Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан перманганатом

    Титан может сравнительно легко восстанавливаться из четырех-валентного трехвалентный, а последний легко окисляться в четырехвалентный поэтому возможно, после предварительного восстановления его (например, металлическим цинком или кадмием), оттитровать трехвалентный титан перманганатом (или другим окислителем). Обычно раствор с восстановленным титаном приливают в раствор соли трех- [c.251]


    Содержание железа (III) и титана (IV) можно найти следующим образом. Порцию раствора восстанавливают в цинковом редукторе и титруют затем сумму Ti + и Fe - + в другой части раствора восстанавливают железо в висмутовом (нли в серебряном) редукторе (титан не восстанавливается) и титруют ионы железа перманганатом. По разности находят содержание титана. [c.439]

    Марганец мешает определению, поскольку он осаждается с гидроокисью магния, подавляя впоследствии окраску комплекса магния с солохром цианином Н 200. При анализе проб, содержащих более 0,05% марганца, титан отделяют экстракцией купфероната титана хлороформом, затем перед осаждением гидроокиси магния отделяют марганец в виде перманганата цинка, добавляя окись цинка. Такая модификация метода дает возможность анализировать пробы, содержащие до 1 % марганца. Допускается также присутствие до 10% алюминия и 5% хрома. [c.53]

    Ниже (см. стр. 60) описан наиболее удобный фотометрический метод определения марганца в титане и его сплавах, в основу которого положена реакция образования перманганата при окислении ионов марганца (И) иодатом калия в кислом растворе [c.59]

    Определение в титане в виде перманганата [c.82]

    На окислительно-восстановительных реакциях основаны многочисленные методы химического анализа. В этой главе описываются свойства и применение некоторых наиболее распространенных окислительно-восстановительных титрантов. Сначала рассмотрены три самых сильных окислителя, используемые в редокс титриметрии — перманганат калия, бихромат калия и церий(IV), затем система трииодид — иодид, в которой трииодид-ион выступает в качестве окислителя в соответствующих реакциях, а иодид-ион — в качестве восстановителя со многими окислителями. Далее, обсуждено аналитическое применение иодата, перйодата и бромата — особенно для определения органических веществ. И наконец, вкратце охарактеризованы такие ценные восстановительные титранты, как железо(II), титан(III) и хром(II). [c.315]

    Сероводород и диоксид серы. Эти газы легко растворимы в водной среде и являются относительно мягкими восстановителями. Их широко используют для восстановления в кислых растворах железа (III) до железа (II) с последующим титрованием последнего стандартными растворами окислителей. Помимо этого, сероводород и диоксид серы восстанавливают ванадий(V) до ванадия (IV), а также более сильные окислители —перманганат, церий (IV) и бихромат. С титаном (IV) и хромом (III) они не взаимодействуют. Если раствор кислый, то для удаления избытка обоих газов его достаточно лишь прокипятить. Недостатками этих восстановителей является то, что они токсичны, восстановление диоксидом серы протекает сравнительно медленно, а при использовании сероводорода образуется коллоидная сера, которая может реагировать с сильными окислителями. [c.317]


    После растворения оксида железо существует частично или полностью в виде железа (П1). Поскольку для титрования стандартным раствором перманганата калия требуется, чтобы все железо присутствовало в виде железа (П), железо(П1), образовавшееся в результате растворения пробы, должно быть количественно восстановлено. Для этого можно использовать любую из методик, описанных выше для предварительного переведения вещества в соответствующую степень окисления. Обычно для восстановления железа (П1) используют сероводород или диоксид серы. Если раствор прокипятить, то избыток любого газа-восстановителя легко удалится, но следует принять меры предосторожности против повторного окисления л<елеза(П). Можно использовать и редуктор Джонса, но в нем восстанавливаются до более низких степеней окисления и сопутствующие железу элементы в руде, а именно, титан, ванадий, хром, уран, вольфрам, мышьяк и молибден. Поэтому результаты титрования окажутся завышенными. В то же время серебряный редуктор позволяет. проводить преимущественное восстановление железа (П1) в присутствии титана (IV) и хрома (III). [c.324]

    В основу одновременного определения трех- и четырехвалентного титана при их совместном присутствии положено непосредственное определение Ti +, находящегося в растворе, и общего количества трехвалентного титана, полученного путем восстановления ионов до Ti в редукторе Джонса. Трехвалентный титан определяется по методу, предложенному Табаковой и Соловьевой [109], путем введения известного количества раствора соли титана в точно замеренное количество раствора железоаммонийных квасцов, находящихся в избытке, и последующим титрованием образовавшегося двухвалентного железа раствором перманганата. По расходу перманганата при первом и втором титровании вычисляют содержание различных форм титана. [c.149]

    Титан. Фильтрат от сульфидов подкисляют соляной кислотой в стакане емкостью 400 мл, выпаривают до небольшого объема, накрывают стакан стеклом и разрушают аммонийные соли нагреванием с царской водкой. Затем разрушают всю винную кислоту и другие органические вещества для чего прибавляют серную кислоту (если после разложения сульфата аммония ее не осталось от 5 до 10 мл), нагревают до выделения паров серной кислоты и осторожно приливают азотную кислоту (лучше дымящую), вводя ее время от времени маленькими порциями через носик стакана. Если органическое вещество устойчиво, последние следы его могут быть разрушены осторожным прибавлением нескольких капель концентрированного раствора перманганата. Наконец выпариванием удаляют всю азотную, кислоту. Охлаждают, разбавляют до определенного объема в мерной колбе емкостью 50 мл или больше, соответственно количеству присутствующего титана, и определяют его колориметрически (стр. 655). Раствор сохраняют. [c.122]

    Объемные методы, основанные па восстановлении амальгамами цинка 1, кадмия висмута или свинца с последующ им титрованием соответствующим окислителем, обычно перманганатом калия, вполне надежны для определения таких элементов, как железо, титан, молибден, уран и ванадий. Восстановление осуществляется в приборе, показанном на рис. 14. [c.141]

    Титан можно осаждать в присутствии железа (II и III), алюминия, цинка, кобальта, никеля, бериллия, хрома (III), марганца (II), кальция, магния, таллия, церия (III), тория, натрия, калия, аммония, а также фосфатов, молибдатов, хроматов, ванадатов, перманганатов, уранила и ванадила. Мешают определению ионы циркония, церия (IV) и олова. Перекись водорода также должна отсутствовать. На осаждение циркония влияют церий (IV), олово, большие количества фосфата, а также титан при отсутствии в растворе перекиси водорода. [c.156]

    Определение по реакции с фенилфлуороном . Германий реагирует с фенилфлуороном в кислой среде с образованием комплексного соединения розового цвета. Благодаря желтой окраске самого реагента раствор в присутствии германия приобретает оранжевый цвет. С течением времени германий выпадает в осадок, поэтому для стабилизации раствора необходимо вводить защитный коллоид. Определению германия препятствуют галлий, титан, олово, мышьяк (1И) и (V), висмут, молибден (IV), железо (II) и сурьма (III). Установлено, что влияние мышьяка весьма незначительно, а таллия, олова, сурьмы и молибдена наиболее ощутимо. Сильные окислители, такие, как бихромат и перманганат, также мешают определению, так как они разлагают реагент. По утверждению автора, этот метод почти в 4 раза чувствительнее, чем метод колориметрирования но молибденовой сини. Для отделения германия от мешающих элементов используется дистилляция. Колориметрическое определение проводится непосредственно в дистилляте. [c.354]

    Мешаюш ее влияние титана может быть устранено прибавлением окиси меди, сульфата меди или окиси висмута [эти соединения окисляют титан (III), но не окисляют железо (II)], фильтрованием и затем титрованием перманганатом калия 2. [c.443]


    Восстановленные цинком хром и титан можно также вновь окислить добавлением 3 мл 0,0001 М раствора сульфата меди и пропусканием воздуха через раствор в течение 10—15 мин. Затем можно определить железо титрованием перманганатом, как обычно 6. [c.443]

    В разделе Методы отделения (стр. 524) было указано, что в солянокислых и сернокислых растворах купферон образует нерастворимое соединение с ураном (IV). Уран (VI) при этом не осаждается. Поэтому в некоторых случаях целесообразно определять уран следующим образом. Сначала проводят осан дение купфероном из раствора, содержащего уран в шестивалентной форме. Осадок отфильтровывают и в фильтрате, после разрушения купферона и восстановления цинком, как это описано в разделе Объемное определение восстановлением цинком и титрованием перманганатом (стр. 529), осаждают уран (IV) купфероном. Таким путем железо, ванадий, титан и цирконий отделяются от урана, а затем уран в свою очередь отделяется от алюминия и фосфора. Хром (II) также частично осаждается купфероном, но его влияние можно устранить, подвергнув раствор действию воздуха, как указано выше (стр. 529). [c.531]

    Определение железа в осадке смеси окислов. Объемное определение в отсутствие ванадия. Охлажденный фильтрат, полученный, как описано на стр. 953, обрабатывают методами, приведенными в гл. Железо (стр. 444), если присутствует титан, или методом, описанным на стр. 442, в отсутствие титана. Затем титруют полученное железо (П) перманганатом (стр. 445) и определяют титан способом, описанным в гл. Титан (стр. 655). [c.957]

    Солянокислая соль титана (III) в растворах очень неустойчива, но сернокислая не изменяет титра в течение 20 , и с ее растворами можно работать в открытых бюретках. Рабочий раствор сульфата титана готовят из продажного препарата и восстанавливают титан жидкой амальгамой цинка, после чего титр раствора устанавливают по перманганату калия  [c.168]

    Окислительно-восстановительные индикаторы [1, 3, б, 7J изменяют цвет или интенсивность флуоресценции раствора в результате окисления или восстановления их молекул в зависимости от свойств люминофора флуоресцируют или его окисленная, иди восстановленная форма, илн та и другая. Значение потенциала, при котором происходит переход флуоресценции индикатора, зависит от кислотности среды. Предложены для применения следующие индикаторы этой группы а-нафтофлавон, риванол, родамин 6Ж, родамин С, трипафлавин, флуоресцеин, фосфин. При титровании растворами брома, иода или церия (IV), бромата, гипохлорита, перманганата можно определять железо (II) и олово (II), мышьяк (III),сурьму (III) и титан (III), ванадий (IV) и молибден (IV). [c.285]

    Косвенные определения с применением железа(1П). Для определения сильных восстановителей, окисляющихся воздухом, рекомендуется вводить раствор восстановителя непосредственно в раствор железа (III), взятого в избытке. Определение выделившегося эквивалентного количества железа(II) не составляет труда. Церий (IV) имеет преимущество перед перманганатом в том отношении, что позволяет применять в качестве среды для восстановления сравнительно концентрированные растворы соляной кислоты. Таким методом можно определять медь, молибден, торий, титан и ниобий и др. [81]. [c.381]

    В среде 9 н. соляной кислоты анионитом наиболее энергично поглощаются, помимо обычных анионов (перманганат-, бихромат-, ванадат-ионов), также и комплексные хлоридные анионы железа (П1), олова (IV) и сурьмы (V). Менее энергично — хлоридные анионные комплексы урана (VI), циркония, молибдена, цинка, олова (II), сурьмы (III), железа (II), меди, кадмия, кобальта, вольфрама. Не поглощаются анионитом и остаются в растворе алюминий, марганец, хром (III), никель, индий, титан, торий, редкоземельные элементы, бериллий, свинец, ванадий (IV) и магний. [c.698]

    Определение в присутствии железа (III). Проводя определение, как описано выше, находят суммарное содержание железа и титана. В другой порции анализируемого раствора после проведения восстановления титруют только титан (III) титрованным раствором соли железа (III) или перманганатом в присутствии метиленовой синей в качестве индикатора Ч Можно также окислить титан (III), пропуская через раствор воздух в течение 5 мин в присутствии катализатора 2 хлорида ртути (II), а затем титровать железо (II). [c.1031]

    Помимо кислотно-основного титрования практический интерес представляют также различные реакции присоединения, замещения и восстановления. При помощи таких реакций можно определить йодные числа жиров и основных масел [131] бром можно использовать для титрования органических соединений, которые образуют бромпроизводные [1311. При титровании фенола бромом рекомендуется добавлять ацетат натрия. Окись хрома(У1), перманганат натрия, бром, хлористый титан(1П) и соли хрома(П) в уксусной кислоте проявляют окислительно-восстановительные свойства [132,133]. Титрование обычно выполняют в растворе хлорной кислоты и в инертной атмосфере следы воды при этом недопустимы. [c.74]

    Построение кривых титрования для любых смесей не представляет сложностей, если между стандартными потенциалами существует достаточно большое различие. Примером может служить титрование перманганатом раствора, содержащего железо(II) и титан(III). Стандартные потенциалы этих систем равны соответственно [c.362]

    По окончании разложения железо частично или полностью переходит в трехвалентное состояние, поэтому перед титрованием окислителем необходимо предварительное восстановление железа любым из описанных ранее методов, например восстановление в редукторе Джонса. Амальгама цинка восстанавливает и другие элементы, обычно сопутствующие железу, например титан, ниобий, ванадий, хром, уран, вольфрам, молибден и мышьяк. В низших степенях окисления они также реагируют с перманганатом их присутствие вызывает завышение результатов определения железа. [c.380]

    Немаловажное значение имеет чистота применяемого хлора. Хлор, получаемый в лабораторных условиях окислением соляной кислоты перманганатом калия или двуокисью марганца, содержит кислород и пары воды. Примеси этих веществ переводят активные к кислороду элементы (алюминий, титан, цирконий, кремний, бериллий, бор и т. д.) в окислы. Поэтому хлориды загрязняются окислами. Следовательно, для получения чистых хлоридов необходимо или хлор подвергать специальной очистке, или хлориды отгонять из реакционного пространства. Некоторые окислы сравнительно легко переводятся хлором в хлориды (окислы меди, свинца, кобальта, никеля, щелочных, щелочноземельных металлов). Поэтому при хлорировании этих металлов хлор можно не очищать от кислорода. Для очистки хлора от кислорода его пропускают через раскаленную трубку, наполненную углем. Кислород дает с углем окись углерода, которая не ме-щает хлорированию. [c.71]

    Хлор, получаемый в лабораторных условиях окислением хлороводородной кислоты перманганатом калия или оксидом марганца (IV), содержит кислород и пары воды. Примеси этих веществ переводят активные к кислороду элементы (алюминий, титан, цирконий, кремний, бериллий, бор и т. д.) в оксиды. Поэтому хлориды загрязняются оксидами. Следовательно, для получения чистых хлоридов необходимо или хлор подвергать специальной очистке, или хлориды отгонять из реакционного пространства. Некоторые оксиды сравнительно лег- [c.61]

    Для окисления Fe (И) в Ре (П1) используют азотную кислоту, а также другие окислители в зависимости от природы анализируемого объекта пероксидисульфат аммония, перманганат калия. Проведению реакции мешает ряд веш,еств. Прежде всего должны отсутствовать анионы кислот, которые дают более прочные ко1 шлексиые соединения, чем роданиды железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также значительные количества хлоридов и сульфатов. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь молибден, вольфрам, титан (III, IV), ниобий, палладий, кадмий, цинк, ртуть. [c.151]

    Методы определения марганца в титане и его сплавах аналогичны методам определения этого элемента в сталях. Для определения марганца в титане был предложен объемный метод основанный на окислении марганца персульфатом аммония с добавкой нитрата серебра и титровании образующегося иона перманганата стандартным раствором арсеннта натрия. В присутствии большого количества титана стехиометрия этой реакции зависит от содержания марганца. Поэтому титрование лучше проводить стандартными растворами соли Мора с добавкой перманганата калия [c.59]

    После растворения пробы в раствор добавляют борную кислоту для связывания фторид-ионов, а титан окисляют перманганатом. Для образования кремнемолибдата вводят молибдат аммония. При этом выпадает белый осадок молибдата титана. Кремнемолибдат образуется в растворе, 0,05 н. по серной кислоте. При такой кислотности реакция заканчивается через 5 мин. При более высокой концентрации кислоты реакция протекает медленнее. Например, если нормальность раствора по кислоте больше 1, то для завершения реакции требуется 1 ч. Но если комплекс образовался, то повышение кислотности раствора не влияет на его устойчивость. Поэтому перед восстановлением кремнемолибдата в раствор добавляют серную кислоту, чтобы повысить кислотность до 2,5 н. При такой высокой кислотности осадок молибдата титана растворяется и предотвращается восстановление молибдата до темно-синего комплексного соединения. [c.87]

    Гетероциклические азосоединения чрезвычайно реакционно-способны. Они взаимодействуют со всеми элементами, существующими в растворе в катионной форме, образуя интенсивно окрашенные соединения. Исключение составляют щелочные металлы, не взаимодействующие с реагентами данной группы. По последним данным, ПАНч2 взаимодействует с щелочноземельными элементами, образуя экстрагируемые комплексы. Особую группу составляют элементы платиновой группы, за исключением палладия, образующие комплексы только при нагревании. Перманганат и бихромат окисляют реагенты до бесцветных соединений, сильные восстановители— ванадий(П), хром(И), титан(П1) — восстанавливают реагенты до двух аминов. [c.32]

    То же можно сказать и в отношении объемных определений. Если объемное определение молибдена основано на восстановлении его цинком и титровании стандартньт[ раствором перманганата, то такие вещества, как нитраты, мышьяк, вольфрам, ниобий, которые не восстанавливаются до определенной степени окисления, должны быть предварительно удалены. Такие элементы, как железо, хром, титан, ванадий, надо или удалить или точно определить, чтобы можно было внести на их присутствие соответствующую поправку. [c.28]

    Объемному определению каждого из элементов после восстановления в редукторе, само собой разумеется, мешают все прочие восстанавливающиеся наряду с ним элементы, а именно железо, титан, европий, хром, молибден, ванадий, уран, ниобий, вольфрам и рений. Помимо того, следует упомянуть азотную кислоту, органические вещества, олово, мышьяк, сурьму и политионаты. Наиболее часто приходится сталкиваться с азотной кислотой, которая восстанавливается до гидроксил-амина и других соединений, на которые при титровании расходуется окислитель. Например, при определении железа в белой глине можно получить неверные результаты вследствие содержания нитрата аммония в осадке от аммиака, даже тщательно промытом. Для полного удаления азотной кислоты обычно требуется двукратное, даже лучше трехкратное, выпаривание раствора с серной кислотой до появления ее паров, причем стенки сосуда необходимо каждый аз тщательно обмывать. Иногда, как, например, в присутствии урана или при разрушении фильтровальной бумаги обработкой азотной и серной кислотами, азотная кислота удерживается настолько прочно, что для ее удаления двукратного выпаривания с серной кислотой недрстаточно. При разрушении фильтровальной бумаги можно избежать введения азотной кислоты, для чего к раствору, выпаренному в закрытом стакане до появления паров серной кислоты, прибавляют осторожно по каплям насыщенный раствор перманганата калия до появления неисчезающей розовой окраски, а затем продолжают нагревание в течение нескольких минут. [c.138]

    Мешающее влияния умеренных количеств титана (меньше 10 мг) можно также избежать, аэрируя раствор или прибавляя к нему проаэрированную воду и перемешивая 2—5 M.UH. При такой обработке титан (III) переходит в титан (IV), а железо (II) не окисляется з. Если при этом в качестве катализатора применять хлорид ртути (II), то можно легко вновь окислить большие количества титана, не затрагивая восстановленного железа . Если конечное титрование проводится перманганатом, необходимо прибавление раствора Рейнгарда (стр. 446). [c.443]

    Приготовление анализируемого раствора. Желательно, чтобы титан находился в виде сульфата в сернокислом растворе, свободном от влияющих на колориметрирование элементов, перечисленных в разделе Общие замечания (стр. 651). Для колориметрического определения можно использовать сконцентрированный раствор, сохраненный после определения железа в осадке от аммиака титрованием перманганатом (стр. 958), при условии, если в него не вводились другие кислоты, кроме серной. Присутствие марганца, введенного при титровании железа, не влияет на колориметрическое определение титана. Непосредственное использование этого раствора нежелательно, когда в нем содержатся ванадий и значительные количества фосфора. Из этих соображений, а также для отделения солей щелочных металлов, введенных при сплавлении осадка от аммиака (стр. 955), титан лучше сначала выделить из анализируемого раствора едким натром (стр. 110). Если в анализируемом растворе нахо-- дятря только соли щелочных металлов, удовлетворительные результаты получаются, когда в стандартный раствор вводят такое же количество [c.657]

    Рейхерт, Мак-Нейт и Радел [2] сравнили данные потенциометрического титрования перекиси зодорода такими реагентами, как перманганат, соль Мора, тиосульфат, арсенит, двухлористое олово, треххлористый титан, сульфит и нитрит. Они считают, что наилучшие результаты при oKpauieinibix растворах, содержащих органические вещества, дает 1штрит, и описывают подробную методику применения последнего. [c.465]

    Проведение определения. Анализируемый раствор разбавляют водой примерно до 200 мл и нейтрализуют аммиаком приблизительно до pH 4, не обращая внимания на образующийся осадок продуктов гидролиза (например, в присутствии Bi). Прибавляют достаточное количество комплексона (1—5 г), 10—25 мл ацетатного буферного раствора (120 мл концентрированной уксусной кислоты смешивают с 200 мл 20 %-ного аммиака и 200 мл дестиллированной воды), нагревают до кипения и осаждают кипящий раствор 5%-ным раствором оксалата аммония. Выделившийся в течение 3—6 час. осадок оксалата кальция отфильтровывают и определяют кальций весовым способом в виде СаО (или aSO ) или титрованием перманганатом калия. Кальций можно также определить прямым титрованием комплексоном после растворения оксалата кальция и прибавления комплексоната магния (см. Объемное определение кальция ). Определению сверх ожидания не мешает титан, образующий в слабокислой среде малоустойчивый, негидролизующийся комплекс. Бериллий и уран образуют комплексные соединения с оксалатом и определению не мешают. Единственным элементом, мешающим определению, является четырехвалентное олово, одновременно выделяющееся в виде гидроокиси. Однако последнее не мешает, если определение кальция заканчивается титрованием. Четырехвалентный церий восстанавливается комплексоном до трехвалентного [c.102]

    Метод с применением N-бeнзoил-N-фeнилгидpoк илaминa (БФГА) [2, 3]. К 25 лы анализируемого раствора добавляют по каплям 0,1 н. раствор перманганата калия до бледно-розового окрашивания (для окисления ванадия), подкисляют раствор так, чтобы он стал 5—9 н. по соляной кислоте, и экстрагируют ванадий 0,5%-ным раствором БФГА в хлороформе. После интенсивного встряхивания делительной воронки в течение 20—30 сек отделяют фиолетовый экстракт, фильтруют его через комочек ваты и измеряют оптическую плотность при К = -530 нм (е == 5100). Определению мешают в основном титан, цирконий, олово, гафний, большие количества молибдена. Так как БФГА чувствителен к избытку окислителей, особенно Сг (VI), последний должен быть восстановлен до трехвалентного состояния. Мешающее действие многих элементов можно устранить добавлением фосфорной кислоты и фторида натрия. [c.343]

    Ход определения. Анализируемый раствор разбавляют водой примерно до 200 мл и нейтрализуют аммиаком приблизительно до pH 4, не обращая внимания на образующийся осадок продуктов гидролиза (который выпадает, например, в присутствии Bi). Прибавляют достаточное количество комплексона( 1—5 г),10—25мл ацетатного буферного раствора (120 мл концентрированной уксусной кислоты смешивают с 200 мл 20 %-ного аммиака и 200 мл дистиллированной воды), нагревают до кипения и, не прекращая кипения, приливают кипящий 5о -ный раствор оксалата аммония. Выделившийся осадок оксалата кальция через 3—6 час. отфильтровывают и определяют кальций весовым способом в виде СаО (или aSO ) или титрованием перманганатом калия. Кальций можно также определить прямым титрованием комплексоном после растворения оксалата кальция и прибавления комплексоната магния (см. Объемное определение кальция ). Определению сверх ожидания не мешает титан, образующий в слабокислой среде хотя малоустойчивый, но негидролизующирся комплекс. Бериллий и уран образуют комплексные соединения с оксалатом и определению не мешают. Единственным элементом, мешающим определению, является четырехвалентное олово, одновременно выделяющееся в виде гидроокиси. Однако последнее не мешает, если определение кальция заканчивается титрованием. Четырехвалентный церий восстанавливается комплексоном до трехвалентного и образует комплексное соединение, не мешающее определению. При применении достаточного количества комплексона все посторонние элементы могут содержаться практически в любых количествах. Так, например, в растворе, содержавшем 500 мг Fe и 8,24 мг Са, при однократном осаждении в присутствии 5 г комплексона было найдено осаждением 8,21 мг СаО. Метод можно применить для определения кальция в любом веществе независимо от его качественного состава. Приводим два практических метода подобного определения. [c.132]

    Для ванадия отмечены две качественные флуоресцентные реакции. В кислой среде при восстановлении цинком и добавлении спирта церулеин дает желтую флуоресценцию, позволяю-идую обнаруживать ванадий при его концентрации 16 мкг/мл аналогично реагируют вольфрам, молибден, олово, титан и уран [232]. С резорцином в 20 н. серной или сиропообразной фосфорной кислоте при содержании ванадия более 2,5 мкг/мл возникает красная флуоресценция проведению реакции не мешают железо, титан, уран, вольфрамат, перманганат, 100-крат-ные количества молибдата, 25-кратные —хрома и 10-кратные — церия [319]. Оба эти реагента содержат функционально-аналитическую группу, характерную для иона ванадила церулеин 0 = С—С—он, резорцин НО—С = С—С—ОН [100]. [c.151]


Смотреть страницы где упоминается термин Титан перманганатом: [c.457]    [c.669]    [c.669]    [c.514]    [c.651]    [c.74]    [c.379]    [c.472]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.323 ]

Практическое руководство по неорганическому анализу (1966) -- [ c.654 , c.968 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.598 , c.886 ]




ПОИСК





Смотрите так же термины и статьи:

Перманганаты



© 2025 chem21.info Реклама на сайте