют промежуточные соединения, что приводит к снижению энергии активации. [c.125]

    Снижение энергии активации Е (кал/моль) при катализе [c.493]

    Современное состояние теории элементарного химического акта и теории катализа позволяет определить лишь направления, по которым следует вести поиски катализаторов и условий процесса. Как правило, еще требуются большие экспериментальные исследования при создании новых высокоэффективных катализаторов и каталитических процессов. Одной из задач химической кинетики является выяснение возможности представления сложного химического процесса в виде стадий и определение скоростей, констант скоростей и энергий активации отдельных стадий. Эта задача частично решается в разделе химической кинетики, который получил название формальной кинетики химических реакций. [c.532]

    Катализатор снижает энергию активации со 198 до 134 кДж/моль. Все гомогенные каталитические реакции в растворах с известной степенью условности можно разделить на три группы 1) кислотноосновной катализ, 2) окислительно-восстановительный катализ (катализ комплексными соединениями или координационный катализ), 3) ферментативный катализ. [c.623]

    Энергия активации собственно реакции, т. е. истинная энергия активации, оценивается теорией катализа А. А. Баландина следующим образом. Реакция АВ + СО = АО + ВС может быть представлена следующим образом (К — активные центры катализатора)  [c.149]

    Катализом называется ускорение химических реакций в присутствии определенных веществ (катализаторов), многократно химически взаимодействующих с реагентами, но не входящих в состав продуктов реакции [1]. Каталитический процесс включает в себя три этапа адсорбцию, химические превращения на поверхности и десорбцию. Каждый из этапов состоит из нескольких последовательных или параллельных стадий физического и химического взаимодействия промежуточных соединений на поверхности друг с другом и с компонентами газовой фазы. Суммарная скорость каталитического процесса зависит от скоростей его отдельных стадий. Несмотря на специфичность каталитического действия, сущность катализа едина и состоит в том, что катализатор, входя в состав промежуточных соединений, увеличивает степень компенсации энергии разрыва старых связей энергией, освобождаемой при образовании новых связей. Этим самым обеспечивается снижение энергии активации химической реакции. [c.8]

    На рис. 1 показано изменение энергии реагирующей системы для указанной реакции. Если Е — энергия активации некаталитической реакции, Е — энергия активации каталитической реакции, б1 и б2 — энергии активации промежуточных стадий (а) и (б), то при Ек-< Е — катализ положительный. [c.22]

    Механизм гетерогенного катализа в принципе не отличается от гомогенного катализа. Атомы или группы атомов на поверхности твердого катализатора образуют с реагирующими веществами активные комплексы или неустойчивые промежуточные соединения. Благодаря этому снижается энергия активации и реакция ускоряется в том же направлении или в другом термодинамически возможном направлении. Нужно учитывать также изменение энтропии активации активного комплекса с участием катализатора.,  [c.425]


    Разнообразие в распределении температур по высоте зоны катализа затрудняет оценку преимуществ и недостатков температурных режимов и эффективности катализаторов. Сравнение эффективности действия катализатора возможно лишь в том случае, если на основе температурного графика неизотермического реактора рассчитать температуру, эквивалентную средней скорости процесса, проводимого в изотермических условиях, или, как еще ее можно назвать, эквивалентную изотермическую (кинетическую) температуру [9, 10]. Весьма важно также, что характер распределения температур в отдельных адиабатических зонах реакторного устройства зависит от свойств катализаторов и кинетических характеристик процесса. Так, по температурным кривым можно судить о численных значениях кажущихся энергий активации процессов, об активности катализаторов, а в некоторых случаях и о [c.32]

    Энергетические особенности описанного механизма каталитического процесса можно проиллюстрировать схемой (Э, из которой видно, что энергия активации этого процесса меньше энергии активации некаталитического. При этом необходимо отметить, что выполнение условия Е > справедливо не только для катализа, но и для ингибирования. Другими словами, замедление ингибируемой реакции также связано не с возрастанием, а со снижением энергии активации лимитирующей стадии процесса. Поясним это на таком примере. Ингибируемые реакции являются, как правило, сложными, [c.59]

    Гомогенный катализ. Механизм гомогенного катализа хорошо объясняется теорией промежуточных химических соединений. По этой теории катализатор с реагирующим веществом образует неустойчивое реакционноспособное промежуточное соединение. Энергия активации этого процесса ниже энергии активации некаталитической основной реакции. В дальнейшем промежуточное соединение распадается или реагирует с ноной молекулой исходного вещества, освобождая при этом катализатор в неизмененном виде. Эти превращения также характеризуются сравнительно малой энергией активации. [c.215]

    Выбор параметров модели катализа. Энергии активации реакций в работе [81] были выбраны на основе литературных данных. Их значения приведены в предыдущих параграфах. С целью определения стерических множителей Рал-> Р(1а, Рш были проведены интенсивные параметрические исследования. Вначале изучалась бинарная смесь атомов и молекул азота (N5 N2). Из сравнения рассчитанных значений коэффициента рекомбинации 7 и энергетического рекомбинационного коэффициента 7 = 7N/ЗN2 при парциальных давлениях в газовой фазе pN = 10, 100, 1000, 10000 Па и = О Па с экспериментальными результатами [52, 57] были выбраны следующие величины стерических множителей Р = 0,1, Рс1а1> = О, 01, PшN = О, 02. При этом предполагалось, что имеет место термодинамическое равновесие между поверхностью, газовой фазой и различными степенями свободы. Для бинарной смеси атомов и молекул кислорода были проведены аналогичные исследования. Величины стерических множителей были выбраны такими же, как и для смеси атомов и молекул азота  [c.104]

    Ценность этой классификации заключается в том, что именно природа промежуточного химического взаимодействия, а не агрегатное состояние реакционной системы определяет свойства, кото — рыми должен обладать активный катализатор. Так, при гомолити — ческом катализе разрыв электронных пар в реагирующем веществе обычно требует большой затраты энергии. Для того, чтобы тепловой эффект, а следовательно, и энергия активации этой ст адии не были бы слишком большими, одновременно с разрывом электронных пар должно протекать и образование новых электронных пар с участием ь еспаренных электронов катализатора. [c.80]

    В кинетическом отношении каталитическая реакция будет идти с большей скоростью, если в результате промежуточного химического взаимодействия катализатор будет снижать энергию активации химической реакции (или одновременно повышать пред— экспонент Аррениуса). Это правило согласуется с принципом компенсации энергии разрывающихся связей в катализе. Оно согласуется также с принципом энергетического соответствия мультип — летной теории A.A. Баландина. [c.88]

    Семенов определяет энергию актпвацин для второго предела 35 ккал. Однако благодаря катализу НаО и зависимости нижнего продела от состояния поверхности невозможно приписать эту энергию активации какой-либо определенной константе. Влияние следов воды и водорода на реакцию можно объяснить как катализом на поверхности, так и цепным разветвлением, протекающим по схеме [c.397]

    Этот аргумент Бельчеца и других является вместе с тем указанием на то, что использованная для расщепления углеводородов проволока является сама по себе, по-видимому, фактором, осложняющим реакцию. То обстоятельство, что для разложения всех углеводородов до б,утаиа необходима энергия активации порядка 95 ккал, указывает на некоторый вид новерхностного катализа. [c.74]

    Рустамов с сотр. исследовали кинетику конденсации фенола с ацетоном в присутствии серной, соляной и ортофосфорной кислот и сильнокислотных ионообменных смол с сульфогруппами (КУ-1 и КУ-2). Они показали, что реакция является необратимой. Энергия активации в случае использования серной кислоты и ионообменных смол одинакова (15,6 ккал1моль), что говорит об идентичности механизма реакции и одинаковой лимитирующей стадии при гомогенном и гетерогенном процессах. Высокая энергия активации указывает, чта катализ протекает в кинетической области. По активности катализаторы располаг аются в ряд  [c.87]

    Эта зависимость тем более удивительна, что, казалось бы, никакой связи между величинами С и быть не должно. Ведь Е связано с энергетической природой активного центра, а С, с точностью до множителя пропорциональности, есть число активных центров на единице поверхности катализатора. До сих пор не дано полного теоретического обоснования этой интересной опытной закономерности . Пожалуй, наиболее правдоподобно звучит объяснение, данное Швабом на основании теории активных центров. Если катализ осуществляют только определенные активные центры, обладающие различным энергетическим потенциалом (т. е. катализ идет на наборе активных центров с разными энергиями активации на них), то по статистически-термо-дннамическим соображениям число их должно увеличиваться с уменьшением энергетического потенциала. На поверхности катализатора, обладающего по условиям приготовления центрами высокой активности, только эти центры и будут участвовать в процессе на поверхности же катализатора, пе имеющего центров высокой активности, катализ поведут менее активные, но более многочисленные центры. Следовательно, чем больше величина Е для данного катализатора из серии катализаторов с разной активностью центров, тем большего значения С следует ожидать. Поскольку между числом центров и их энергий наиболее вероятна экспоненциальная зависимость, качественно объяснимо и эмпирическое уравнение (XIII, 6). [c.336]

    В катализе сходным образом действует увеличение времени жизни ассоциативных комплексов, образованных с катализатором промежуточными или исходными веществами или продуктами реакции. В уменьшении таких задержек заключается основной смысл оптимальных энергий активации и оптимальных теплот адсорбции в катализе. А. А. Баландин развил эту идею дальше в виде принципа энергетического соответствия мультиплетной теории [82]. Однако в наиболее характерных случаях кибернетического катализа механизм значительно сложнее. В частности, стадии, решающие для осуществления кибернетических функций (сопряжение процессов и регулирование тонкого строения продуктов реакции), сравнительно редко контролируют скорость суммарного процесса, поэтому усиленное внимание стадиям, контролирующим скорость слитного процесса, иногда в сложном катализе бывает мало оправданно. [c.304]

    Следует отметить, что изменение диэлектрической постоянной среды может также сказываться на значениях кажущейся энергии активации в случае катализа слабыми кислотами или основаниями либо прп реакциях в водно-органических средах. Это обусловлено тем, что зависимость от температуры выражается уравненпем  [c.42]

    Кинетический анализ катализа на С03О4 [7] показал первый порядок по СН4 (0,01—0,05 атм, или 0,098 10 —0,490 10 Па) и порядок 0,2 по О2 (0,03—0,96 атм, или 0,294 10 —9,40-10 Па) Н2О (но не СОг) вызывает отравление катализаторов, и суммарная энергия активации равна 17—19 ккал/моль (71,2 10 —79,5-10 Дж/моль) при 350—450° С [7, 8]. [c.147]

    Химическая кинетика и катализ. Формальная кинетика. Вывод кинетических уравнений и определение основных кшетических характеристик химических реакций. Теории химической кинетики. Лимитирующая ст адия п]10цесса. Зависимость скорости реакции от смнсрату-ры. Энергия активации и стерический фактор. Кш етика цепных реакций. [c.9]

    Эти выводы теории А. А. Баландина ( принцип энергетического соответствия ) в общем виде подтверждаются многими примерами, однако применение теории для расчета энергий активации весьма ограничено отсутствием в большинстве случаев данных о прочности связей с катализатором. Во всяком случае слишком слабое (ЕСкх < С АВ + ( св) или слишком сильное (X Ркх > Сав + + Q D) взаимодействие с катализатором ведет к высокому значению энергии активации, и катализ не осуществляется. В нервом случае реагенты активируются катализатором в малой степени, а во втором происходит по существу реатоия с поверхностью катализатора с образованием прочных поверхностных соединений. [c.150]

    Энергия активации для различных партий катализатора в области рабочих температур катализа колеблется от 85 до 95 кдж/молъ. Температура зажигания свежего катализатора при нормальной газовой смеси составляет около 380° С. [c.148]

    Тема 2 Закономерность протекания химических реакций (4 час). Лекция 9. Скорость химических реакций. Классификация реакций. Молеку-лярность и порядок реакции. Зависимость скорости реакции от температуры энергия активации. Понятие о гомогенном и гетерогенном катализе. Примеры каталитических процессов, в нефтеперерабатывающей промышленност Лекция 10. Обратимые и необратимые процессы. Химическое равновесие [c.179]

    Большинство химических превращений углеводородов нефти, имеющих практическое значение, осуществляется в присутствии катализаторов. Катализаторы позволяют снижать энергию активации химических реакций и тем самым значительно повышать их скорость. В самом общем виде в этом и заключается сущность н значение катализа. Проведение реакции в присутствии катализаторов позволяет также резко снижать температуру процесса. Для реакций, ха рактеризующихся положительным тепловым эффектом (полимеризация, гидрирование, алкилирование и др.), это имеет особо важное значение, так как высокие температуры с термодинамической точки зрения для них неблагоприятны. Следовательно, катализаторы в данном случае и ускоряют процесс, и способствуют достижению наиболее высоких равновесных концентраций. Следует, однако, не забывать, что сдвигать положение равновесия катализаторы не могут, они в равной степени ускоряют как прямые, так и обратные реакции. [c.214]

    Энергетика химических превращений. Внутренняя энергия. Энтальпия. Энтальпия образования. Закон Гесса. Термохимические расчеты. Направление химических реакций. Энергетический и энтропийный факторы. Энергия Гиббса, Энергия Гиббса образования. Химическое равновесие. Характеристика глубины протекания процесса. Константа химического равновесия. Смещение химического равновесия. Химическая кинетика. Энергия активации. Активированный комплекс. Механизм химических реакций. Катализ. Управление глубииой и скоростью химического процесса. [c.112]


Смотреть страницы где упоминается термин Катализ энергия активации: [c.372]    [c.149]    [c.135]    [c.187]    [c.63]    [c.227]    [c.15]    [c.493]    [c.658]    [c.134]    [c.107]    [c.66]    [c.65]   
Краткий курс физической химии Изд5 (1978) -- [ c.486 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость между истинной и кажущейся энергиями активации в гетерогенном катализе

Тэйлор адсорбционная теория катализа активированная адсорбция активные центры разложение Н в воде энергия активации

Энергия активации

Энергия активации в кислотно-основном катализ

Энергия активации — 90. Катализ. Ферменты и энергия активации

Энергия при катализе



© 2025 chem21.info Реклама на сайте